305
Views
2
CrossRef citations to date
0
Altmetric
Review

Pharmacotherapy of schizophrenia: immunological aspects and potential role of immunotherapy

, , & ORCID Icon
Pages 1441-1453 | Received 26 Jul 2021, Accepted 14 Oct 2021, Published online: 28 Oct 2021

References

  • René SK, Sommer IE, Murray RM, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067.
  • Patel KR, Cherian J, Gohil K, et al. Schizophrenia: overview and treatment options. Pharm Ther. 2014;39(9):638–645.
  • Jones AL, Mowry BJ, Pender MP, et al. Immune dysregulation and self‐reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol Cell Biol. 2005;83(1):9–17.
  • Harvey PD, Rosenthal JB. Treatment resistant schizophrenia: course of brain structure and function. Prog Neuro-Psychopharmacol. 2016;70:111–116.
  • Howes OD, McCutcheon R, Agid O, et al. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2017;174(3):216–229.
  • Potkin SG, Kane JM, Correll CU, et al. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 2020;6(1):1.
  • Burch PR. Schizophrenia: some new aetiological considerations. Br J Psychiatry. 1964;110(469):818–824.
  • Miller BJ, Buckley P, Seabolt W, et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–671.
  • Ezeoke A, Mellor A, Buckley P, et al. A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophr Res. 2013;150(1):245–251.
  • Caspi RR. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol. 2008;8(12):970–976.
  • Gupta S. Comparative effectiveness of antipsychotic drugs. Am J Psychiatry. 2003;160(3):591.
  • McEvoy JP, Lieberman JA, Stroup TS, et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry. 2006;163(4):600–610.
  • Cattane N, Richetto J, and Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism spectrum disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev. 2020 117 253–278 doi:https://doi.org/10.1016/j.neubiorev.2018.07.001 ;.
  • de Carvalho Lima CN, Doifode T, Colodel A, et al. Maternal immune activation as a risk factor for schizophrenia: evidence from preclinical and clinical studies. Perinatal Inflammation and Adult Psychopathology. 2020; 129–154.
  • Zaretsky MV, Alexander JM, Byrd W, et al. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103(3):546–550.
  • Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42(1):1–8.
  • Heyer DB, Meredith RM. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology. 2017;58:23–41.
  • Allswede DM, Buka SL, Yolken RH, et al., Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophr Res. 2016;172(1–3): 41–45.
  • Dembic Z The cytokines of the immune system: the role of cytokines in disease related to immune response. Academic Press; 2015 May
  • Drexhage RC, Knijff EM, Padmos RC, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. 2010;10(1):59–76.
  • Freudenreich O, Brockman MA, Henderson DC, et al. Analysis of peripheral immune activation in schizophrenia using quantitative reverse‐transcription polymerase chain reaction (RT‐PCR). Psychiatry Res. 2010;176(2–3):99–102.
  • Schwarz MJ, Müller N, Riedel M, et al. The Th2-hypothesis of schizophrenia: a strategy to identify a subgroup of schizophrenia caused by immune mechanisms. Med Hypotheses. 2001;56(4):483–486.
  • Chiang SS, Riedel M, Schwarz M, et al. Is T‐helper type 2 shift schizophrenia‐specific? Primary results from a comparison of related psychiatric disorders and healthy controls. Psychiatry Clin Neurosci. 2013;67(4):228–236.
  • Song X, Fan X, Li X, et al. Changes in pro-inflammatory cytokines and body weight during 6-month risperidone treatment in drug naive, first-episode schizophrenia. Psychopharmacology (Berl). 2014;231(2):319–325.
  • Teixeira AL, Reis HJ, Nicolato R, et al. In- creased serum levels of CCL11/eotaxin in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):710–714.
  • Kapellos TS, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035.
