434
Views
0
CrossRef citations to date
0
Altmetric
Review

A critical review of the neurovascular nature of migraine and the main mechanisms of action of prophylactic antimigraine medications

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1035-1050 | Received 11 Jun 2021, Accepted 12 Aug 2021, Published online: 06 Sep 2021

References

  • IHS. Headache Classification. Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211.
  • ICHD. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.
  • Pei JH, Wang XL, Yu Y, et al. Prevalence of suicidal ideation and suicide attempt in patients with migraine: a systematic review and meta-analysis. J Affect Disord. 2020;277(253–259). DOI:https://doi.org/10.1016/j.jad.2020.08.019.
  • Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition. J Headache Pain. 2019;20(1):117.
  • Buse DC, Reed ML, Fanning KM, et al. Comorbid and co-occurring conditions in migraine and associated risk of increasing headache pain intensity and headache frequency: results of the migraine in America symptoms and treatment (MAST) study. J Headache Pain. 2020;21(1):23.
  • Pozo-Rosich P, Coppola G, Pascual J, et al. How does the brain change in chronic migraine? Developing disease biomarkers. Cephalalgia. 2021;41(5):613–630.
  • Cavestro C, Richetta L, L’Episcopo MR, et al. Anatomical variants of the circle of willis and brain lesions in migraineurs. Can J Neurol Sci. 2011;38(3):494–499.
  • Cucchiara B, Detre J. Migraine and circle of Willis anomalies. Med Hypotheses. 2008;70(4):860–865.
  • Cucchiara B, Wolf RL, Nagae L, et al. Migraine with aura is associated with an incomplete circle of willis: results of a prospective observational study. PloS One. 2013;8(7):e71007–e71007.
  • Warfvinge K, Krause DN, Maddahi A, et al. Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects. J Headache Pain. 2020;21(1):131.
  • Villalón CM, Centurión D, Valdivia LF, et al. Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol. 2003;1(1):71–84.
  • Gonzalez-Hernandez A, Marichal-Cancino BA, MaassenVanDenBrink A, et al. Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opin Drug Metab Toxicol. 2018;14(1):25–41.
  • Dib M. Optimizing prophylactic treatment of migraine: subtypes and patient matching. Ther Clin Risk Manag. 2008;4(5):1061–1078.
  • González-Hernández A, Condés-Lara M, García-Boll E, et al. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol. 2021;17(2):179–199.
  • González-Hernández A, Marichal-Cancino BA, García-Boll E, et al. The locus of Action of CGRPergic Monoclonal Antibodies Against Migraine: peripheral Over Central Mechanisms. CNS Neurol Disord Drug Targets. 2020;19(5):344–359.
  • Moreno-Ajona D, Villar-Martínez MD, Goadsby PJ. Targets for migraine treatment: beyond calcitonin gene-related peptide. Curr Opin Neurol. 2021;34(3):363–372.
  • Rivera-Mancilla E, Villalón CM, MaassenVanDenBrink A. CGRP inhibitors for migraine prophylaxis: a safety review. Expert Opin Drug Saf. 2020;19(10):1237–1250.
  • Villalón CM, Olesen J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther. 2009;124(3):309–323.
  • Villalón CM, VanDenBrink AM. The Role of 5-Hydroxytryptamine in the Pathophysiology of Migraine and its Relevance to the Design of Novel Treatments. Mini Rev Med Chem. 2017;17(11):928–938.
  • Malhotra R. Understanding migraine: potential role of neurogenic inflammation. Ann Indian Acad Neurol. 2016;19(2):175–182.
  • Strother LC, Srikiatkhachorn A, Supronsinchai W. Targeted Orexin and Hypothalamic Neuropeptides for Migraine. Neurotherapeutics. 2018;15(2):377–390.
  • Waschek JA, Baca SM, PACAP AS. and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain. 2018;19(1):23.
  • de Tommaso M, Ambrosini A, Brighina F, et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol. 2014;10(3):144–155.
  • Charles A. Migraine is not primarily a vascular disorder. Cephalalgia. 2012;32(5):431–432.
  • Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interactions. Annu Rev Neurosci. 2015;38(25–46). DOI:https://doi.org/10.1146/annurev-neuro-071714-033835
  • Byrne JV. Control of Cerebral Blood Flow. In: Tutorials in Endovascular Neurosurgery and Interventional Neuroradiology. Cham: Springer: Verlag Berlin Heidelberg; 2017. p. 91–108.
  • Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):17–28.
  • Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412–a020412.
  • Kalsoum E, Leclerc X, Drizenko A, et al. Circle of Willis. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the Neurological Sciences. (Second ed. Oxford: Academic Press; 2014. p. 803–805.
  • Oh W-J GC. Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism. Neuron. 2013;80(2):458–469.
  • Zhang N, Chen C-F. Clinical observation of the effect of prophylaxis on allodynia in patients with migraine. J Pain Res. 2018;11(2721–2728). DOI:https://doi.org/10.2147/JPR.S172976
  • Bowyer SM, Mason KM, Moran JE, et al. Cortical hyperexcitability in migraine patients before and after sodium valproate treatment. J Clin Neurophysiol. 2005;22(1):65–67.
