709
Views
7
CrossRef citations to date
0
Altmetric
Review

Motor imagery and gait control in Parkinson’s disease: techniques and new perspectives in neurorehabilitation

, , ORCID Icon, , , , ORCID Icon & show all
Pages 43-51 | Received 28 Apr 2021, Accepted 10 Dec 2021, Published online: 28 Dec 2021

References

  • Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol. 1995;5(6):727–732.
  • Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60(2):306–326.
  • MacIntyre TE, Madan CR, Moran AP, et al. Motor imagery, performance and motor rehabilitation. Prog Brain Res. 2018;240:141–159.
  • Tong Y, Pendy JT, Li WA, et al. Motor imagery-based rehabilitation: Potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis. 2017;8(3):364–371.
  • Di Rienzo F, Guillot A, Daligault S, et al. Motor inhibition during motor imagery: a MEG study with a quadriplegic patient. Neurocase. 2014;20(5):524–539.
  • Berman BD, Horovitz SG, Venkataraman G, et al. Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback. Neuroimage. 2012;59(2):917–925.
  • Chiew M, LaConte SM, Graham SJ. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. Neuroimage. 2012;61(1):21–31.
  • Hétu S, Grégoire M, Saimpont A, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–949.
  • Hardwick RM, Caspers S, Eickhoff SB, et al. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev. 2018;94:31–44.
  • McInnes K, Friesen C, Boe S. Specific brain lesions impair explicit motor imagery ability: a systematic review of the evidence. Arch Phys Med Rehabil. 2016;97(3):478–489.
  • Rizzolatti G. The mirror neuron system and its function in humans. Anat Embryol (Berl). 2005;210(5–6):419–421.
  • Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav. Brain Sci. 1994;17:187–202.
  • Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1 Pt 2):S103–9.
  • Nikulin VV, Hohlefeld FU, Jacobs AM, et al. Quasi-movements: a novel motor-cognitive phenomenon. Neuropsychologia. 2008;46(2):727–742.
  • Dickstein R, Deutsch JE, Yoeli Y, et al. Effects of integrated motor imagery practice on gait of individuals with chronic stroke: a half-crossover randomized study. Arch Phys Med Rehabil. 2013;94(11):2119–2125.
  • Malouin F, Richards CL. Mental practice for relearning locomotor skills. Phys Ther. 2010;90(2):240–251.
  • van der Meulen M, Allali G, Rieger SW, et al. The influence of individual motor imagery ability on cerebral recruitment during gait imagery. Hum Brain Mapp. 2014;35(2):455–470.
  • Guillot A, Collet C, Nguyen VA, et al. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2009;30(7):2157–2172.
  • Miyai I, Tanabe HC, Sase I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14(5):1186–1192.
  • Stolze H, Klebe S, Baecker C, et al. Prevalence of gait disorders in hospitalized neurological patients. Mov Disord. 2005;20(1):89–94.
  • Verghese J, Ambrose AF, Lipton RB, et al. Neurological gait abnormalities and risk of falls in older adults. J Neurol. 2010;257:392–398.
  • Verghese J, Ambrose AF, Lipton RB, et al. Neurological gait abnormalities and risk of falls in older adults. J Neurol. 2010;257(3):392–398.
  • Li RQ, Li ZM, Tan JY, et al. Effects of motor imagery on walking function and balance in patients after stroke: a quantitative synthesis of randomized controlled trials. Complement Ther Clin Pract. 2017;28:75–84.
  • Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol. 1997;103(6):642–651.
  • Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res. 2004;50(2):137–151.
  • Della Sala S, Francescani A, Spinnler H. Gait apraxia after bilateral supplementary motor area lesion. J Neurol Neurosurg Psychiatry. 2002;72(1):77–85.
  • Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–649.
  • Lajoie K, Bloomfield LW, Nelson FJ, et al. The contribution of vision, proprioception, and efference copy in storing a neural representation for guiding trail leg trajectory over an obstacle. J Neurophysiol. 2012;107(8):2283–2293.
  • Cevallos C, Zarka D, Hoellinger T, et al. Oscillations in the human brain during walking execution, imagination and observation. Neuropsychologia. 2015;79(Pt B):223–232.
  • Allali G, Blumen HM, Devanne H, et al. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin. 2018;48(6):337–359.
  • Heremans E, Feys P, Nieuwboer A, et al. Motor imagery ability in patients with early- and mid-stage Parkinson's disease. Neurorehabil Neural Repair. 2011;25(2):168–177.
  • Dagan M, Herman T, Mirelman A, et al. The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res. 2017;235(8):2463–2472.
  • Pietracupa S, Suppa A, Upadhyay N, et al. Freezing of gait in Parkinson’s disease: gray and white matter abnormalities. J Neurol. 2018;265(1):52–62.
  • Rosenberg-Katz K, Herman T, Jacob Y, et al. Subcortical volumes differ in parkinson’s disease motor subtypes: new insights into the pathophysiology of disparate symptoms. Front Hum Neurosci. 2016;10:356.
