228
Views
0
CrossRef citations to date
0
Altmetric
Review

Advancements in neuroactive peptides in seizures

ORCID Icon &
Pages 129-143 | Received 23 Aug 2021, Accepted 17 Jan 2022, Published online: 31 Jan 2022

References

  • Burbach JPH. What Are Neuropeptides? In: Merighi A, editor. Neuropeptides: methods and protocols [internet]. Totowa (NJ):Humana Press; 2011. p. 1–36.
  • Burbach JPH. Neuropeptides from concept to online database www.neuropeptides.nl. Eur J Pharmacol. 2010;626(1):27–48.
  • Clynen E, Swijsen A, Raijmakers M, et al. Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol. 2014;50(2):626–646.
  • Werner F-M, Covenas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy: a focus on antiepileptic drugs. Curr Med Chem. 2011;18(32):4933–4948.
  • Baraban SC, Tallent MK. Interneuron diversity series: interneuronal neuropeptides–endogenous regulators of neuronal excitability. Trends Neurosci. 2004;27(3):135–142.
  • Wasterlain CG, Mazarati AM, Naylor D, et al. Short-term plasticity of hippocampal neuropeptides and neuronal circuitry in experimental status epilepticus. Epilepsia. 2002;43(Suppl 5):20–29.
  • Di Giannuario A, Pieretti S, Sagratella S, et al. Dexamethasone blocking effects on mu- and delta-opioid-induced seizures involves kappa-opioid activity in the rabbit. Neuropsychobiology. 2001;43(3):213–220.
  • Broom DC, Nitsche JF, and Pintar JE, et al. Comparison of receptor mechanisms and efficacy requirements for delta-agonist-induced convulsive activity and antinociception in mice. J Pharmacol Exp Ther. 2002;303(2):723–729.
  • Cain DP, Corcoran ME. Intracerebral beta-endorphin, met-enkephalin and morphine: kindling of seizures and handling-induced potentiation of epileptiform effects. Life Sci. 1984;34(25):2535–2542.
  • Gulec G, Noyan B. Arginine vasopressin in the pathogenesis of febrile convulsion and temporal lobe epilepsy. Neuroreport. 2002;13(16):2045–2048.
  • Wong JC, Shapiro L, Thelin JT, et al. Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiol Dis. 2021;147:105147.
  • Zhang L-X, Zhou Y, Du Y, et al. Effect of CCK-8 on audiogenic epileptic seizure in P77PMC rats. Neuropeptides. 1993;25(1):73–76.
  • Mazarati AM, Telegdy G. Effects of somatostatin and anti-somatostatin serum on picrotoxin-kindled seizures. Neuropharmacology. 1992;31(8):793–797.
  • Tallent MK, and Qiu C. Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol. 2008;286(1):96–103.
  • Aourz N, Portelli J, Coppens J, et al. Cortistatin-14 mediates its anticonvulsant effects via sst2 and sst3 but not ghrelin receptors. CNS Neurosci Ther. 2014;20(7):662–670.
  • Meurs A, Clinckers R, Ebinger G, et al. Clinical potential of neuropeptide Y receptor ligands in the treatment of epilepsy. Curr Top Med Chem. 2007;7(17):1660–1674.
  • Chepurnova NE, Ponomarenko AA, Chepurnov SA. Peptidergic mechanisms of hyperthermia-evoked convulsions in rats in early postnatal ontogenesis. Neurosci Behav Physiol. 2002;32(5):505–511.
  • Lee S-H, Cox CL. Excitatory actions of vasoactive intestinal peptide on mouse thalamocortical neurons are mediated by VPAC2 receptors. J Neurophysiol. 2006;96(2):858–871.
  • Hollrigel GS, Chen K, Baram TZ, et al. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience. 1998;84(1):71–79.
  • Wang XF, Ge TT, Fan J, et al. The role of substance P in epilepsy and seizure disorders. Oncotarget. 2017;8(44):78225–78233.
  • Pereira MGAG, Becari C, and Oliveira JAC, et al. Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci Lond Engl. 1979. 2010;119(11):477–482 •• Article important for understanding link between renin-angiotensin system and epilepsy.
  • Tanganelli S, O’Connor WT, Ferraro L, et al. Facilitation of GABA release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens. Neuroscience. 1994;60(3):649–657.
  • Lee H-K, Zhang L, Smith MD, et al. Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem. 2009;4(3):400–405.
  • Ge T, Yang W, Fan J, et al. Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget. 2017;8(35):59929–59939.