  • Gaillard WD, Zeffiro T, Fazilat S, et al. Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia. 1996;37(6):515–521.
  • Khani S, Hejazi SA, Yaghoubi M, et al. Comparative study of magnesium, sodium valproate, and concurrent magnesium-sodium valproate therapy in the prevention of migraine headaches: a randomized controlled double-blind trial. J Headache Pain. 2021;22(1):21.
  • Richter F, Mikulik O, Ebersberger A, et al. Noradrenergic agonists and antagonists influence migration of cortical spreading depression in rat-a possible mechanism of migraine prophylaxis and prevention of postischemic neuronal damage. J Cereb Blood Flow Metab. 2005;25(9):1225–1235.
  • Kurauchi Y, Haruta M, Tanaka R, et al. Propranolol prevents cerebral blood flow changes and pain-related behaviors in migraine model mice. Biochem Biophys Res Commun. 2019;508(2):445–450.
  • Diener HC, Scholz E, Dichgans J, et al. Central effects of drugs used in migraine prophylaxis evaluated by visual evoked potentials. Ann Neurol. 1989;25(2):125–130.
  • Gerwig M, Niehaus L, Stude P, et al. Beta-blocker migraine prophylaxis affects the excitability of the visual cortex as revealed by transcranial magnetic stimulation. J Headache Pain. 2012;13(1):83–89.
  • Hebestreit JM, May A. The enigma of site of action of migraine preventives: no effect of metoprolol on trigeminal pain processing in patients and healthy controls. J Headache Pain. 2017;18(1):116.
  • Neeb L, Hellen P, Hoffmann J, et al. Methylprednisolone blocks interleukin 1 beta induced calcitonin gene related peptide release in trigeminal ganglia cells. J Headache Pain. 2016;17(1):19.
  • Kerezoudis NP, Olgart L, Edwall L. Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve. Arch Oral Biol. 1993;38(10):893–901.
  • Karam MC, Merckbawi R, Salman S, et al. Atenolol Reduces Leishmania major-Induced Hyperalgesia and TNF-α Without Affecting IL-1β or Keratinocyte Derived Chemokines (KC). Front Pharmacol. 2016;7(22–22). DOI:https://doi.org/10.3389/fphar.2016.00022
  • Mitsikostas DD, Knight YE, Lasalandra M, et al. Triptans attenuate capsaicin-induced CREB phosphorylation within the trigeminal nucleus caudalis: a mechanism to prevent central sensitization? J Headache Pain. 2011;12(4):411–417.
  • Hoffmann O, Keilwerth N, Bille MB, et al. Triptans reduce the inflammatory response in bacterial meningitis. J Cereb Blood Flow Metab. 2002;22(8):988–996.
  • Kaube H, Katsarava Z, Przywara S, et al. Acute migraine headache: possible sensitization of neurons in the spinal trigeminal nucleus? Neurology. 2002;58(8):1234–1238.
  • Hajhashemi V, Minaiyan M, Banafshe HR, et al. The anti-inflammatory effects of venlafaxine in the rat model of carrageenan-induced paw edema. Iran J Basic Med Sci. 2015;18(7):654–658.
  • Kim Y, Kwon SY, Jung HS, et al. Amitriptyline inhibits the MAPK/ERK and CREB pathways and proinflammatory cytokines through A3AR activation in rat neuropathic pain models. Korean J Anesthesiol. 2019;72(1):60–67.
  • Kremer M, Yalcin I, Goumon Y, et al. A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J Neurosci. 2018;38(46):9934–9954.
  • Mecklenburg J, Raffaelli B, Neeb L, et al. The potential of lasmiditan in migraine. Ther Adv Neurol Disord. 2020;13:1756286420967847.
  • Xavier AS, Lakshmanan M, Gunaseelan V. The Journey of the Non-Vascular Relief for Migraine: from ‘Triptans’ To ‘Ditans.’ Curr Clin Pharmacol. 2017;12(1):36–40.
  • Labastida-Ramírez A, Rubio-Beltrán E, Haanes KA, et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system. Pain. 2020;161(5):1092–1099.
  • Shevel E. The extracranial vascular theory of migraine: an artificial controversy. J Neural Transm (Vienna). 2011;118(4):525–530.
  • Shevel E. Arterial surgery for sporadic hemiplegic migraine: preliminary results. Br J Oral Maxillofac Surg. 2014;52(5):405–408.
  • Shevel E. A method for determining when the superficial scalp arteries are the source of migraine pain. S Afr Med J. 2017;107(8):691–693.
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69.
  • Tietjen GE, Khubchandani J. Vascular biomarkers in migraine. Cephalalgia. 2015;35(2):95–117.
  • Jacobs B, Dussor G. Neurovascular contributions to migraine: moving beyond vasodilation. Neuroscience. 2016;338(130–144). DOI:https://doi.org/10.1016/j.neuroscience.2016.06.012.
