659
Views
9
CrossRef citations to date
0
Altmetric
Review

Adaptive, personalized closed-loop therapy for Parkinson’s disease: biochemical, neurophysiological, and wearable sensing systems

, , , , &
Pages 1371-1388 | Received 18 May 2021, Accepted 27 Oct 2021, Published online: 17 Nov 2021

References

  • Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967;276(7):374–379.
  • Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311(16):1670–1683.
  • Stocchi F, Tagliati M, Olanow CW. Treatment of levodopa-induced motor complications. Mov Disord. 2008;23(Suppl 3):S599–612.
  • Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends Neurosci. 2000;23:S2–S7.
  • Del Sorbo F, Albanese A. Levodopa-induced dyskinesias and their management. J Neurol. 2008;255(Suppl 4):32–41.
  • Manson AJ, Turner K, Lees AJ. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: long-term follow-up study of 64 patients. Mov Disord. 2002;17(6):1235–1241.
  • Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–149.
  • Salomone G, Marano M. di Biase L, Melgari JM, Di Lazzaro V. Dopamine dysregulation syndrome and punding in levodopa-carbidopa intestinal gel (LCIG) infusion: a serious but preventable complication. Parkinsonism Relat Disord. 2015;21(9):1124–1125.
  • Melgari JM, Salomone G. di Biase L, Marano M, Scrascia F, Di Lazzaro V. Dyskinesias during levodopa-carbidopa intestinal gel (LCIG) infusion: management inclinical practice. Parkinsonism Relat Disord. 2015;21(3):327–328.
  • Marano M, Naranian T, Di Biase L, et al. Complex dyskinesias in Parkinson patients on levodopa/carbidopa intestinal gel. Parkinsonism Relat Disord. 2019;69:140–146.
  • Di Biase L, Fasano A. Low‐frequency deep brain stimulation for Parkinson’s disease: great expectation or false hope? Mov Disord. 2016;31(7):962–967.
  • Kern DS, Picillo M, Thompson JA, et al. Interleaving stimulation in Parkinson’s disease, tremor, and dystonia. Stereotact Funct Neurosurg. 2018;96(6):379–391.
  • Benabid AL, Chabardes S, Mitrofanis J, et al. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):67–81.
  • Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):1925–1934.
  • Tinkhauser G, Pogosyan A, Debove I, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord. 2018;33(1):159–164.
  • Sandoe C, Krishna V, Basha D, et al. Predictors of deep brain stimulation outcome in tremor patients. Brain Stimul. 2018;11(3):592–599.
  • Benabid AL, Pollak P, Gervason C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–406.
  • Koller WC, Lyons KE, Wilkinson SB, et al. Long‐term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16(3):464–468.
  • Mehrkens JH, Botzel K, Steude U, et al. Long-term efficacy and safety of chronic globus pallidus internus stimulation in different types of primary dystonia. Stereotact Funct Neurosurg. 2009;87(1):8–17.
  • Di Biase L, Rp M. Deep brain stimulation for the treatment of hyperkinetic movement disorders. Expert Rev Neurother. 2016;16(9):1067–1078.
  • Fasano A, Romito LM, Daniele A, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain. 2010;133(9):2664–2676.
  • Zibetti M, Merola A, Rizzi L, et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord. 2011;26(13):2327–2334.
  • Moro E, Lozano AM, Pollak P, et al. Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord. 2010;25(5):578–586.
  • Odekerken VJ, Boel JA, Schmand BA, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology. 2016;86(8):755–761.
  • Mansouri A, Taslimi S, Badhiwala JH, et al. Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg. 2018;128(4):1199–1213.
  • Lozano AM, Lang AE, Galvez-Jimenez N, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346(8987):1383–1387.
  • Alvarez L, Macias R, Lopez G, et al. Bilateral subthalamotomy in Parkinson’s disease: initial and long-term response. Brain. 2005;128(Pt 3):570–583.
  • Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. New Engl J Med. 2016;375(8):730–739.
  • Bond AE, Shah BB, Huss DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant parkinson disease: a randomized clinical trial. JAMA Neurol. 2017;74(12):1412–1418.
  • Di Biase L, Falato E, Ml C, et al. Focused ultrasound (FUS) for chronic pain management: approved and potential applications. Neurol Res Int. 2021;1–16. DOI:https://doi.org/10.1155/2021/8438498
  • Martinez-Fernandez R, Manez-Miro JU, Rodriguez-Rojas R, et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s Disease. N Engl J Med. 2020;383(26):2501–2513.