  • Lerner JT, Sankar R, Mazarati AM. Galanin and epilepsy. Cell Mol Life Sci CMLS. 2008;65(12):1864–1871.
  • Nie Y, Schoepp DD, Klaunig JE, et al. Thyrotropin-releasing hormone (protirelin) inhibits potassium-stimulated glutamate and aspartate release from hippocampal slices in vitro. Brain Res. 2005;1054(1):45–54.
  • Kubek MJ, Garg BP. Thyrotropin-releasing hormone in the treatment of intractable epilepsy. Pediatr Neurol. 2002;26(1):9–17.
  • Lerner JT, Sankar R, Mazarati AM. Galanin and epilepsy. Exp Suppl 2012. 2010;102:183–194.
  • Gao XB, and van den Pol AN. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol. 2001;533(Pt 1):237–252.
  • Stafstrom CE, Arnason BGW, Baram TZ, et al. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol. 2011;26(11):1411–1421.
  • Burtscher J, Schwarzer C. The opioid system in temporothmanal lobe epilepsy: functional role and therapeutic potential. Front Mol Neurosci. 2017;10:245.
  • Kanemitsu Y, Hosoi M, and Zhu PJ, et al., Dynorphin A inhibits NMDA receptors through a pH-dependent mechanism. Mol Cell Neurosci. 24(3): 525–537. 2003
  • Zamanian G, Shayan M, Rahimi N, et al. Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: the role of NMDA-receptor/NO pathway. Epilepsy Behav. 2020;112:107343.
  • Eslami F, Rahimi N, Ostovaneh A, et al. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT1B/D receptors in rats: a pharmacological-based evidence. Fundam Clin Pharmacol. 2021;35(1):131–140.
  • Schmidhammer H, Erli F, Guerrieri E, et al. Development of diphenethylamines as selective kappa opioid receptor ligands and their pharmacological activities. Mol Basel Switz. 2020;25(21):E5092.
  • Bausch SB, Esteb TM, Terman GW, et al. Administered and endogenously released kappa opioids decrease pilocarpine-induced seizures and seizure-induced histopathology. J Pharmacol Exp Ther. 1998;284(3):1147–1155.
  • Becker A, Braun H, Schröder H, et al. Effects of enadoline on the development of pentylenetetrazol kindling, learning performance, and hippocampal morphology. Brain Res. 1999;823(1–2):191–197.
  • Walsh SL, Strain EC, Abreu ME, et al. Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl). 2001;157(2):151–162.
  • Mazarati A, Liu H, Wasterlain C. Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus. Neuroscience. 1999;89(1):167–173.
  • Yajima Y, Narita M, Takahashi-Nakano Y, et al. Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse. Brain Res. 2000;862(1–2):120–126.
  • Chu Sin Chung P, and Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther. 2013;140(1):112–120.
  • Portoghese PS, Sultana M, Takemori AE. Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol. 1988;146(1):185–186.
  • Comer SD, Hoenicke EM, Sable AI, et al. Convulsive effects of systemic administration of the delta opioid agonist BW373U86 in mice. J Pharmacol Exp Ther. 1993;267(2):888–895.
  • Solbrig MV, Adrian R, Wechsler SL, et al. Activators of potassium M currents have anticonvulsant actions in two rat models of encephalitis. Eur J Pharmacol. 2007;555(1):23–29.
  • De Sarro GB, Marra R, Spagnolo C, et al. Delta opioid receptors mediate seizures produced by intrahippocampal injection of ala-deltorphin in rats. Funct Neurol. 1992;7(3):235–238.
  • Lasoń W, Przewłocka B, Coenen A, et al. Effects of mu and delta opioid receptor agonists and antagonists on absence epilepsy in WAG/Rij rats. Neuropharmacology. 1994;33(2):161–166.
  • Jackson HC, and Nutt DJ. Differential effects of selective mu-, kappa- and delta-opioid antagonists on electroshock seizure threshold in mice. Psychopharmacology (Berl). 1991;103(3):380–383.
  • Margolis EB, Fujita W, Devi LA, et al. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology. 2017;123:420–432.
  • Broom DC, Guo L, Coop A, et al. BU48: a novel buprenorphine analog that exhibits delta-opioid-mediated convulsions but not delta-opioid-mediated antinociception in mice. J Pharmacol Exp Ther. 2000;294(3):1195–1200.
  • Berna MJ, Tapia JA, Sancho V, et al. Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol. 2007;7(6):583–592.
  • Miller LJ, Gao F. Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther. 2008;119(1):83–95.