  • Chen SP, Chang YA, Chou CH, et al. Circulating microRNAs Associated With Reversible Cerebral Vasoconstriction Syndrome. Ann Neurol. 2021;89(3):459–473.
  • Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab. 2020;40(1_suppl):S6–s24.
  • Thorin E, Atkinson J. Modulation by the endothelium of sympathetic vasoconstriction in an in vitro preparation of the rat tail artery. Br J Pharmacol. 1994;111(1):351–357.
  • Sanchez-Covarrubias L, Slosky LM, Thompson BJ, et al. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20(10):1422–1449.
  • Ma-m A-K, Hansen JM, Severinsen J, et al. The K(ATP) channel in migraine pathophysiology: a novel therapeutic target for migraine. J Headache Pain. 2017;18(1):90.
  • Evans DC, O’Connor D, Lake BG, et al. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos. 2003;31(7):861–869.
  • Kozniewska E, Romaniuk K. Vasopressin in vascular regulation and water homeostasis in the brain. J Physiol Pharmacol. 2008;59(Suppl 8):109–116.
  • Solár P, Zamani A, Kubíčková L, et al. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17(1):35.
  • Gankam Kengne F, Decaux G. Hyponatremia and the Brain. Kidney Int Rep. 2017;3(1):24–35.
  • DosSantos MF, Holanda-Afonso RC, Lima RL, et al. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci. 2014;8(302–302). DOI:https://doi.org/10.3389/fncel.2014.00302
  • Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol Histopathol. 2004;19(2):535–564.
  • Waeber C, Moskowitz MA. Migraine as an inflammatory disorder. Neurology. 2005;64(10 Suppl 2):S9–15.
  • Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–6629.
  • Yekkalam N, Wänman A. Association between signs of hyperalgesia and reported frequent pain in jaw-face and head. Acta Odontol Scand. 2021;79(3):188–193.
  • Edvinsson JCA, Viganò A, Alekseeva A, et al. The fifth cranial nerve in headaches. J Headache Pain. 2020;21(1):65.
  • Baliki MN, Schnitzer TJ, Bauer WR, et al. Brain morphological signatures for chronic pain. PLoS One. 2011;6(10):e26010.
  • Maleki N, Becerra L, Brawn J, et al. Common hippocampal structural and functional changes in migraine. Brain Struct Funct. 2013;218(4):903–912.
  • Sprenger T, Borsook D. Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol. 2012;25(3):252–262.
  • Hougaard A, Amin FM, Christensen CE, et al. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 2017;140(6):1633–1642.
  • Kim YS, Kim M, Choi SH, et al. Altered Vascular Permeability in Migraine-associated Brain Regions: evaluation with Dynamic Contrast-enhanced MRI. Radiology. 2019;292(3):713–720.
  • Cowan RP, Gross NB, Sweeney MD, et al. Evidence that blood–CSF barrier transport, but not inflammatory biomarkers, change in migraine, while CSF sVCAM1 associates with migraine frequency and CSF fibrinogen. Headache. 2021;61(3):536–545.
  • Hostetler E, Joshi A, Sanabria-Bohórquez S, et al. In Vivo Quantification of Calcitonin Gene-Related Peptide Receptor Occupancy by Telcagepant in Rhesus Monkey and Human Brain Using the Positron Emission Tomography Tracer [11C]MK-4232. J Pharmacol Exp Ther. 2013;347(478–486). DOI:https://doi.org/10.1124/jpet.113.206458.
  • Edvinsson L, Warfvinge K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia. 2019;39(3):366–373.
  • Moskowitz MA. Holes in the leaky migraine blood–brain barrier hypothesis? Brain. 2017;140(6):1537–1539.
  • Brennan KC, Charles A. An update on the blood vessel in migraine. Curr Opin Neurol. 2010;23(3):266–274.
  • Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985). 2006;100(3):1059–1064.
  • Marichal-Cancino BA, González-Hernández A, MaassenVanDenBrink A, et al. Potential Mechanisms Involved in Palmitoylethanolamide-Induced Vasodepressor Effects in Rats. J Vasc Res. 2020;57(3):152–163.
  • Amiya E, Watanabe M, Komuro I. The Relationship between Vascular Function and the Autonomic Nervous System. Ann Vasc Dis. 2014;7(2):109–119.
  • Marichal-Cancino BA, González-Hernández A, Muñoz-Islas E, et al. Monoaminergic Receptors as Modulators of the Perivascular Sympathetic and Sensory CGRPergic Outflows. Curr Neuropharmacol. 2020;18(9):790–808.
  • Kruit MC, Launer LJ, Ferrari MD, et al. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128(9):2068–2077.
  • Ayata C. Spreading Depression and Neurovascular Coupling. Stroke. 2013;44(6_suppl_1):S87–S89.
  • Negro A, Seidel JL, Houben T, et al. Acute sleep deprivation enhances susceptibility to the migraine substrate cortical spreading depolarization. J Headache Pain. 2020;21(1):86.
