334
Views
2
CrossRef citations to date
0
Altmetric
Review

Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies

, , , , , & show all
Pages 1309-1316 | Received 12 Jun 2021, Accepted 13 Sep 2021, Published online: 22 Sep 2021

References

  • Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):522–530.
  • Perucca P, Bahlo M, Berkovic SF. The Genetics of Epilepsy. Annu Rev Genomics Hum Genet. 2020;21(1):205–230.
  • Chen Z, Brodie MJ, Liew D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75(3):279–286.
  • Hakami T, Mcintosh A, Todaro M, et al. MRI-identified pathology in adults with new-onset seizures. Neurology. 2013;81(10):920–927. Epub 2013 Aug 7.
  • King MA, et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet. 1998;352(9133):1007–1011.
  • Perucca P, Wang Y, Springer S. Genetics of focal epilepsies: what do we know and where are we heading? Epilepsy Curr. 2018;18(6):356–362.
  • Perucca P, Scheffer IE. Genetic contributions to acquired epilepsies. Epilepsy Curr. 2021;21(1):5–13.
  • Poduri A, Evrony GD, Cai X, et al. Somatic mutation, genomic variation, and neurological disease. Science. 2013;341(6141):1237758.
  • D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 2018;21(11):1504–1514.
  • Jamuar SS, Lam A-TN, Kircher M, et al. Somatic mutations in cerebral cortical malformations. N Engl J Med. 2014;371(8):733–743.
  • Ye Z, McQuillan L, Poduri A, et al. Somatic mutation: the hidden genetics of brain malformations and focal epilepsies. Epilepsy Res. 2019;155:106161.
  • Perucca P, Perucca E. Identifying mutations in epilepsy genes: impact on treatment selection. Epilepsy Res. 2019;152:18–30.
  • Hall JG. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am J Hum Genet. 1988;43(4):355–363.
  • Mustjoki S, Young NS. Somatic Mutations in “Benign” Disease. N Engl J Med. 2021;384(21):2039–2052.
  • Thomas RH, Berkovic SF. The hidden genetics of epilepsy-a clinically important new paradigm. Nat Rev Neurol. 2014;10(5):283–292. Epub 2014 Apr 15.
  • Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–945.
  • Hildebrand MS, Harvey AS, Malone S, et al. Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome. Neurol Genet. 2018;4(3):e236. eCollection 2018 Jun.
  • Shirley MD, Tang H, Gallione CJ, et al. Sturge–weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–1979. Epub 2013 May 8.
  • D’Gama AM, Geng Y, Couto JA, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77(4):720–725. Epub 2015 Feb 26.
  • D’Gama AM, Woodworth MB, Hossain AA, et al. Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 2017;21(13):3754–3766.
  • Lim JS, Kim W-I, Kang H-C, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 2015;21(4):395–400.
  • Baldassari S, Ribierre T, Marsan E, et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 2019;138(6):885–900.
  • Scheffer IE, Heron SE, Regan BM, et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol. 2014;75(5):782–787.
  • Ricos MG, Hodgson BL, Pippucci T, et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol. 2016;79(1):120–131.
  • Lee WS, Stephenson SEM, Howell KB, et al. Second-hit DEPDC5 mutation is limited to dysmorphic neurons in cortical dysplasia type IIA. Ann Clin Transl Neurol. 2019;6(7):1338–1344.
  • Lim JS, Gopalappa R, Kim SH, et al. Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am J Hum Genet. 2017;100(3):454–472.
  • Sim NS, et al. Precise detection of low-level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 2019;3(10):019–02052.
  • Ribierre T, Deleuze C, Bacq A, et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J Clin Invest. 2018;128(6):2452–2458.
  • Mirzaa GM, Campbell CD, Solovieff N, et al. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 2016;73(7):836–845.
  • Anderson MP. DEPDC5 takes a second hit in familial focal epilepsy. J Clin Invest. 2018;128(6):2194–2196.
  • Goswami S, Hsieh J. One-hit wonders and 2-hit tubers: a second-hit to TSC2 causes tuber-like cells in spheroids. Epilepsy Curr. 2019;19(1):49–50.
  • Sim NS, Seo Y, Lim JS, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation. Neurol Genet. 2018;4(6):e294. eCollection 2018 Dec.
  • Winawer MR, Griffin NG, Samanamud J, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol. 2018;83(6):1133–1146.
  • Striano P, Vari MS, Mazzocchetti C, et al. Management of genetic epilepsies: from empirical treatment to precision medicine. Pharmacol Res. 2016;107:426–429.
  • Perakis S, et al. Advances in circulating tumor DNA analysis. Adv Clin Chem. 2017;80:73–153.
  • Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med. 2018;379(5):464–473.
  • Oliveira KCS, Ramos IB, Silva JMC, et al. Current perspectives on circulating tumor DNA, precision medicine, and personalized clinical management of cancer. Mol Cancer Res. 2020;18(4):517–528.
  • Goh SK, Muralidharan V, Christophi C, et al. Probe-free digital PCR quantitative methodology to measure donor-specific cell-free DNA after solid-organ transplantation. Clin Chem. 2017;63(3):742–750.
  • Fontanilles M, Duran-Pena A, Idbaih A. Liquid biopsy in primary brain tumors: looking for stardust! Curr Neurol Neurosci Rep. 2018;18(3):13.