  • Stöhr J, Schindler G, Rothe G, et al. Enhanced upregulation of the Fcγ receptor IIIa (CD16a) during in vitro differentiation of ApoE4/4 monocytes. Arterioscler Thromb Vasc Biol. 1998;18(9):1424–1432.
  • Takahashi Y, Yu Z, Sakai M, et al. Linking activation of microglia and peripheral monocytic cells to the pathophysiology of psychiatric disorders. Front Cell Neurosci. 2016;10:144.
  • Beumer W, Gibney SM, Drexhage RC, et al., The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol. 2012;92(5): 959–975.
  • Schmitz G, Leuthauser-Jaschinski K, Orso E. Are circulating monocytes as microglia orthologues appropriate biomarker targets for neuronal diseases? (Supplementary Table). Cent Nerv Syst Agents Med Chem. 2009;9(4):307–330.
  • Zorrilla EP, Cannon TD, Gur RE, et al. Leukocytes and organ-nonspecific autoantibodies in schizophrenics and their siblings: markers of vulnerability or disease? Biol Psychiatry. 1996;40(9):825–833.
  • Nikkilä H, Müller K, Ahokas A, et al. Abnormal distributions of T-lymphocyte subsets in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res. 1995;14(3):215–221.
  • Torres KC, Souza BR, Miranda DM, et al. The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):214–219.
  • Abdeljaber MH, Nair MP, Schork MA, et al. Depressed natural killer cell activity in schizophrenic patients. Immunol Invest. 1994;23(4–5):259–268.
  • Yovel G, Sirota P, Mazeh D, et al. Higher natural killer cell activity in schizophrenic patients: the impact of serum factors, medication, and smoking. Brain Behav Immun. 2000;14(3):153–169.
  • Karpiński P, Frydecka D, Sąsiadek MM, et al. Reduced number of peripheral natural killer cells in schizophrenia but not in bipolar disorder. Brain Behav Immun. 2016;54:194–200.
  • Miller BJ, Gassama B, Sebastian D, et al. Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2013;73(10):993–999.
  • Rudolf S, Schlenke P, Broocks A, et al. Search for atypical lymphocytes in schizophrenia. World J Biol Psychiatry. 2004;5(1):33–37.
  • Bilici M, Tekelioğlu Y, Efendioğlu S, et al. The influence of olanzapine on immune cells in patients with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(3):483–485.
  • Steiner J, Jacobs R, Panteli B, et al. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur Arch Psychiatry Clin Neurosci. 2010;260(7):509–518.
  • McKenna F, McLaughlin PJ, Lewis BJ, et al. Dopamine receptor expression on human T-and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol. 2002;132(1–2):34–40.
  • Zhao W, Huang Y, Liu Z, et al. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One. 2013;8(6):e65860.
  • Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–427.
  • Fernandez-Egea E, Vértes PE, Flint SM, et al. Peripheral immune cell populations associated with cognitive deficits and negative symptoms of treatment-resistant schizophrenia. PloS One. 2016;11(5):e0155631.
  • Ramsey JM, Schwarz E, Guest PC, et al. Distinct molecular phenotypes in male and female schizophrenia patients. PLoS One. 2013;8(11):e78729.
  • Busse S, Busse M, Schiltz K, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26(8):1273–1279.
  • Harrison PJ. Postmortem studies in schizophrenia. Dialogues Clin Neurosci. 2000;2(4):349.
  • Diamond B, Honig G, Mader S, et al. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31(1):345–385.
  • Yyland H, Ness A, Lunde H. Lymphocyte subpopulations in peripheral blood from schizophrenic patients. Acta Psychiatr Scand. 1980;61(4):313–318.
  • Debnath M. Adaptive immunity in schizophrenia: functional implications of T cells in the etiology, course and treatment. J Neuroimmune Pharm. 2015;10(4):610–619.
  • Engelhardt B. Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm. 2006;113(4):477–485.
  • Ding M, Song X, Zhao J, et al. Activation of Th17 cells in drug naïve, first episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:78–82.