  • Guiou M, Sheth S, Nemoto M, et al. Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling. J Biomed Opt. 2005;10(1):11004.
  • Schain AJ, Melo-Carrillo A, Stratton J, et al. CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: implications for CGRP’s Role in Migraine with Aura. J Neurosci. 2019;39(30):6001–6011.
  • Lai YH, Huang YC, Huang LT, et al. Cervical Noninvasive Vagus Nerve Stimulation for Migraine and Cluster Headache: a Systematic Review and Meta-Analysis. Neuromodulation. 2020;23(6):721–731.
  • Yarnitsky D, Goor-Aryeh I, Bajwa ZH, et al. 2003 Wolff Award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache. 2003;43(7):704–714.
  • García-Magro N, Negredo P, Martin YB, et al. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain. 2020;21(1):96.
  • AAN. Appendix A: summary of Evidence-based Guideline for Clinicians, Update: pharmacologic Treatment for Episodic Migraine Prevention in Adults. Continuum (Minneap Minn). 2015;21(4 Headache):1165–1166.
  • AAN. Appendix B: summary of Evidence-based Guideline for Clinicians, Update: nSAIDs and Other Complementary Treatments for Episodic Migraine Prevention in Adults. Continuum (Minneap Minn). 2015;21(4 Headache):1167–1168.
  • Holland S, Sd S, Freitag F, et al. Evidence-based guideline update: nSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1346–1353.
  • Rajapakse T, Pringsheim T. Nutraceuticals in Migraine: a Summary of Existing Guidelines for Use. Headache. 2016;56(4):808–816.
  • Lipton RB, Bigal ME, Diamond M, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343–349.
  • Sprenger T, Viana M, Tassorelli C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics. 2018;15(2):313–323.
  • Spierings EL. Mechanism of migraine and action of antimigraine medications. Med Clin North Am. 2001;85(4):943–958, vi–vii.
  • Tang C, Unekawa M, Kitagawa S, et al. Cortical spreading depolarisation-induced facial hyperalgesia, photophobia and hypomotility are ameliorated by sumatriptan and olcegepant. Sci Rep. 2020;10(1):11408.
  • Ayata C, Jin H, Kudo C, et al. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol. 2006;59(4):652–661.
  • Li F, Qiu E, Dong Z, et al. Protection of flunarizine on cerebral mitochondria injury induced by cortical spreading depression under hypoxic conditions. J Headache Pain. 2011;12(1):47–53.
  • Bogdanov VB, Multon S, Chauvel V, et al. Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol Dis. 2011;41(2):430–435.
  • Tozzi A, de Iure A, Di Filippo M, et al. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc Natl Acad Sci U S A. 2012;109(46):18985–18990.
  • de la Coba P, Bruehl S, del Paso GAR. Slowly repeated evoked pain (SREP) as a central sensitization marker in episodic migraine patients. Sci Rep. 2021;11(1):4582.
  • Varma A, Jain S, Majid A, et al. Central and peripheral processes in headache. Curr Opin Support Palliat Care. 2018;12(2):142–147.
  • Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol. 2011;70(5):838–845.
  • Tso AR, Trujillo A, Guo CC, et al. The anterior insula shows heightened interictal intrinsic connectivity in migraine without aura. Neurology. 2015;84(10):1043–1050.
  • Hadjikhani N, Ward N, Boshyan J, et al. The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia. 2013;33(15):1264–1268.
  • Aoki KR. Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache. 2003;43(Suppl 1):S9–15.
  • Dolly JO, Aoki KR. The structure and mode of action of different botulinum toxins. Eur J Neurol. 2006;13(Suppl 4):1–9.
  • Edvinsson J, Warfvinge K, Edvinsson L. Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: an organ culture study. J Headache Pain. 2015;16(555). DOI:https://doi.org/10.1186/s10194-015-0555-z
  • Ramadan NM. Current Trends in Migraine Prophylaxis. Headache. 2007;47(s1):S52–S57.
  • Boyer N, Signoret-Genest J, Artola A, et al. Propranolol treatment prevents chronic central sensitization induced by repeated dural stimulation. Pain. 2017;158(10):2025–2034.
  • Melo-Carrillo A, Noseda R, Nir RR, et al. Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: a Humanized Monoclonal Anti-CGRP Antibody. J Neurosci. 2017;37(30):7149–7163.
  • Boćkowski L, Sobaniec W, Zelazowska-Rutkowska B. Proinflammatory plasma cytokines in children with migraine. Pediatr Neurol. 2009;41(1):17–21.
  • Oliveira AB, Bachi ALL, Ribeiro RT, et al. Unbalanced plasma TNF-α and IL-12/IL-10 profile in women with migraine is associated with psychological and physiological outcomes. J Neuroimmunol. 2017;313(138–144). DOI:https://doi.org/10.1016/j.jneuroim.2017.09.008
  • Hirfanoglu T, Serdaroglu A, Gulbahar O, et al. Prophylactic drugs and cytokine and leptin levels in children with migraine. Pediatr Neurol. 2009;41(4):281–287.