  • Vervoort G, Leunissen I, Firbank M, et al. Structural brain alterations in motor subtypes of parkinson’s disease: Evidence from probabilistic tractography and shape analysis. PLoS One. 2016;11(6):e0157743.
  • Peterson DS, Pickett KA, Duncan R, et al. Gait-related brain activity in people with Parkinson disease with freezing of gait. PLoS One. 2014;9(3):e90634.
  • Vervoort G, Alaerts K, Bengevoord A, et al. Functional connectivity alterations in the motor and fronto-parietal network relate to behavioral heterogeneity in Parkinson’s disease. Parkinsonism Relat Disord. 2016;24:48–55.
  • Bartels AL, de Jong BM, Giladi N, et al. Striatal dopa and glucose metabolism in PD patients with freezing of gait. Mov Disord. 2006;21(9):1326–1332.
  • Mito Y, Yoshida K, Yabe I, et al. Brain SPECT analysis by 3D-SSP and phenotype of Parkinson’s disease. J Neurol Sci. 2006;241(1–2):67–72.
  • Kim R, Lee J, Kim Y, et al. Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson’s disease: An analysis of the PPMI cohort. Parkinsonism Relat Disord. 2018;51:49–54.
  • Bonnet AM, Loria Y, Saint-Hilaire MH, et al. Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions. Neurology. 1987;37(9):1539–1542.
  • Bohnen NI, Frey KA, Studenski S, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology. 2013;81(18):1611–1616.
  • Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130(Pt 6):1596–1607.
  • Ferraye MU, Debû B, Fraix V, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133(Pt 1):205–214.
  • Chang WH, Kim MS, Cho JW, et al. Effect of cumulative repetitive transcranial magnetic stimulation on freezing of gait in patients with atypical Parkinsonism: a pilot study. J Rehabil Med. 2016;48(9):824–828.
  • Dagan M, Herman T, Harrison R, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord. 2018;33(4):642–646.
  • Handojoseno AM, Shine JM, Nguyen TN, et al. Analysis and prediction of the freezing of gait using EEG brain dynamics. IEEE Trans Neural Syst Rehabil Eng. 2015;23(5):887–896.
  • Guillot A, Di Rienzo F, Macintyre T, et al. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci. 2012;6:247.
  • Thobois S, Dominey PF, Decety J, et al. Motor imagery in normal subjects and in asymmetrical Parkinson’s disease: a PET study. Neurology. 2000;55(7):996–1002.
  • Snijders AH, Leunissen I, Bakker M, et al. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain. 2011;134(Pt 1):59–72.
  • Wai YY, Wang JJ, Weng YH, et al. Cortical involvement in a gait-related imagery task: comparison between Parkinson’s disease and normal aging. Parkinsonism Relat Disord. 2012;18(5):537–542.
  • Helmich RC, de Lange FP, Bloem BR, et al. Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia. 2007;45(10):2201–2215.
  • Holmes PS, Collins DJ. The pettlep approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol. 2001;13(1):60–83.
  • Abraham A, Duncan RP, Earhart GM. The role of mental imagery in parkinson’s disease rehabilitation. Brain Sci. 2021;11(2):185.
  • Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair. 2007;21(1):68–75.
  • Santiago LM, de Oliveira DA, de Macêdo Ferreira LG, et al. Immediate effects of adding mental practice to physical practice on the gait of individuals with Parkinson’s disease: randomized clinical trial. NeuroRehabilitation. 2015;37(2):263–271.
  • Braun S, Beurskens A, Kleynen M, et al. Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: a multicentre randomised trial. J Physiother. 2011;57:27–34.
  • Tosserams A, Nijkrake MJ, Sturkenboom IHWM, et al. Perceptions of compensation strategies for gait impairments in Parkinson’s disease: a survey among 320 healthcare professionals. J Park Dis. 2020;10:1775–1778.
  • Zangrando F, Piccinini G, Pelliccioni A, et al. Neurocognitive rehabilitation in Parkinson’s disease with motor imagery: a rehabilitative experience in a case report. Case Rep Med. 2015;2015:670385.
  • Padfield N, Zabalza J, Zhao H, et al. EEG-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors (Basel). 2019;19(6):E1423.
  • Van Steen M, Kristo G. Contribution to roadmap. 2015. Available online: https://pdfs.semanticscholar.org/5cb4/11de3db4941d5c7ecfc19de8af9243fb63d5.pdf (accessed on 2019 Jan 28).
  • Daly JJ, Huggins JE. Brain-computer interface: current and emerging rehabilitation applications. Arch Phys Med Rehabil. 2015;96(3 Suppl):S1–7.
  • McFarland DJ, Wolpaw JR. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):372–379.
  • Li Y, Long J, Yu T, et al. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Biomed Eng. 2010;57(10):2495–2505.
  • McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng. 2010;7(3):036007.