  • Sahbaz C, Zibandey N, and Kurtulmus A, et al. Reduced regulatory T cells with increased proinflammatory response in patients with schizophrenia. Psychopharmacology (Berl). 2020 237 6 ;1861–1871 doi:https://doi.org/10.1007/s00213-020-05504-0.
  • Mayilyan KR, Weinberger DR, Sim RB. The complement system in schizophrenia. Drug News Perspect. 2008;21(4):200–210.
  • Sekar A, Bialas AR, De Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–183.
  • Woo JJ, Pouget JG, Zai CC, et al. The complement system in schizophrenia: where are we now and what’s next? Mol Psychiatry. 2019;22:1–7.
  • Monji A, Kato T, Kanba S. Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci. 2009;63(3):257–265.
  • Ribeiro BM, do Carmo MR, Freire RS, et al. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res. 2013;151(1–3):12–19.
  • Mattei D, Djodari-Irani A, Hadar R, et al. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun. 2014;38:175–184.
  • Monji A, Kato TA, Mizoguchi Y, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115–121.
  • Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, et al. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol. 2005;43(2):81–89.
  • Van Kesteren CF, Gremmels H, De Witte LD, et al., Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7(3): e1075.
  • Winkeler A, Boisgard R, Awde AR, et al. The translocator protein ligand [18 F] DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol I. 2012;39(5):811–823.
  • Plaven-Sigray P, Matheson GJ, Collste K, et al. Positron emission tomography studies of the glial cell marker translocator protein in patients with psychosis: a meta-analysis using individual participant data. Biol Psychiatry. 2018;84(6):433–442.
  • Eaton WW, Byrne M, Ewald H, et al., Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry. 2006;163(3): 521–528.
  • Wright P, Sham PC, Gilvarry CM, et al. Autoimmune diseases in the pedigrees of schizophrenic and control subjects. Schizophr Res. 1996;20(3):261–267.
  • Benros ME, Pedersen MG, Rasmussen H, et al. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry. 2014;171(2):218–226.
  • Kozora E, Thompson LL, West SG, et al. Analysis of cognitive and psychological deficits in systemic lupus erythematosus patients without overt central nervous system disease. Arthritis Rheum. 1996;39(12):2035–2045.
  • DeGiorgio LA, Konstantinov KN, Lee SC, et al. Subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med. 2001;7(11):1189–1193.
  • Deakin J, Lennox BR, Zandi MS. Antibodies to the N-methyl-D-aspartate receptor and other synaptic proteins in psychosis. Biol Psychiatry. 2014;75(4):284–291.
  • Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine alterations in schizophrenia: an updated review. Front Psychiatry. 2019;10:892.
  • Pollak TA, Lennox BR, Müller S, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiat. 2020;7(1):93–108.
  • Klyushnik TP, Turkova IL, Danilovskaya EV, et al. Correlation between levels of autoantibodies to nerve growth factor and the clinical features of schizophrenia in children. Neurosci Behav Physiol. 2000;30(2):119–121.
  • Reid DM, Perry VH, Andersson PB, et al. Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 antibody which crosses the blood-brain barrier. Neuroscience. 1993;56(3):529–533.
  • Knopf PM, Harling-Berg CJ, Cserr HF, et al. Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells. J Immunol. 1998;161(2):692–701.
  • Drzyzga Ł, Obuchowicz E, Marcinowska A, et al. Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain, Behavior and Immunity. 2006; 20(6):532–545.
  • Himmerich H, Schönherr J, Fulda S, et al. Impact of antipsychotics on cytokine production in-vitro. J Psychiatr Res. 2011;45(10):1358–1365.
  • Song C, Lin AH, Kenis G, et al. Immunosuppressive effects of clozapine and haloperidol: enhanced production of the interleukin-1 receptor antagonist. Schizophr Res. 2000;42(2):157–164.