  • Williamson DJ, Hargreaves RJ. Neurogenic inflammation in the context of migraine. Microsc Res Tech. 2001;53(3):167–178.
  • Peroutka SJ. Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv. 2005;5(5):304–311.
  • Williamson DJ, Hargreaves RJ, Hill RG, et al. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat–intravital microscope studies. Cephalalgia. 1997;17(4):525–531.
  • Gupta S, Akerman S, van den Maagdenberg AM, et al. Intravital microscopy on a closed cranial window in mice: a model to study trigeminovascular mechanisms involved in migraine. Cephalalgia. 2006;26(11):1294–1303.
  • Buzzi MG, Carter WB, Shimizu T, et al. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology. 1991;30(11):1193–1200.
  • Williamson DJ, Hill RG, Shepheard SL, et al. The anti-migraine 5-HT(1B/1D) agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs. Br J Pharmacol. 2001;133(7):1029–1034.
  • Marichal-Cancino BA, González-Hernández A, Manrique-Maldonado G, et al. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors. Eur J Pharmacol. 2012;692(1–3):69–77.
  • Cernuda-Morollón E, Ramón C, Martínez-Camblor P, et al. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain. 2015;156(5):820–824.
  • Zhang Y, Lian Y, Zhang H, et al. CGRP Plasma Levels Decrease in Classical Trigeminal Neuralgia Patients Treated with Botulinum Toxin Type A: a Pilot Study. Pain Med. 2020;21(8):1611–1615.
  • Lacković Z, Filipović B, Matak I, et al. Activity of botulinum toxin type A in cranial dura: implications for treatment of migraine and other headaches. Br J Pharmacol. 2016;173(2):279–291.
  • Kapoor K, Arulmani U, Heiligers JPC, et al. Effects of the CGRP receptor antagonist BIBN4096BS on capsaicin-induced carotid haemodynamic changes in anaesthetised pigs. Br J Pharmacol. 2003;140(2):329–338.
  • Villalón CM, Galicia-Carreón J, González-Hernández A, et al. Pharmacological evidence that spinal α(2C)- and, to a lesser extent, α(2A)-adrenoceptors inhibit capsaicin-induced vasodilatation in the canine external carotid circulation. Eur J Pharmacol. 2012;683(1–3):204–210.
  • Muñoz-Islas E, Lozano-Cuenca J, González-Hernández A, et al. Spinal sumatriptan inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors. Eur J Pharmacol. 2009;615(1–3):133–138.
  • Muñoz-Islas E, González-Hernández A, Lozano-Cuenca J, et al. Inhibitory effect of chronic oral treatment with fluoxetine on capsaicin-induced external carotid vasodilatation in anaesthetised dogs. Cephalalgia. 2015;35(12):1041–1053.
  • Linde M, Mulleners WM, Chronicle EP, et al. Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev. 2013;6:Cd010611.
  • Linde M, Mulleners WM, Chronicle EP, et al. Topiramate for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev. 2013;(2013(6):Cd010610.
  • Freitag FG. Divalproex sodium extended-release for the prophylaxis of migraine headache. Expert Opin Pharmacother. 2003;4(9):1573–1578.
  • Dodick DW, Freitag F, Banks J, et al. Topiramate versus amitriptyline in migraine prevention: a 26-week, multicenter, randomized, double-blind, double-dummy, parallel-group noninferiority trial in adult migraineurs. Clin Ther. 2009;31(3):542–559.
  • Zona C, Ciotti MT, Avoli M. Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci Lett. 1997;231(3):123–126.
  • Curia G, Aracri P, Colombo E, et al. Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current. Br J Pharmacol. 2007;150(6):792–797.
  • Zhang X, Velumian AA, Jones OT, et al. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia. 2000;41(S1):52–60.
  • Kuzmiski JB, Barr W, Zamponi GW, et al. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia. 2005;46(4):481–489.
  • Herrero AI, Del Olmo N, González-Escalada JR, et al. Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology. 2002;42(2):210–220.
  • Silberstein SD. Topiramate in Migraine Prevention: a 2016 Perspective. Headache. 2017;57(1):165–178.
  • Akerman S, Goadsby PJ. Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br J Pharmacol. 2005;146(1):7–14.
  • Johannessen CU. Mechanisms of action of valproate: a commentatory. Neurochem Int. 2000;37(2–3):103–110.
  • Kelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett. 1990;116(1–2):233–238.
  • Cutrer FM, Limmroth V, Moskowitz MA. Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia. 1997;17(2):93–100.
  • Huang P, Kuo PH, Lee MT, et al. Age-Dependent Anti-migraine Effects of Valproic Acid and Topiramate in Rats. Front Pharmacol. 2018;9(1095). DOI:https://doi.org/10.3389/fphar.2018.01095
  • Ha H, Gonzalez A. Migraine Headache Prophylaxis. Am Fam Physician. 2019;99(1):17–24.