  • NCT03319485. ExAblate Pallidotomy For medically-refractory dyskinesia symptoms or motor fluctuations of advanced Parkinson’s disease. (Ed.^(Eds)
  • NCT02263885. ExAblate transcranial MRgFUS of the globus pallidum for treatment of Parkinson’s disease. (Ed.^(Eds)
  • Di Biase L, Falato E, Di LV. Transcranial focused ultrasound (tfus) and transcranial unfocused ultrasound (tUS) Neuromodulation: from theoretical principles to stimulation practices. Front Neurol. 2019;10:549.
  • O’Connell MT, Tison F, Quinn NP, et al. Clinical drug monitoring by microdialysis: application to levodopa therapy in Parkinson’s disease. Br J Clin Pharmacol. 1996;42(6):765–769.
  • Dethy S, Laute MA, Van Blercom N, et al. Microdialysis-HPLC for plasma levodopa and metabolites monitoring in parkinsonian patients. Clin Chem. 1997;43(5):740–744.
  • Dizdar N, Kullman A, Norlander B, et al. Human pharmacokinetics of L-3,4-dihydroxyphenylalanine studied with microdialysis. Clin Chem. 1999;45(10):1813–1820.
  • Van Gompel JJ, Chang S-Y, Goerss SJ, et al. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback. Neurosurg Focus. 2010;29(2):E6.
  • Grahn PJ, Mallory GW, Khurram OU, et al. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci. 2014;8:169.
  • Lee KH, Lujan JL, Trevathan JK, et al. WINCS Harmoni: closed-loop dynamic neurochemical control of therapeutic interventions. Sci Rep. 2017;7(1):1–14.
  • Contin M, Martinelli P. Pharmacokinetics of levodopa. J Neurol. 2010;257(Suppl 2):S253–261.
  • Contin M, Riva R, Martinelli P, et al. Levodopa therapy monitoring in patients with Parkinson disease: a kinetic-dynamic approach. Ther Drug Monit. 2001;23(6):621–629.
  • Lopane G, Mellone S, Chiari L, et al. Dyskinesia detection and monitoring by a single sensor in patients with Parkinson’s disease. Mov Disord. 2015;30(9):1267–1271.
  • Nutt JG, Woodward WR, Hammerstad JP, et al. The “on-off” phenomenon in Parkinson’s disease. relation to levodopa absorption and transport. N Engl J Med. 1984;310(8):483–488.
  • Melgari J-M, Curcio G, Mastrolilli F, et al. Alpha and beta EEG power reflects L-dopa acute administration in parkinsonian patients. Front Aging Neurosci. 2014;6:302.
  • Swann NC, de Hemptinne C, Thompson MC, et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018;15(4):46006.
  • Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci. 2012;1265:9–24.
  • Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–457.
  • Arlotti M, Marceglia S, Foffani G, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90(11):e971–e976.
  • Assenza G, Capone F, Di Biase L, et al. Oscillatory activities in neurological disorders of elderly: biomarkers to target for neuromodulation. Front Aging Neurosci. 2017;9:189.
  • Sanchez-Ferro A, Elshehabi M, Godinho C, et al. New methods for the assessment of Parkinson’s disease (2005 to 2015): a systematic review. Mov Disord. 2016;31(9):1283–1292.
  • Deuschl G, Krack P, Lauk M, et al. Clinical neurophysiology of tremor. J Clin Neurophysiol. 1996;13(2):110–121.
  • Di Pino G, Formica D, J-m M, et al. Neurophysiological bases of tremors and accelerometric parameters analysis. 2012: p. 1820–1825.
  • Di Biase L, Js B, Sa S, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain. 2017;140:1977–1986.
  • Stamatakis J, Ambroise J, Cremers J, et al. Finger tapping clinimetric score prediction in Parkinson’s disease using low-cost accelerometers. Comput Intell Neurosci. 2013;717853.
  • Summa S, Tosi J, and Taffoni F, et al. Assessing bradykinesia in Parkinson’s disease using gyroscope signals. In: Rehabilitation Robotics (ICORR), 2017 International Conference on London, UK. (IEEE, 2017) 1556–1561.
  • Di Biase L, Summa S, Tosi J, et al. Quantitative analysis of bradykinesia and rigidity in Parkinson’s Disease. Front Neurol. 2018;9:121.