  • Wyeth MS, Zhang N, Mody I, et al. Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci Off J Soc Neurosci. 2010;30(26):8993–9006.
  • Schwarzer C, Williamson JM, Lothman EW, et al. Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience. 1995;69(3):831–845.
  • Ferraro G, Sardo P. Cholecystokinin-8 sulfate modulates the anticonvulsant efficacy of vigabatrin in an experimental model of partial complex epilepsy in the rat. Epilepsia. 2009;50(4):721–730.
  • Deng P-Y, Lei S. Bidirectional modulation of GABAergic transmission by cholecystokinin in hippocampal dentate gyrus granule cells of juvenile rats. J Physiol. 2006;572(Pt 2):425–442.
  • Zhang LX, Wu M, Han JS. Suppression of audiogenic epileptic seizures by intracerebral injection of a CCK gene vector. Neuroreport. 1992;3(8):700–702.
  • Dunlop J. CCK receptor antagonists. Gen Pharmacol. 1998;31(4):519–524.
  • Sparapani S, Millet-Boureima C, Oliver J, et al. The biology of vasopressin. Biomedicines. 2021;9(1):89.
  • Javadian N, Rahimi N, Javadi-Paydar M, et al. The modulatory effect of nitric oxide in pro- and anti-convulsive effects of vasopressin in PTZ-induced seizures threshold in mice. Epilepsy Res. 2016;126:134–140.
  • Greenwood RS, Fan Z, Meeker R. Persistent elevation of corticotrophin releasing factor and vasopressin but not oxytocin mRNA in the rat after kindled seizures. Neurosci Lett. 1997;224(1):66–70.
  • Greenwood RS, Meeker RB, Abdou A, et al. Kindled seizures induce a long-term increase in vasopressin mRNA. Brain Res Mol Brain Res. 1994;24(1–4):20–26.
  • Ślusarz MJ. Vasopressin V1a and V1b receptor modulators: a patent review (2012 – 2014). Expert Opin Ther Pat. 2015;25(6):711–722.
  • Lin Y-T, Hsu K-S. Oxytocin receptor signaling in the hippocampus: role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog Neurobiol. 2018;171:1–14.
  • Chatterjee O, Patil K, Sahu A, et al. An overview of the oxytocin-oxytocin receptor signaling network. J Cell Commun Signal. 2016;10(4):355–360.
  • Erbas O, Yılmaz M, Korkmaz HA, et al. Oxytocin inhibits pentylentetrazol-induced seizures in the rat. Peptides. 2013;40:141–144.
  • Erfanparast A, Tamaddonfard E, Henareh-Chareh F. Intra-hippocampal microinjection of oxytocin produced antiepileptic effect on the pentylenetetrazol-induced epilepsy in rats. Pharmacol Rep PR. 2017;69(4):757–763.
  • Rahimian R, Khoshneviszadeh M, Bahremand T, et al. Oxytocinergic system mediates the proconvulsant effects of sildenafil: the role of calcineurin. Horm Behav. 2020;122:104753.
  • Bichet D, Bouvier M, Chini B, et al. Vasopressin and oxytocin receptors (version 2019.4) in the IUPHAR/BPS guide to pharmacology database. IUPHARBPS Guide Pharmacol CITE. 2019;2019(4).
  • Home - ClinicalTrials.gov [Internet]. cited 2021 Jul 7]. Available from: https://clinicaltrials.gov/ct2/home
  • Colmers WF, El Bahh B. Neuropeptide Y and epilepsy. Epilepsy Curr. 2003;3(2):53–58.
  • Baraban SC. Neuropeptide Y and epilepsy: recent progress, prospects and controversies. Neuropeptides. 2004;38(4):261–265.
  • Mittapalli GK, Roberts E. Ligands of the neuropeptide Y Y2 receptor. Bioorg Med Chem Lett. 2014;24(2):430–441.
  • Vezzani A, Moneta D, Mulé F, et al. Plastic changes in neuropeptide Y receptor subtypes in experimental models of limbic seizures. Epilepsia. 2000;41(Suppl 6):S115–121.
  • Barnett P. Somatostatin and somatostatin receptor physiology. Endocrine. 2003;20(3):255–264.
  • Hannon JP, Nunn C, and Stolz B, et al., Drug design at peptide receptors: somatostatin receptor ligands. J Mol Neurosci. 18(1–2): 15–27. 2002
  • Aourz N, De Bundel D, Stragier B, et al. Rat hippocampal somatostatin sst3 and sst4 receptors mediate anticonvulsive effects in vivo: indications of functional interactions with sst2 receptors. Neuropharmacology. 2011;61(8):1327–1333.