  • Pan W, Gu W, Nagpal S, et al. Brain tumor mutations detected in cerebral spinal fluid. Clin Chem. 2015;61(3):514–522.
  • Wang Y, Springer S, Zhang M, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A. 2015;112(31):9704–9709.
  • McEwen AE, Leary SES, Lockwood CM. Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front Cell Dev Biol. 2020;8:45.
  • Martinez-Ricarte F, Mayor R, Martínez-Sáez E, et al. Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from cerebrospinal fluid. Clin Cancer Res. 2018;24(12):2812–2819.
  • Pan C, Diplas BH, Chen X, et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019;137(2):297–306.
  • Hickmann AK, Frick M, Hadaschik D, et al. Molecular tumor analysis and liquid biopsy: a feasibility investigation analyzing circulating tumor DNA in patients with central nervous system lymphomas. BMC Cancer. 2019;19(1):192.
  • Zhao Z, et al. Applications of cerebrospinal fluid circulating tumor DNA in the diagnosis of gliomas. Jpn J Clin Oncol. 2020;50(3):325–332.
  • Garcia-Romero N, et al. BRAF V600E Detection in Liquid Biopsies from Pediatric Central Nervous System Tumors. Cancers (Basel). 2019;12(1):66.
  • De Mattos-Arruda L, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6(1):8839.
  • Ye Z, Chatterton Z, Pflueger J, et al. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain. Brain Commun. 2021;3(1):fcaa235.
  • Damiano JA, et al. Sensitive quantitative detection of somatic mosaic mutation in “double cortex” syndrome. Epileptic Disord. 2017;19(4):450–455.
  • Kim S, Baldassari S, Sim NS, et al. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients. Ann Neurol. 2021;89(6):1248–1252.
  • Ye Z, et al. Improving specificity of cerebrospinal fluid liquid biopsy for genetic testing. Ann Neurol. 2021. DOI:https://doi.org/10.1002/ana.26191
  • Moller RS, et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2016;2(6):e118.
  • Slegers RJ, Blumcke I. Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol Commun. 2020;8(1):27.
  • Appay R, et al. Multiplexed droplet digital PCR assays for the simultaneous screening of major genetic alterations in tumors of the central nervous system. Front Oncol. 2020;10:579762.
  • Panditharatna E, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res. 2018;24(23):5850–5859.
  • Iffland PH 2nd, Crino PB. The role of somatic mutational events in the pathogenesis of epilepsy. Curr Opin Neurol. 2019;32(2):191–197.
  • Koh HY, Lee JH. Brain somatic mutations in epileptic disorders. Mol Cells. 2018;41(10):881–888.
  • Rodin RE, Walsh CA. Somatic mutation in pediatric neurological diseases. Pediatr Neurol. 2018;87:20–22.
  • Chabardes S, Abel TJ, Cardinale F, et al. Commentary: understanding Stereoelectroencephalography: what’s Next? Neurosurgery. 2018;82(1):E15–E16.
  • Montier L, Haneef Z, Gavvala J, et al. A somatic mutation in MEN1 gene detected in periventricular nodular heterotopia tissue obtained from depth electrodes. Epilepsia. e104-e109. 2019;60(10). DOI:https://doi.org/10.1111/epi.16328
  • Agarwal SK, McEwen AE, Leary SES, et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet. 1997;6(7):1169–1175.
  • Cuevas-Ocampo AK, Bollen AW, Goode B, et al. Genetic confirmation that ependymoma can arise as part of multiple endocrine neoplasia type 1 (MEN1) syndrome. Acta Neuropathol. 2017;133(4):661–663.
  • Pannett AA, Thakker RV. Somatic mutations in MEN type 1 tumors, consistent with the Knudson “two-hit” hypothesis. J Clin Endocrinol Metab. 2001;86(9):4371–4374.
  • Gecz J, Thomas PQ. Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr Opin Genet Dev. 2020;65:169–175.
  • Lindhout D. Somatic mosaicism as a basic epileptogenic mechanism? Brain. 2008;131(4):900–901.
  • Pederick DT, Richards KL, Piltz SG, et al. Abnormal cell sorting underlies the unique X-Linked inheritance of PCDH19 epilepsy. Neuron. 2018;97(1):59–66. e5.
  • Giusti F, Marini F, Brandi ML. Multiple Endocrine Neoplasia Type 1, in GeneReviews(®). M.P. Adam, et al., Editors. Seattle: University of Washington; 1993. Copyright © 1993-2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.: Seattle (WA).
  • Collaborators, G.N. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):459–480.
  • Akyuz E, et al. Enlightening the neuroprotective effect of quercetin in epilepsy: from mechanism to therapeutic opportunities. Epilepsy Behav. 2021;115:107701.
  • Foster E, Chen Z, Zomer E, et al. The costs of epilepsy in Australia: a productivity-based analysis. Neurology. 2020;95(24):e3221–e3231. e3221-e3231.
  • French JA, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153–2163.
  • Verrotti A, Striano P. Novel therapeutic options for Dravet and Lennox-Gastaut syndrome. Expert Rev Neurother. 2021;1–4. DOI:https://doi.org/10.1080/14737175.2020.1862651
  • Gogou M, Cross JH. Fenfluramine as antiseizure medication for epilepsy. Dev Med Child Neurol. 2021;63(8):899–907.
  • Mudigoudar B, Weatherspoon S, Wheless JW. Emerging antiepileptic drugs for severe pediatric epilepsies. Semin Pediatr Neurol. 2016;23(2):167–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.