  • Endo T, Okuno R, Yokoe M, et al. A novel method for systematic analysis of rigidity in Parkinson’s disease. Mov Disord. 2009;24(15):2218–2224.
  • Kwon Y, Park SH, Kim JW, et al. Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation. Biomed Mater Eng. 2014;24(6):2273–2281.
  • Raiano L, Di Pino G, Di Biase L, et al. PDMeter: a wrist wearable device for an at-home assessment of the Parkinson’s disease rigidity. IEEE Trans Neural Syst Rehabil Eng. 2020;28:1325–1333.
  • Moore ST, MacDougall HG, Gracies JM, et al. Long-term monitoring of gait in Parkinson’s disease. Gait Posture. 2007;26(2):200–207.
  • Schlachetzki JCM, Barth J, Marxreiter F, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PloS One. 2017;12(10):e0183989.
  • Tosi J, Summa S, Taffoni F, et al. Feature extraction in sit-to-stand task using M-IMU sensors and evaluatiton in Parkinson’s Disease. 2018;1-6.
  • Suppa A, Kita A, Leodori G, et al. L-DOPA and freezing of gait in Parkinson’s disease: objective assessment through a wearable wireless system. Front Neurol. 2017;8(AUG): 406-406. https://doi.org/10.3389/fneur.2017.00406.
  • di Biase L, Di Santo A, Caminiti ML, et al. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis. Symptoms M Sensors. 2020;20(12).
  • Olanow CW, Calabresi P, Obeso JA. Continuous dopaminergic stimulation as a treatment for Parkinson’s disease: current status and future opportunities. Mov Disord. 2020;35(10):1731–1744.
  • Nutt JG. Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord. 2008;23(Suppl 3):S580–584.
  • Antonini A, Robieson WZ, Bergmann L, et al. Age/disease duration influence on activities of daily living and quality of life after levodopa-carbidopa intestinal gel in Parkinson’s disease. Pharm Pract (Granada). 2018;8(3):161–170.
  • Colosimo C, De Michele M. Motor fluctuations in Parkinson’s disease: pathophysiology and treatment. Eur J Neurol. 1999;6(1):1–21.
  • Fabbrini G, Mouradian MM, Juncos JL, et al. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, Part I. Ann Neurol. 1988;24(3):366–371.
  • Mouradian MM, Juncos JL, Fabbrini G, et al. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, Part II. Ann Neurol. 1988;24(3):372–378.
  • Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology. 2009;72(21 Suppl 4):S1–136.
  • Contin M, Riva R, Albani F, et al. Pharmacodynamic modeling of oral levodopa in Parkinson’s disease. Ann Neurol. 2001;50(5):687–688.
  • Baston C, Contin M, Calandra Buonaura G, et al. Model of levodopa medication effect on basal Ganglia in Parkinson’s disease: an application to the alternate finger tapping task. Front Hum Neurosci. 2016;10:280.
  • Contin M, Riva R, Martinelli P, et al. Longitudinal monitoring of the levodopa concentration-effect relationship in Parkinson’s disease. Neurology. 1994;44(7):1287–1292.
  • Contin M, Riva R, Martinelli P, et al. Longitudinal monitoring of the levodopa concentration‐effect relationship in Parkinson’s disease. Neurology. 1994;44(7): 1287-1287.
  • Ursino M, Magosso E, Lopane G, et al. Mathematical modeling and parameter estimation of levodopa motor response in patients with Parkinson disease. PloS One. 2020;15(3):e0229729.
  • Chan PL, Nutt JG, Holford NH. Modeling the short-and long-duration responses to exogenous levodopa and to endogenous levodopa production in Parkinson’s disease. J Pharmacokinet Pharmacodyn. 2004;31(3):243–268.
  • Contin M, Riva R, Martinelli P, et al. Pharmacodynamic modeling of oral levodopa: clinical application in Parkinson’s disease. Neurology. 1993;43(2): 367-367.
  • Ursino M, Baston C. Aberrant learning in Parkinson’s disease: a neurocomputational study on bradykinesia. Eur J Neurosci. 2018;47(12):1563–1582.
  • Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d‐tubocurarine. Clin Pharmacol Ther. 1979;25(3):358–371.
  • Tsunoda M, Hirayama M, Tsuda T, et al. Noninvasive monitoring of plasma L-dopa concentrations using sweat samples in Parkinson’s disease. Clin Chim Acta. 2015;442:52–55.