  • Salviz M, Yuce T, Acar H, et al. Propranolol and venlafaxine for vestibular migraine prophylaxis: a randomized controlled trial. Laryngoscope. 2016;126(1):169–174.
  • Maman SR, Vargas AF, Ahmad TA, et al. Beta-1 vs. beta-2 adrenergic control of coronary blood flow during isometric handgrip exercise in humans. J Appl Physiol (1985). 2017;123(2):337–343.
  • Escarcega Gonzalez CE, Gonzalez Hernandez A, Villalón CM, et al. beta-Adrenoceptor Blockade for Infantile Hemangioma Therapy: do beta3-Adrenoceptors Play a Role? J Vasc Res. 2018;55(3):159–168.
  • Bassi A, Filippeschi C, Oranges T, et al. Infantile hemangiomas β3-adrenoceptor overexpression is associated with nonresponse to propranolol. Pediatr Res. 2021. DOI:https://doi.org/10.1038/s41390-021-01385-x.
  • Neil-Dwyer G, Bartlett J, McAinsh J, et al. Beta-adrenoceptor blockers and the blood-brian barrier. Br J Clin Pharmacol. 1981;11(6):549–553.
  • Johannsson V, Nilsson LR, Widelius T, et al. Atenolol in migraine prophylaxis a double-blind cross-over multicentre study. Headache. 1987;27(7):372–374.
  • Casucci G, Villani V, Frediani F. Central mechanism of action of antimigraine prophylactic drugs. Neurol Sci. 2008;29(Suppl 1):S123–126.
  • Kalkman HO. Is migraine prophylactic activity caused by 5-HT2B or 5-HT2C receptor blockade? Life Sci. 1994;54(10):641–644.
  • Johnson KW, Phebus LA, Cohen ML. Serotonin in migraine: theories, animal models and emerging therapies. Prog Drug Res. 1998;51:219–244.
  • Okuda N, Kohara K, Mikami H, et al. Effect of propranolol on central neurotransmitter release in Wistar rats analysed by brain microdialysis. Clin Exp Pharmacol Physiol. 1999;26(3):220–224.
  • Dohovics R, Janáky R, Varga V, et al. Regulation of glutamatergic neurotransmission in the striatum by presynaptic adenylyl cyclase-dependent processes. Neurochem Int. 2003;42(1):1–7.
  • Ramadan NM. Prophylactic migraine therapy: mechanisms and evidence. Curr Pain Headache Rep. 2004;8(2):91–95.
  • Ashina M, Bendtsen L, Jensen R, et al. Nitric oxide-induced headache in patients with chronic tension-type headache. Brain. 2000;123(Pt 9):1830–1837.
  • Olesen J. The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther. 2008;120(2):157–171.
  • Shields KG, Goadsby PJ. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine? Brain. 2005;128(Pt 1):86–97.
  • Akerman S, Romero-Reyes M. Targeting the central projection of the dural trigeminovascular system for migraine prophylaxis. J Cereb Blood Flow Metab. 2019;39(4):704–717.
  • Frediani F, Villani V, Casucci G. Peripheral mechanism of action of antimigraine prophylactic drugs. Neurol Sci. 2008;29(Suppl 1):S127–130.
  • Hieble JP. Adrenoceptor subclassification: an approach to improved cardiovascular therapeutics. Pharm Acta Helv. 2000;74(2–3):163–171.
  • Hanbauer I, Kopin IJ, Guidotti A, et al. Induction of tyrosine hydroxylase elicited by beta adrenergic receptor agonists in normal and decentralized sympathetic ganglia: role of cyclic 3ʹ,5ʹ - adenosine monophosphate. J Pharmacol Exp Ther. 1975;193(1):95–104.
  • Ablad B, Dahlöf C. Migraine and beta-blockade: modulation of sympathetic neurotransmission. Cephalalgia. 1986;6(Suppl 5):7–13.
  • Monai H, Koketsu S, Shinohara Y, et al. Adrenergic inhibition facilitates normalization of extracellular potassium after cortical spreading depolarization. Sci Rep. 2021;11(1):8150.
  • Aggarwal D, Heim AJ, Bittel B, et al. A Randomized, Double-Blinded, Placebo-Controlled, Cross Over Study Evaluating the Efficacy and Safety of Timolol Ophthalmic Solution as an Acute Treatment of Migraine. Kans J Med. 2020;13(Suppl 2):2–5.
  • Chen X, Slättengren T, de Lange ECM, et al. Revisiting atenolol as a low passive permeability marker. Fluids Barriers CNS. 2017;14(1):30.
  • Bulut S, Berilgen MS, Baran A, et al. Venlafaxine versus amitriptyline in the prophylactic treatment of migraine: randomized, double-blind, crossover study. Clin Neurol Neurosurg. 2004;107(1):44–48.
  • Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151(6):737–748.
  • Sawynok J, Reid AR, Esser MJ. Peripheral antinociceptive action of amitriptyline in the rat formalin test: involvement of adenosine. Pain. 1999;80(1–2):45–55.