  • Rudolf S, Peters M, Rothermundt M, et al. The influence of typical and atypical neuroleptic drugs in the production of interleukin-2 and interferon-gamma in vitro. Neuropsychobiology. 2002;46(4):180–185.
  • Pollmächer T, Hinze-Selch D, Mullington J, et al. Clozapine-induced increase in plasma levels of soluble interleukin-2 receptors. Arch Gen Psychiatry. 1995;52(10):877–878.
  • Monteleone P, Fabrazzo M, Tortorella A, et al. Plasma levels of interleukin-6 and tumor necrosis factor alpha in chronic schizophrenia: effects of clozapine treatment. Psychiatry Res. 1997;71(1):11–17.
  • May M, Beauchemin M, Vary C, et al. The antipsychotic medication, risperidone, causes global immunosuppression in healthy mice. PloS One. 2019;14(6):e0218937.
  • MacDowell KS, García-Bueno B, Madrigal JL, et al. Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol. 2013;16(1):121–135.
  • Mantere O, Trontti K, Garcia-Gonzalez J, et al. Immunomodulatory effects of antipsychotic treatment on gene expression in first-episode psychosis. J Psychiatr Res. 2019;109:18–26.
  • Smith RS. A comprehensive macrophage-T-lymphocyte theory of schizophrenia. Med Hypotheses. 1992;39(3):248–257.
  • Şimşek Ş, Yıldırım V, Çim A, et al. Serum IL-4 and IL-10 levels correlate with the symptoms of the drug-naive adolescents with first episode, early onset schizophrenia. J Child Adolescent Psychop. 2016;26(8):721–726.
  • Dahan S, Bragazzi NL, Yogev A, et al. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Res. 2018;268:467–472.
  • Goldsmith DR, Haroon E, Miller AH, et al. TNF-alpha and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr Res. 2018;199:281–284.
  • De Campos-Carli SM, Miranda AS, Dias IC, et al. Serum levels of interleukin-33 and its soluble form receptor (sST2) are associated with cognitive performance in patients with schizophrenia. Compr Psychiatry. 2017;74:96–101.
  • Misiak B, Stanczykiewicz B, Kotowicz K, et al. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: a systematic review. Schizophr Res. 2018;192:16–29.
  • Gao L, Li Z, Chang S, et al. Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis. PLoS One. 2014;9(3):e90407.
  • Rodrigues-Amorim D, Rivera-Baltanás T, Spuch C, et al. Cytokines dysregulation in schizophrenia: a systematic review of psychoneuroimmune relationship. Schizophr Res. 2018;197:19–33.
  • Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155(1–3):101–108.
  • Schwarz E, Guest PC, Steiner J, et al. Identification of blood-based molecular signatures for prediction of response and relapse in schizophrenia patients. Transl Psychiatry. 2012;2(2):e82.
  • Orlovska-Waast S, Köhler-Forsberg O, Brix SW, et al. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: a systematic review and meta-analysis. Mol Psychiatry. 2019;24(6):869–887.
  • Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83.
  • Miller BJ, Buckley PF. The case for adjunctive monoclonal antibody immunotherapy in schizophrenia. Psychiatr Clin. 2016;39(2):187–198.
  • Miller BJ, Buckley PF. Monoclonal antibody immunotherapy in psychiatric disorders. Lancet Psychiat. 2017;4(1):13–15.
  • Siltuximab in Schizophrenia. [ cited 2021 Jul 11]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02796859
  • Inflammatory Response In Schizophrenia (IRIS). [Accessed 11 July 2021]. : Available from:https://clinicaltrials.gov/ct2/show/NCT03093064.
  • Canakinumab Add-on Treatment in Schizophrenia (CATS). [Accessed 11 July 2021]. : Available from:https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367840.