  • Tai LC, Liaw TS, Lin Y, et al. Wearable sweat band for noninvasive levodopa monitoring. Nano Lett. 2019;19(9): 6346–6351.
  • Goud KY, Moonla C, Mishra RK, et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens. 2019;4(8):2196–2204.
  • Vázquez-Guardado A, Barkam S, Peppler M, et al. Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano Lett. 2018;19(1):449–454.
  • Robinson TE, Justice JB. Microdialysis in the neurosciences. Elsevier; 1991.
  • Deleu D, Sarre S, Ebinger G, et al. Simultaneous monitoring of levodopa, dopamine and their metabolites in skeletal muscle and subcutaneous tissue in different pharmacological conditions using microdialysis. J Pharm Biomed Anal. 1993;11(7):577–585.
  • Meidahl AC, Tinkhauser G, Herz DM, et al. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord. 2017;32(6):810–819.
  • Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: acute and chronic paradigms. Neuroimage. 2020;217:116904.
  • Merk T, Peterson V, and Lipski W, et al. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. bioRxiv:Preprint Serv Biol. 2021 doi:https://doi.org/10.1101/2021.04.24.441207.
  • Brown P, Oliviero A, Mazzone P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–1038.
  • Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–364.
  • Neumann WJ, Degen K, Schneider GH, et al. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease. Mov Disord. 2016;31(11):1748–1751.
  • Chen CC, Hsu YT, Chan HL, et al. Complexity of subthalamic 13-35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp Neurol. 2010;224(1):234–240.
  • Oswal A, Beudel M, Zrinzo L, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139(Pt 5):1482–1496.
  • Ozkurt TE, Butz M, Homburger M, et al. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease. Exp Neurol. 2011;229(2):324–331.
  • Whitmer D, de Solages C, Hill B, et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci. 2012;6:155.
  • Eusebio A, Thevathasan W, Doyle Gaynor L, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82(5):569–573.
  • Kuhn AA, Kupsch A, Schneider GH, et al. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006;23(7):1956–1960.
  • Feingold J, Gibson DJ, DePasquale B, et al. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci U S A. 2015;112(44):13687–13692.
  • Murthy VN, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A. 1992;89(12):5670–5674.
  • Tinkhauser G, Pogosyan A, Little S, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053–1067.
  • Tinkhauser G, Pogosyan A, Tan H, et al. Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain. 2017;140(11):2968–2981.
  • Torrecillos F, Tinkhauser G, Fischer P, et al. Modulation of beta bursts in the subthalamic nucleus predicts motor performance. J Neurosci. 2018;38(41):8905–8917.
  • Tinkhauser G, Torrecillos F, Pogosyan A, et al. The cumulative effect of transient synchrony states on motor performance in Parkinson’s disease. J Neurosci. 2020;40:1571–1580.
  • Khawaldeh S, Tinkhauser G, Shah SA, et al. Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson’s disease. Brain. 2020;143(2):582–596.
  • Brittain JS, Brown P. Oscillations and the basal ganglia: motor control and beyond. Neuroimage. 2014;85(Pt 2):637–647.
  • Muthuraman M, Bange M, Koirala N, et al. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson’s disease. Brain. 2020;143(11):3393–3407.
  • Swann NC, de Hemptinne C, Miocinovic S, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s Disease. J Neurosci. 2016;36(24):6445–6458.
  • Kuhn AA, Tsui A, Aziz T, et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol. 2009;215(2):380–387.
  • He S, Mostofi A, Syed E, et al. Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in parkinsonian patients. eLife. 2020;9. DOI:https://doi.org/10.7554/eLife.60979.
  • Hirschmann J, Hartmann CJ, Butz M, et al. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain. 2013;136(Pt 12):3659–3670.
  • Hirschmann J, Schoffelen JM, Schnitzler A, et al. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin Neurophysiol. 2017;128(10):2029–2036.
  • Shah SA, Tinkhauser G, Chen CC, et al. Parkinsonian tremor detection from subthalamic nucleus local field potentials for closed-loop deep brain stimulation. Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2320–2324 (2018).
  • Yao L, Brown P, Shoaran M. Improved detection of Parkinsonian resting tremor with feature engineering and Kalman filtering. Clin Neurophysiol. 2020;131(1):274–284.
  • Wj N, and Rodriguez‐Oroz MC Machine learning will extend the clinical utility of adaptive deep brain stimulation . Mov Disord.Wiley Online Library. 2021 doi:https://doi.org/10.1002/mds.28567.