  • Ozyalcin SN, Talu GK, Kiziltan E, et al. The efficacy and safety of venlafaxine in the prophylaxis of migraine. Headache. 2005;45(2):144–152.
  • Gallagher HC, Gallagher RM, Butler M, et al. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;(2015(8):Cd011091.
  • Suwała J, Machowska M, Wiela-Hojeńska A. Venlafaxine pharmacogenetics: a comprehensive review. Pharmacogenomics. 2019;20(11):829–845.
  • Shelton RC. Serotonin and Norepinephrine Reuptake Inhibitors. Handb Exp Pharmacol. 2019;250:145–180.
  • Ferrari MD, Goadsby PJ, Roon KI, et al. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia. 2002;22(8):633–658.
  • Lichten EM. Menstrual Migraine and Treatment Options: review. Headache. 2018;58(1):145–146.
  • Chawala J. Migraine Headache Treatment & Management: abortive treatment. In: Medscape Medical News (2020). Available at https://emedicine.medscape.com/article/1142556-treatment#d10. August 03, 2021.
  • Macgregor EA. Menstrual migraine: therapeutic approaches. Ther Adv Neurol Disord. 2009;2(5):327–336.
  • Meng ID, Dodick D, Ossipov MH, et al. Pathophysiology of medication overuse headache: insights and hypotheses from preclinical studies. Cephalalgia: An International Journal of Headache. 2011;31(7):851–860.
  • KDJ O, Mastaglia FL. Chapter 32 - Drug-Induced Disorders of the Nervous System. In: Aminoff MJ, Josephson SA, editors. Aminoff’s Neurology and General Medicine. (Fifth ed. Boston: Academic Press; 2014. p. 685–711.
  • Burstein R, Jakubowski M. Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann Neurol. 2004;55(1):27–36.
  • Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci USA. 2004;101(12):4274–4279.
  • van den Broek RW, Bhalla P, VanDenBrink AM, et al. Characterization of sumatriptan-induced contractions in human isolated blood vessels using selective 5-HT(1B) and 5-HT(1D) receptor antagonists and in situ hybridization. Cephalalgia. 2002;22(2):83–93.
  • Arvieu L, Mauborgne A, Bourgoin S, et al. Sumatriptan inhibits the release of CGRP and substance P from the rat spinal cord. Neuroreport. 1996;7(12):1973–1976.
  • Goadsby PJ, Knight Y. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT(1B/1D)) receptors. Br J Pharmacol. 1997;122(5):918–922.
  • Kageneck C, Nixdorf-Bergweiler BE, Messlinger K, et al. Release of CGRP from mouse brainstem slices indicates central inhibitory effect of triptans and kynurenate. J Headache Pain. 2014;15(1):7.
  • Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304(5922):129–135.
  • Mulderry PK, Ghatei MA, Rodrigo J, et al. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience. 1985;14(3):947–954.
  • Hagner S, Stahl U, Knoblauch B, et al. Calcitonin receptor-like receptor: identification and distribution in human peripheral tissues. Cell Tissue Res. 2002;310(1):41–50.
  • González-Hernández A, Marichal-Cancino BA, Lozano-Cuenca J, et al. Heteroreceptors Modulating CGRP Release at Neurovascular Junction: potential Therapeutic Implications on Some Vascular-Related Diseases. Biomed Res Int. 2016;2056786:2016.
  • Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–1142.
  • Hay DL, Walker CSCGRP. and its receptors. Headache. 2017;57(4):625–636.
  • Gardiner SM, Compton AM, Bennett T. Regional hemodynamic effects of calcitonin gene-related peptide. Am J Physiol. 1989;256(2 Pt 2):R332–338.
  • Arulmani U, Schuijt MP, Heiligers JP, et al. Effects of the calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS on alpha-CGRP-induced regional haemodynamic changes in anaesthetised rats. Basic Clin Pharmacol Toxicol. 2004;94(6):291–297.
  • Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–1110.
  • Petersen KA, Birk S, Lassen LH, et al. The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia. 2005;25(2):139–147.
  • Ho TW, Ho AP, Chaitman BR, et al. Randomized, controlled study of telcagepant in patients with migraine and coronary artery disease. Headache. 2012;52(2):224–235.
  • MaassenVanDenBrink A, Meijer J, Villalón CM, et al., Wiping Out CGRP. Potential Cardiovascular Risks. Trends Pharmacol Sci. 2016;37(9):779–788.
  • Avilés-Rosas VH, Rivera-Mancilla E, Marichal-Cancino BA, et al. Olcegepant blocks neurogenic and non-neurogenic CGRPergic vasodepressor responses and facilitates noradrenergic vasopressor responses in pithed rats. Br J Pharmacol. 2017;174(13):2001–2014.
