3,186
Views
3
CrossRef citations to date
0
Altmetric
Special Report

Therapeutic plasma exchange with albumin: a new approach to treat Alzheimer’s disease

ORCID Icon, , , &
Pages 843-849 | Received 22 Jun 2021, Accepted 23 Jul 2021, Published online: 04 Aug 2021

References

  • Polanco JC, Li C, Bodea LG, et al. Amyloid-β and tau complexity - Towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14:22–40.
  • Loeffler DA. AMBAR, an encouraging Alzheimer’s trial that raises questions. Front Neurol. 2020;11:1–7.
  • Wang J, Gu BJ, Masters CL, et al. A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13(10):612–623.
  • Querfurth HW, LaFerla FM. Alzheimer’s disease: mechanism of disease. N Engl J Med. 2010;362(4):329–344.
  • Forloni G, Alzheimer’s Disease BC. Oligomers, and Inflammation. J Alzheimer’s Dis. 2018;62(3):1261–1276.
  • Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem. 2016;136(3):457–474.
  • Montoliu-Gaya L, Mulder SD, Herrebout MAC, et al. Aβ-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Aβ single chain variable fragment in combination with an apoE mimetic peptide. Mol Cell Neurosci. 2018;89:49–59.
  • Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5–21.
  • Pontecorvo MJ, Devous MD, Navitsky M, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140:748–763.
  • Jacobs HIL, Hedden T, Schultz AP, et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018;21(3):424–431.
  • Yamazaki Y, Zhao N, Caulfield TR, et al. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15:501–518.
  • Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–581.
  • Iriondo A, García-Sebastian M, Arrospide A, et al. Plasma lipids are associated with white matter microstructural changes and axonal degeneration. Brain Imaging Behav. 2020;15(2):1043–1057.
  • Long JM, Holtzman DM. Alzheimer Disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–339.
  • Shamsi A, Shahwan M, Khan MS, et al. Elucidating the interaction of human ferritin with quercetin and naringenin: implication of natural products in neurodegenerative diseases: molecular docking and dynamics simulation insight. ACS Omega. 2021;6(11):7922–7930.
  • Pluvinage JV, Wyss-Coray T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat Rev Neurosci. 2020;21(2):93–102.
  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):280–292.
  • Cummings J, Aisen P, Lemere C, et al. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimer’s Res Ther. 2021;13(1):98.
  • Klein G, Delmar P, Voyle N, et al. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: a PET substudy interim analysis. Alzheimer’s Res Ther. 2019;11(1):101.
  • Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer’s Res Ther. 2021;13(1):80.
  • Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–1704.
  • Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5(3):228–234.
  • Schwartz J, Winters JL, Padmanabhan A, et al. Guidelines on the use of therapeutic apheresis in clinical practice - Evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013;28(3):145–284.
  • Jamshidian A, Abd-Nikfarjam B, Khademi Z, et al. Therapeutic plasma exchange may adjust IL-6 and TGF-β signals in relapsed MS patients peripheral blood. J Clin Apher. 2020;35(2):72–78.
  • Padmanabhan A, Connelly-Smith L, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the Writing Committee of the American Society for Apheresis: the eighth special issue. J Clin Apher. 2019;34:171–354.
  • Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement. 2016;12(6):719–732.
  • Olcum M, Tastan B, Kiser C, et al. Microglial NLRP3 inflammasome activation in multiple sclerosis. Adv Protein Chem Struct Biol. 2020;119:247–308.
  • Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol. 2008;9(8):857–865.
  • Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–678.
  • Stancu IC, Cremers N, Vanrusselt H, et al. Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 2019;137(4):599–617.
  • Bartfai T, Lees GV. Alzheimer drug trials: combination of safe and efficacious biologicals to break the amyloidosis-neuroinflammation vicious cycle. ASN Neuro. 2020;12:1–7.
  • Shamsi A, Ahmed A, Khan MS, et al. Understanding the binding between Rosmarinic acid and serum albumin: in vitro and in silico insight. J Mol Liq. 2020;311:113348.