  • Neumann W-J, Turner RS, Blankertz B, et al. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019;16(1):105–118.
  • Fasano A, Aquino CC, Krauss JK, et al. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol. 2015;11(2):98–110.
  • Kiehn O. Decoding the organization of spinal cicuits that control locomotion. Nat Rev Neurosci. 2016;17:224–238.
  • Orlovskiĭ GN, Deliagina T, Grillner S. Neuronal control of locomotion: from mollusc to man. Oxford University Press; 1999.
  • Grillner S, Hellgren J, Menard A, et al. Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends Neurosci. 2005;28(7):364–370.
  • Fischer P, Chen CC, Chang YJ, et al. Alternating modulation of subthalamic nucleus beta oscillations during stepping. J Neurosci. 2018;3596-3517.
  • Hell F, Plate A, Mehrkens JH, et al. Subthalamic oscillatory activity and connectivity during gait in Parkinson’s disease. NeuroImage Clin. 2018;19:396–405.
  • Tinkhauser G, Shah SA, Fischer P, et al. Electrophysiological differences between upper and lower limb movements in the human subthalamic nucleus. Clin Neurophysiol. 2019;130(5):727–738.
  • Canessa A, Palmisano C, Isaias IU, et al. Gait-related frequency modulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian patients. Brain Stimul. 2020;13(6):1743–1752.
  • Chen -C-C, Yeh C-H, Chan H-L, et al. Subthalamic nucleus oscillations correlate with vulnerability to freezing of gait in patients with Parkinson’s disease. Neurobiol Dis. 2019;132:104605.
  • Anidi C, Jj O, Rw A, et al. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson’s disease. Neurobiol Dis. 2018;120:107–117.
  • Wang DD, Choi JT. Brain network oscillations during gait in Parkinson’s disease. Front Hum Neurosci. 2020;14. https://doi.org/10.3389/fnhum.2020.568703
  • Hell F, Plate A, Mehrkens JH, et al. Subthalamic oscillatory activity and connectivity during gait in Parkinson’s disease. Neuroimage Clin. 2018;19:396–405.
  • Mena-Segovia J, Bolam JP, Magill PJ. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci. 2004;27(10):585–588.
  • Roseberry TK, Lee AM, Lalive AL, et al. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell. 2016;164(3):526–537.
  • Benarroch EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology. 2013;80(12):1148–1155.
  • Bouvier J, Caggiano V, Leiras R, et al. Descending command neurons in the brainstem that halt locomotion. Cell. 2015;163(5):1191–1203.
  • Caggiano V, Leiras R, Goñi-Erro H, et al. Midbrain circuits that set locomotor speed and gait selection. Nature. 2018;553(7689):455–460.
  • Takakusaki K, Oohinata-Sugimoto J, Saitoh K, et al. Role of basal ganglia–brainstem systems in the control of postural muscle tone and locomotion. In: Progress in brain research. Elsevier; 2004. p. 231–237.
  • Stein JF, Aziz TZ. Basal ganglia output to the PPN, a commentary. Exp Neurol. 2012;233(2):745–746.
  • Bw F, Rg C, Mancini M, et al. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain. 2013;136(8):2405–2418.
  • Strauss I, Kalia SK, Lozano AM. Where are we with surgical therapies for Parkinson’s disease? Parkinsonism Relat Disord. 2014;20:S187–S191.
  • Hamani C, Moro E, Lozano AM. The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm. 2011;118(10):1461–1468.
  • Ferraye M, Debu B, Fraix V, et al. Subthalamic nucleus versus pedunculopontine nucleus stimulation in Parkinson disease: synergy or antagonism? J Neural Transm. 2011;118(10):1469–1475.
  • Mazzone P, Vilela Filho O, Viselli F, et al. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J Neural Transm. 2016;123(7):751–767.
  • Mazzone P, Sposato S, Insola A, et al. Stereotactic surgery of nucleus tegmenti pedunculopontini. Br J Neurosurg. 2008;22(sup1):S33–S40.
  • Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–160.
  • Fraix V, Bastin J, David O, et al. Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease. PLoS One. 2013;8(12):e83919.
  • Thevathasan W, Pogosyan A, Hyam JA, et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain. 2012;135(1):148–160.
  • Androulidakis AG, Khan S, Litvak V, et al. Local field potential recordings from the pedunculopontine nucleus in a Parkinsonian patient. Neuroreport. 2008;19(1):59–62.