  • Girgis RR, Ciarleglio A, Choo T, et al., A randomized, double-blind, placebo-controlled clinical trial of tocilizumab, an interleukin-6 receptor antibody, for residual symptoms in schizophrenia. Neuropsychopharmacology. 2018;43(6): 1317–1323.
  • Miller BJ, Dias JK, Lemos HP, et al. An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J Clin Psychiatry. 2016;77(2):275.
  • Borovcanin MM, Jovanovic I, Radosavljevic G, et al. Interleukin-6 in Schizophrenia-is there a therapeutic relevance? Front Psychiatry. 2017;8:221.
  • Levine J, Gutman J, Feraro R, et al. Side effect profile of azathioprine in the treatment of chronic schizophrenic patients. Neuropsychobiology. 1997;36(4):172–176.
  • Nasib LG, Sommer IE, Winter-van Rossum I, et al. Prednisolone versus placebo addition in the treatment of patients with recent-onset psychotic disorder: a trial design. Trials. 2020;21(1):1–3.
  • Chaudhry IB, Husain N, Ur Rahman R, et al. A randomised double-blind placebo-controlled 12-week feasibility trial of methotrexate added to treatment as usual in early schizophrenia: study protocol for a randomised controlled trial. Trials. 2015 Dec;16(1):1–9.
  • Grüber L, Bunse T, Weidinger E, et al. Adjunctive recombinant human interferon gamma-1b for treatment-resistant schizophrenia in 2 patients. J Clin Psychiatry. 2014;75(11):1266–1267.
  • Garrido‐Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Brit J Pharmacol. 2013;169(2):337–352.
  • Liu F, Zhang B, Xie L, et al. Changes in plasma levels of nitric oxide metabolites and negative symptoms after 16-week minocycline treatment in patients with schizophrenia. Schizophr Res. 2018;199:390–394.
  • Ghanizadeh A, Dehbozorgi S, OmraniSigaroodi M, et al., Minocycline as add-on treatment decreases the negative symptoms of schizophrenia; a randomized placebo-controlled clinical trial. Recent Pat Inflamm Allergy Drug Discov. 2014;8(3): 211–215.
  • Liu F, Guo X, Wu R, et al. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: a double blind, randomized, controlled trial. Schizophr Res. 2014;153(1–3):169–176.
  • Levkovitz Y, Mendlovich S, Riwkes S, et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry. 2010;71(2):138–149.
  • Weiser M, Levi L, Burshtein S, et al. The effect of minocycline on symptoms in schizophrenia: results from a randomized controlled trial. Schizophr Res. 2019;206:325–332.
  • Scherer K, Spoerl D, Bircher AJ. Adverse drug reactions to biologics. J Dtsch Dermatol Ges. 2010;8(6):411–426.
  • Berger JR. Natalizumab and progressive multifocal leucoencephalopathy. Ann Rheum Dis. 2006;65(3):48–53.
  • Hosoda S, Takimura H, Shibayama M, et al. Psychiatric symptoms related to interferon therapy for chronic hepatitis C: clinical features and prognosis. Psychiatry Clin Neurosci. 2000;54(5):565–572.
  • Fattovich G, Giustina G, Favarato S, et al. A survey of adverse events in 11 241 patients with chronic viral hepatitis treated with alfa interferon. J Hepatol. 1996;24(1):38–47.
  • Silverman BC, Kim AY, Freudenreich O. Interferon-induced psychosis as a “psychiatric contraindication” to hepatitis C treatment: a review and case-based discussion. Psychosomatics. 2010;51(1):1–7.
  • Manfredi G, Kotzalidis GD, Sani G, et al. Persistent interferon‐β‐1b‐induced psychosis in a patient with multiple sclerosis. Psychiatry Clin Neurosci. 2010;64(5):584–586.
  • Lamotte G, Cogez J, Viader F. Interferon‐β‐1a‐induced psychosis in a patient with multiple sclerosis. Psychiatry Clin Neurosci. 2012;66(5):462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.