  • Shamsi A, Ahmed A, Khan MS, et al. Rosmarinic acid restrains protein glycation and aggregation in human serum albumin: multi spectroscopic and microscopic insight - possible therapeutics targeting diseases. Int J Biol Macromol. 2020;161:187–193.
  • Colombo G, Clerici M, Giustarini D, et al. Redox albuminomics: oxidized albumin in human diseases. Antioxid Redox Signal. 2012;17(11):1515–1527.
  • Casulleras M, Flores-Costa R, Duran-Güell M, et al. Albumin internalizes and inhibits endosomal TLR signaling in leukocytes from patients with decompensated cirrhosis. Sci Transl Med. 2020;12(566):eaax5135.
  • Biere AL, Ostaszewski B, Stimson ER, et al. Amyloid β-peptide is transported on lipoproteins and albumin in human plasma. J Biol Chem. 1996;271(51):32916–32922.
  • Costa M, Ortiz AM, Jorquera JI. Therapeutic albumin binding to remove amyloid-β. J Alzheimer’s Dis. 2012;29(1):159–170.
  • Milojevic J, Costa M, Ortiz AM, et al. In vitro amyloid-β binding and inhibition of amyloid-β self-association by therapeutic albumin. J Alzheimer’s Dis. 2014;38(4):753–765.
  • Algamal M, Ahmed R, Jafari N, et al. Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid β (Aβ) peptides in the monomer and protofibril states. J Biol Chem. 2017 Oct;20(292):17158–17168.
  • Yamamoto K, Shimada H, Koh H, et al. Serum levels of albumin-amyloid beta complexes are decreased in Alzheimer’s disease. Geriatr Gerontol Int. 2014;14(3):716–723.
  • Kuo YM, Kokjohn TA, Kalback W, et al. Amyloid-β peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem Biophys Res Commun. 2000;268(3):750–756.
  • Bohrmann B, Tjernberg L, Kuner P, et al. Endogenous proteins controlling amyloid β-peptide polymerization. J Biol Chem. 1999;274(23):15990–15995.
  • Rózga M, Kłoniecki M, Jabłonowska A, et al. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin. Biochem Biophys Res Commun. 2007;364(3):714–718.
  • Ramos-Fernández E, Tajes M, Palomer E, et al. Posttranslational nitro-glycative modifications of albumin in alzheimer’s disease: implications in cytotoxicity and amyloid-β peptide aggregation. J Alzheimer’s Dis. 2014;40(3):643–657.
  • Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344(6184):630–634.
  • Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153(4):828–839.
  • Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20(6):659–663.
  • Boada M, Anaya F, Ortiz P, et al. Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: a multicenter, randomized, controlled clinical trial. J Alzheimer’s Dis. 56(1): 129–143. 2017.
  • Costa M, Horrillo R, Ortiz AM, et al. Increased albumin oxidation in cerebrospinal fluid and plasma from Alzheimer’s disease patients. J Alzheimer’s Dis. 63(4): 1395–1404. 2018.
  • Costa M, Mestre A, Horrillo R, et al. Cross-sectional characterization of albumin glycation state in cerebrospinal fluid and plasma from Alzheimer’s disease patients. J Prev Alzheimer’s Dis. 2019;6:139–143.
  • Costa M. Albumin as a pharmaceutical active ingredient for Alzheimer’s disease. In J.L. Cummings (chair), AMBAR (Alzheimer management by albumin replacement) phase iib/iii results: clinical and biomarker update. Symposium at the 14th Int Conference on AD and PD. Lisbon (Portugal); 2019
  • Ortiz AM, Minguet C, Mestre A, et al. Albumin glycation in Alzheimer’s disease patients: results from the AMBAR trial. Alzheimer’s Dement. 2020;16(S3):32916–32922.
  • Boada M, López O, Núñez L, et al. Plasma exchange for Alzheimer’s disease management by albumin replacement (AMBAR) trial: study design and progress. Alzheimer’s Dement Transl Res Clin Interv. 5(1): 61–69. 2019.
  • Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimer’s Dement. 16(10): 1412–1425. 2020.
  • Ahmed R, Huang J, Weber DK, et al. Molecular mechanism for the suppression of alpha synuclein membrane toxicity by an unconventional extracellular chaperone. J Am Chem Soc. 2020;142:9686–9699.
  • Algamal M, Milojevic J, Jafari N, et al. Mapping the Interactions between the Alzheimer’s Aβ-Peptide and human serum albumin beyond domain resolution. Biophys J. 2013;105(7):1700–1709.
  • Jafari N, Ahmed R, Gloyd M, et al. Allosteric sensing of fatty acid binding by NMR: application to human serum albumin. J Med Chem. 2016;59(16):7457–7465.