  • Androulidakis AG, Mazzone P, Litvak V, et al. Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol. 2008;211(1):59–66.
  • Little S, Beudel M, Zrinzo L, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(7):717–721.
  • Moraud EM, Tinkhauser G, and Agrawal M, et al. Predicting beta bursts from local field potentials to improve closed-loop DBS paradigms in Parkinson’s patients. Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 3766–3796 (2018 (Honolulu, HI)).
  • Beudel M, Brown P. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S123–126.
  • Piña-Fuentes D, van Dijk JMC, van Zijl JC, et al. Acute effects of adaptive Deep Brain Stimulation in Parkinson’s disease. Brain Stimul. 2020;13(6):1507–1516.
  • Velisar A, Syrkin-Nikolau J, and Blumenfeld Z et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 2019;12(4): 868–876 .
  • Herron JA, Thompson MC, Brown T, et al. Cortical brain-computer interface for closed-loop deep brain stimulation. IEEE Trans Neural Syst Rehabil Eng. 2017;25(11):2180–2187.
  • Rosa M, Arlotti M, Marceglia S, et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017;32(4):628–629.
  • Little S, Tripoliti E, Beudel M, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016;87(12):1388–1389.
  • Piña-Fuentes D, van Zijl JC, van Dijk JMC, et al. The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus. Neurobiol Dis. 2019;121:47–57.
  • Molina R, Okun MS, Shute JB, et al. Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J Neurosurg. 2017;129(2):308–314.
  • Shute JB, Okun MS, Opri E, et al. Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. NeuroImage Clin. 2016;12:165–172.
  • Neumann WJ, Staub F, Horn A, et al. Deep brain recordings using an implanted pulse generator in Parkinson’s Disease. Neuromodulation. 2016;19(1):20–24.
  • Steiner LA, Neumann WJ, Staub-Bartelt F, et al. Subthalamic beta dynamics mirror Parkinsonian bradykinesia months after neurostimulator implantation. Mov Disord. 2017;32(8):1183–1190.
  • Re G, Little S, Perrone R, et al., Ed.^(Eds. Chronic wireless streaming of invasive neural recordings at home for circuit discovery and adaptive stimulation. bioRxiv; 2020.
  • Fischer P, He S, de Roquemaurel A, et al. Entraining stepping movements of Parkinson’s patients to alternating subthalamic nucleus deep brain stimulation. J Neurosci. 2020;40(46):8964–8972.
  • Valldeoriola F, Muñoz E, Rumià J, et al. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson’s disease: a pilot study. Parkinsonism Relat Disord. 2019;60:153–157.
  • Jia F, Guo Y, Wan S, et al. Variable frequency stimulation of subthalamic nucleus for freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(12):1471–1472.
  • Jia F, Hu W, Zhang J, et al. Variable frequency stimulation of subthalamic nucleus in Parkinson’s disease: rationale and hypothesis. Parkinsonism Relat Disord. 2017;39:27–30.
  • Hm B-S, Mn P, Jj O, et al. Perspective: evolution of control variables and policies for closed-loop deep brain stimulation for Parkinson’s disease using bidirectional deep-brain-computer interfaces. Front Hum Neurosci. 2020;14:353.
  • Fuentes R, Petersson P, Siesser WB, et al. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science. 2009;323(5921):1578–1582.
  • Yadav AP, Fuentes R, Zhang H, et al. Chronic spinal cord electrical stimulation protects against 6-hydroxydopamine lesions. Sci Rep. 2014;4:3839.
  • Santana MB, Halje P, Simplício H, et al. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 2014;84(4):716–722.
  • Fuentes R, Petersson P, Nicolelis MA. Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: mechanistic approach. Eur J Neurosci. 2010;32(7):1100–1108.
  • Nishioka K, Nakajima M. Beneficial therapeutic effects of spinal cord stimulation in advanced cases of Parkinson’s Disease with intractable chronic pain: a case series. Neuromodulation: Technol Neural Interface. 2015;18(8):751–753.
  • Thevathasan W, Mazzone P, Jha A, et al. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology. 2010;74(16):1325–1327.
  • Weise D, Winkler D, Meixensberger J, et al.Effects of spinal cord stimulation in a patient with Parkinson’s disease and chronic back pain.J Neurol.2010.S217–S217. Ed.^(Eds) (SPRINGER HEIDELBERG TIERGARTENSTRASSE 17, D69121 HEIDELBERG, GERMANY. Ed.^(Eds) (SPRINGER HEIDELBERG TIERGARTENSTRASSE 17, D69121 HEIDELBERG, GERMANY
  • de Pinto Souza C, Hamani C, Oliveira Souza C, et al. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord. 2017;32(2):278–282.