  • Graimann B, Allison B, Pfurtscheller G. Brain-computer interfaces: a gentle introduction. In: Brain-computer interfaces. Berlin, Germany: Springer; 2009. p. 1–27.
  • Tariq M, Trivailo PM, Simic M. EEG-based BCI control schemes for lower-limb assistive-robots. Front Hum Neurosci. 2018;12:312.
  • Grimaldi G, Manto M, Jdaoudi Y. A quality parameter for the detection of the intentionality of movement in patients with neurological tremor performing a finger-to-nose test. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7707–7710.
  • Thompson M, Thompson L. The neurofeedback book: An introduction to basic concepts in applied psychophysiology. Wheat Ridge, CO: Association for Applied Psychophysiology; 2003.
  • Butnik SM. Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. J Clin Psychol. 2005;61(5):621–625.
  • Linden DE, Habes I, Johnston SJ, et al. Real-time self-regulation of emotion networks in patients with depression. PLoS One. 2012;7(6):e38115.
  • Johnson KA, Hartwell K, LeMatty T, et al. Intermittent “real-time” fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study. J Neuroimaging. 2012;22(1):58–66.
  • Marchesotti S, Bassolino M, Serino A, et al. Quantifying the role of motor imagery in brain-machine interfaces. Sci Rep. 2016;6:24076.
  • Subramanian L, Morris MB, Brosnan M, et al. Functional magnetic resonance imaging neurofeedback-guided motor imagery training and motor training for parkinson’s disease: randomized trial. Front Behav Neurosci. 2016;10:111.
  • Tinaz S, Para K, Vives-Rodriguez A, et al. Insula as the interface between body awareness and movement: a neurofeedback-guided kinesthetic motor imagery study in Parkinson’s disease. Front Hum Neurosci. 2018;12:496.
  • Leeb R, Pfurtscheller G. Walking through a virtual city by thought. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4503–4506.
  • Collins D, Carson HJ. The future for PETTLEP: a modern perspective on an effective and established tool. Curr Opin Psychol. 2017;16:12–16.
  • D’Antonio E, Tieri G, Patané F, et al. Stable or able? Effect of virtual reality stimulation on static balance of post-stroke patients and healthy subjects. Hum Mov Sci. 2020;70:102569.
  • Mazzoni P, Hristova A, Krakauer JW. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci. 2007;27(27):7105–7116.
  • Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–666.
  • Critchley HD, Wiens S, Rotshtein P, et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–195.
  • Fung J, Richards CL, Malouin F, et al. A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol Behav. 2006;9(2):157–162.
  • Hollman JH, Brey RH, Robb RA, et al. Spatiotemporal gait deviations in a virtual reality environment. Gait Posture. 2006;23(4):441–444.
  • Maidan I, Nieuwhof F, Bernad-Elazari H, et al. The role of the frontal lobe in complex walking among patients with parkinson’s disease and healthy older adults: An fNIRS study. Neurorehabil Neural Repair. 2016;30(10):963–971.
  • Teodorescu HN, Mlynek D, Kandel A, et al. Analysis of chaotic movements and fuzzy assessment of hands tremor in rehabilitation. 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES’98 (Cat. No. 98EX111).
  • Albiol-Pérez S, Gil-Gómez JA, Muñoz-Tomás MT, et al. The effect of balance training on postural control in patients with Parkinson’s disease using a virtual rehabilitation system. Methods Inf Med. 2017;56(2):138–144.
  • Tieri G, Morone G, Paolucci S, et al. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018;15(2):107–117.
  • Ibánez J, Serrano JI, Del Castillo MD, et al. Online detector of movement intention based on EEG-Application in tremor patients. Biomed Signal Process Control. 2013;8:822–829.
  • Brass M, Haggard P. The hidden side of intentional action: the role of the anterior insular cortex. Brain Struct Funct. 2010;214(5–6):603–610.
  • Zapparoli L, Seghezzi S, Paulesu E. The what, the when, and the weather of intentional action in the brain: a meta-analytical review. Front Hum Neurosci. 2017;11:238.
  • Tinaz S, Lauro P, Hallett M, et al. Deficits in task-set maintenance and execution networks in Parkinson’s disease. Brain Struct Funct. 2016;221(3):1413–1425.
  • Barthel C, Nonnekes J, van Helvert M, et al. The laser shoes: a new ambulatory device to alleviate freezing of gait in Parkinson disease. Neurology. 2018;90(2):e164–e171.
  • Koopman CM, Lutters E, Nonnekes J, et al. Vibrating socks to improve gait in Parkinson’s disease. Parkinsonism Relat Disord. 2019;69:59–60.
  • Fusco A, Iasevoli L, Iosa M, et al. Dynamic motor imagery mentally simulates uncommon real locomotion better than static motor imagery both in young adults and elderly. PLoS One. 2019;14(6):e0218378.
  • Fusco A, Iosa M, Gallotta MC, et al. Different performances in static and dynamic imagery and real locomotion. An exploratory trial. Front Hum Neurosci. 2014;8:760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.