  • Kee Z, Kodji X, Brain SD. The Role of Calcitonin Gene Related Peptide (CGRP) in Neurogenic Vasodilation and Its Cardioprotective Effects. Front Physiol. 2018;9(1249). DOI:https://doi.org/10.3389/fphys.2018.01249
  • Negro A, Martelletti P. Gepants for the treatment of migraine. Expert Opin Investig Drugs. 2019;28(6):555–567.
  • Favoni V, Giani L, Al-Hassany L, et al. CGRP and migraine from a cardiovascular point of view: what do we expect from blocking CGRP? J Headache Pain. 2019;20(1):27.
  • Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–187.
  • Lassen LH, Haderslev PA, Jacobsen VB, et al. CGRP may play a causative role in migraine. Cephalalgia. 2002;22(1):54–61.
  • Dahlöf C, Maassen Van Den Brink A. Dihydroergotamine, ergotamine, methysergide and sumatriptan - basic science in relation to migraine treatment. Headache. 2012;52(4):707–714.
  • Chan KY, Vermeersch S, de Hoon J, et al. Potential mechanisms of prospective antimigraine drugs: a focus on vascular (side) effects. Pharmacol Ther. 2011;129(3):332–351.
  • Scott LJ. Correction to: ubrogepant: first Approval. Drugs. 2020;80(5):523.
  • Scott LJ. Rimegepant: first Approval. Drugs. 2020;80(7):741–746.
  • FDA. Atogepant FDA Approval Status. In: Drugs.com (2021). [cited 2021 Aug 03]. Available from: https://www.drugs.com/history/atogepant.html. August 03, 2021.
  • Kapoor K, Arulmani U, Heiligers JP, et al. Effects of BIBN4096BS on cardiac output distribution and on CGRP-induced carotid haemodynamic responses in the pig. Eur J Pharmacol. 2003;475(1–3):69–77.
  • Van der Schueren BJ, Blanchard R, Murphy MG, et al. The potent calcitonin gene-related peptide receptor antagonist, telcagepant, does not affect nitroglycerin-induced vasodilation in healthy men. Br J Clin Pharmacol. 2011;71(5):708–717.
  • Mulder IA, Li M, De Vries T, et al. Anti-migraine Calcitonin Gene-Related Peptide Receptor Antagonists Worsen Cerebral Ischemic Outcome in Mice. Ann Neurol. 2020;88(4):771–784.
  • Rubio-Beltran E, Chan KY, Danser AJ, et al. Characterisation of the calcitonin gene-related peptide receptor antagonists ubrogepant and atogepant in human isolated coronary, cerebral and middle meningeal arteries. Cephalalgia. 2020;40(4):357–366.
  • Juhl L, Edvinsson L, Olesen J, et al. Effect of two novel CGRP-binding compounds in a closed cranial window rat model. Eur J Pharmacol. 2007;567(1–2):117–124.
  • Edvinsson JCA, Warfvinge K, Krause DN, et al. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain. 2019;20(1):105.
  • Markham A. Erenumab: first Global Approval. Drugs. 2018;78(11):1157–1161.
  • Lamb YN. Galcanezumab: first Global Approval. Drugs. 2018;78(16):1769–1775.
  • Hoy SM. Correction to: fremanezumab: first Global Approval. Drugs. 2019;79(5):585.
  • Dhillon S. Eptinezumab: first Approval. Drugs. 2020;80(7):733–739.
  • Stauffer VL, Dodick DW, Zhang Q, et al. Evaluation of Galcanezumab for the Prevention of Episodic Migraine: the EVOLVE-1 Randomized Clinical Trial. JAMA Neurol. 2018;75(9):1080–1088.
  • Tepper SJ, Diener HC, Ashina M, et al. Erenumab in chronic migraine with medication overuse: subgroup analysis of a randomized trial. Neurology. 2019;92(20):e2309–e2320.
  • Bhakta M, Vuong T, Taura T, et al. Migraine therapeutics differentially modulate the CGRP pathway. Cephalalgia. 2021;41(5):499–514.
  • De Matteis E, Guglielmetti M, Ornello R, et al. CGRP for migraine treatment: mechanisms, antibodies, small molecules, perspectives. Expert Rev Neurother. 2020;20(6):627–641.
  • Silberstein S, Mathew N, Saper J, et al. Botulinum toxin type A as a migraine preventive treatment. For the BOTOX Migraine Clinical Research Group. Headache. 2000;40(6):445–450.
  • Chawala J. Migraine Headache Treatment & Management: prophylactic therapy. In: Medscape Medical News (2020). [cited 2021 Aug 03]. Available from https://emedicine.medscape.com/article/1142556-treatment#d11. August 03, 2021.
  • Ashina M, Goadsby PJ, Reuter U, et al. Long-term safety and tolerability of erenumab: three-plus year results from a five-year open-label extension study in episodic migraine. Cephalalgia. 2019;39(11):1455–1464.
  • Hoehlig K, Johnson KW, Pryazhnikov E, et al. A novel CGRP-neutralizing Spiegelmer attenuates neurogenic plasma protein extravasation. Br J Pharmacol. 2015;172(12):3086–3098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.