  • Samotus O, Parrent A, Jog M. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson’s disease patients. Mov Disord. 2018;33(5):783–792.
  • Prasad S, Aguirre‐Padilla DH, Poon YY, et al. Spinal cord stimulation for Very Advanced Parkinson’s Disease: A1-Yea prospective trial. Mov Disord. 2020;35:1082–1083.
  • Cury RG, Carra RB, Capato TT, et al. Spinal Cord Stimulation for Parkinson’s Disease: dynamic habituation as a mechanism of failure? Mov Disord. 2020;35(10):1882–1883.
  • Godinho C, Domingos J, Cunha G, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil. 2016;13:24.
  • Giuffrida JP, Riley DE, Maddux BN, et al. Clinically deployable kinesia technology for automated tremor assessment. Mov Disord. 2009;24(5):723–730.
  • Mera TO, Heldman DA, Espay AJ, et al. Feasibility of home-based automated Parkinson’s disease motor assessment. J Neurosci Methods. 2012;203(1):152–156.
  • Sasaki F, Oyama G, Sekimoto S, et al. Closed-loop programming using external responses for deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2021;84:47–51.
  • Wenzel G, Brücke C, Paz LJ, et al. CLOVER-DBS: a prospective, multicenter clinical study with blinding to evaluate a closed loop programming algorithm for directional leads based on external feedback. Neurology. 2019;92(15 Supplement): 8–24.
  • Griffiths RI, Kotschet K, Arfon S, et al. Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis. 2012;2(1):47–55.
  • Odin P, Chaudhuri KR, Volkmann J, et al. Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson’s disease. NPJ Parkinson’s Dis. 2018;4:14.
  • Thomas I, Alam M, Bergquist F, et al. Sensor-based algorithmic dosing suggestions for oral administration of levodopa/carbidopa microtablets for Parkinson’s disease: a first experience. J Neurol. 2019;266(3): 651–658.
  • Pulliam CL, Heldman DA, Brokaw EB, et al. Continuous assessment of levodopa response in Parkinson’s Disease using wearable motion sensors. IEEE Trans Biomed Eng. 2018;65(1):159–164.
  • Khodakarami H, Ricciardi L, Contarino MF, et al. Prediction of the levodopa challenge test in Parkinson’s disease using data from a wrist-worn sensor. Sensors (Basel). 2019; 19(23). https://doi.org/10.3390/s19235153
  • Ghoraani B, Galvin JE, Jimenez-Shahed J. Point of view: wearable systems for at-home monitoring of motor complications in Parkinson’s disease should deliver clinically actionable information. Parkinsonism Relat Disord. 2021;84:35–39.
  • Aich S, Youn J, and Chakraborty S, et al. A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals. Diagnostics (Basel). 2020;10(6):421.
  • Thomas I, Westin J, Alam M, et al. A treatment-response index from wearable sensors for quantifying parkinson’s disease motor states. IEEE J Biomed Health Inform. 2018;22(5):1341–1349.
  • Pérez-López C, Samà A, Rodríguez-Martín D, et al. Assessing motor fluctuations in Parkinson’s Disease patients based on a single inertial sensor. Sensors (Basel). 2016;16(12):2132.
  • Fisher JM, Hammerla NY, Ploetz T, et al. Unsupervised home monitoring of Parkinson’s disease motor symptoms using body-worn accelerometers. Parkinsonism Relat Disord. 2016;33:44–50.
  • Abrami A, Heisig S, Ramos V, et al. Using an unbiased symbolic movement representation to characterize Parkinson’s disease states. Sci Rep. 2020;10(1):7377.
  • Pfister FMJ, Um TT, Pichler DC, et al. High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Sci Rep. 2020;10(1): 5860.
  • Shukla P, Basu I, Graupe D, et al. A neural network-based design of an on-off adaptive control for Deep Brain Stimulation in movement disorders. Annu Int Conf IEEE Eng Med Biol Soc. 2012;(2012:4140–4143.
  • San-Segundo R, Zhang A, Cebulla A, et al. Parkinson’s Disease tremor detection in the wild using wearable accelerometers. Sensors (Basel). 2020;20(20):5817.
  • Rehan M, Hong KS. Modeling and automatic feedback control of tremor: adaptive estimation of deep brain stimulation. PLoS One. 2013;8(4):e62888.
  • Basu I, Graupe D, Tuninetti D, et al. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design. J Neural Eng. 2013;10(3):36019.
  • Houston B, Blumenfeld Z, Quinn E, et al. Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials. Annu Int Conf IEEE Eng Med Biol Soc. 2015:3427–3431.
  • Malekmohammadi M, Herron J, Velisar A, et al. kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s Disease. Mov Disord. 2016;31(3):426–428.
  • Marnfeldt GN. System for deep brain stimulation employing a sensor for monitoring patient movement and providing closed loop control. U.S. Patent No. 9,119,964. 1 Sep. 2015.
  • Brittain JS, Probert-Smith P, Aziz TZ, et al. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23(5):436–440.
  • Cole BT, Ozdemir P, Nawab SH. Dynamic SVM detection of tremor and dyskinesia during unscripted and unconstrained activities. Annu Int Conf IEEE Eng Med Biol Soc. 2012;(2012:4927–4930.
  • Cole BT, Roy SH, De Luca CJ, et al. Dynamic neural network detection of tremor and dyskinesia from wearable sensor data. Annu Int Conf IEEE Eng Med Biol Soc. 2010;(2010:6062–6065.
  • Powers R, Etezadi-Amoli M, Arnold EM, et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci Transl Med. 2021;13(579). DOI:https://doi.org/10.1126/scitranslmed.abd7865.
  • Samà A, Pérez-Lopez C, Romagosa J, et al. Dyskinesia and motor state detection in Parkinson’s disease patients with a single movement sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2012;(2012:1194–1197.
  • Mera TO, Burack MA, Giuffrida JP. Objective motion sensor assessment highly correlated with scores of global levodopa-induced dyskinesia in Parkinson’s disease. J Parkinsons Dis. 2013;3(3):399–407.
  • Di Biase L. Metodo per la gestione della terapia orale nella malattia di Parkinson (method for the management of oral therapy in Parkinson’s disease). In: Ufficio Italiano Brevetti e Marchi (UIBM) (patent request number: 102020000021385). editor, Italy; 2020.;
  • Di Biase L. Metodo e dispositivo per la caratterizzazione oggettiva dei sintomi della malattia di Parkinson (Method and device for the objective characterization of Parkinson’s disease symptoms). In: Ufficio Italiano Brevetti e Marchi (UIBM) (patent request number. editor, Italy; 2020.;
  • Di Biase L. Metodo e sistema adattativo per la terapia infusionale personalizzata giornaliera della malattia di Parkinson (Method and adaptive system for personalized daily infusion therapy for Parkinson’s disease). In: Ufficio Italiano Brevetti e Marchi (UIBM) (patent request number: 102020000021379). editor, Italy; 2020.;
  • Okun MS, Foote KD. Parkinson’s disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Rev Neurother. 2010;10(12):1847–1857.
  • Moro E, Lang AE. Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Expert Rev Neurother. 2006;6(11):1695–1705.
  • Di Biase L. Adaptive closed-loop therapy system for Parkinson\’s disease. Zenodo. 2021. DOI:https://doi.org/10.5281/zenodo.4767082
  • Lyons KE, Pahwa R. Electronic motor function diary for patients with Parkinson’s disease: a feasibility study. Parkinsonism Relat Disord. 2007;13(5):304–307.
  • Papapetropoulos S. Patient diaries as a clinical endpoint in Parkinson’s disease clinical trials. CNS Neurosci Ther. 2012;18(5):380–387.
  • Senek M, Hellstrom M, Albo J, et al. First clinical experience with levodopa/carbidopa microtablets in Parkinson’s disease. Acta Neurol Scand. 2017;136(6):727–731.
  • Johansson D, Ericsson A, Johansson A, et al. Individualization of levodopa treatment using a microtablet dispenser and ambulatory accelerometry. CNS Neurosci Ther. 2018;24(5):439–447.
  • Rosebraugh M, Voight EA, Moussa EM, et al. Foslevodopa/foscarbidopa: a new subcutaneous treatment for Parkinson’s disease, Annals of neurology, 2021.
  • Olanow W, Espay AJ, and Stocchi F, et al. Continuous subcutaneous levodopa delivery for Parkinson’s Disease: a randomized study. J Parkinsons Dis. 2020;11(1): 177–186 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.