  • Moneta D, Richichi C, Aliprandi M, et al. Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. Eur J Neurosci. 2002;16(5):843–849.
  • Ibáñez-Costa A, Luque RM, Castaño JP. Cortistatin: a new link between the growth hormone/prolactin axis, stress, and metabolism. Growth Horm IGF Res. 2017;33:23–27.
  • Hill JL, Jimenez DV, Mai Y, et al. Cortistatin-expressing interneurons require TrkB signaling to suppress neural hyper-excitability. Brain Struct Funct. 2019;224(1):471–483.
  • Maynard KR, Kardian A, Hill JL, et al. TrkB signaling influences gene expression in cortistatin-expressing interneurons. eNeuro. 2020;7(1):ENEURO.0310–19.2019.
  • Braun H, Schulz S, Becker A, et al. Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res. 1998;803(1):54–60.
  • Smolders IJ, Stragier B, Meurs A, et al. The effects of cortistatin-14 on seizure severity and hippocampal neurotransmitter levels in the acute pilocarpine rat model for limbic epilepsy. Acta Physiol. 2007;191(s660):6.
  • Denes V, Geck P, Mester A, et al. Pituitary adenylate cyclase-activating polypeptide: 30 years in research spotlight and 600 million years in service. J Clin Med. 2019;8(9):1488.
  • Kaneko Y, Tuazon JP, Ji X, et al. Pituitary adenylate cyclase activating polypeptide elicits neuroprotection against acute ischemic neuronal cell death associated with NMDA receptors. Cell Physiol Biochem. 2018;51(4):1982–1995.
  • Nomura M, Ueta Y, Hannibal J, et al. Induction of pituitary adenylate cyclase-activating polypeptide mRNA in the medial parvocellular part of the paraventricular nucleus of rats following kainic-acid-induced seizure. Neuroendocrinology. 2000;71(5):318–326.
  • Gupte RP, Kadunganattil S, Shepherd AJ, et al. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology. 2016;101:291–308.
  • Sun -Q-Q, Prince DA, Huguenard JR. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide activate hyperpolarization-activated cationic current and depolarize thalamocortical neurons in vitro. J Neurosci. 2003;23(7):2751–2758.
  • Figiel M, and Engele J. Pituitary adenylate cyclase-activating polypeptide (pacap), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci. 2000;20(10):3596–3605.
  • Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res. 2019;8:F1000. Faculty Rev-1629.
  • Goff KM, Goldberg EM. Vasoactive intestinal peptide-expressing interneurons are impaired in a mouse model of Dravet syndrome. eLife. 2019;8:e46846.
  • Kilinc E, Gunes H. Modulatory effects of neuropeptides on pentylenetetrazol-induced epileptic seizures and neuroinflammation in rats. Rev Assoc Medica Bras 1992 .2019;65(9):1188–1192.
  • Funabashi T, Hiruma H, Arita J, et al. Intraventricular injection of vasoactive intestinal polypeptide facilitates the development of amygdaloid kindling. Brain Res. 1991;541(1):110–114.
  • Cǎlin A, Stancu M, and Zagrean A-M, et al. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293.
  • Ko FJ, Chiang CH, Liu WJ, et al. Somatostatin, substance P, prolactin and vasoactive intestinal peptide levels in serum and cerebrospinal fluid of children with seizure disorders. Gaoxiong Yi Xue Ke Xue Za Zhi. 1991;7(8):391–397.
  • Marksteiner J, Sperk G, Maas D. Differential increases in brain levels of neuropeptide Y and vasoactive intestinal polypeptide after kainic acid-induced seizures in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1989;339(1):173–177.
  • Romualdi P, Lesa G, Donatini A, et al. Alterations in vasoactive intestinal polypeptide-related peptides after pentylenetetrazole-induced seizures in rat brain. Eur J Pharmacol. 1992;229(2):149–153.
  • Zieglgänsberger W. Substance P and pain chronicity. Cell Tissue Res. 2019;375(1):227–241.
  • Kalinichev M, Bradford A, Bison S, et al. Potentiation of the anticonvulsant efficacy of sodium channel inhibitors by an NK1-receptor antagonist in the rat. Epilepsia. 2010;51(8):1543–1551.
  • McLean S, Ganong A, Seymour PA, et al. Characterization of CP-122,721; a nonpeptide antagonist of the neurokinin NK1 receptor. J Pharmacol Exp Ther. 1996;277(2):900–908.
  • Zachrisson O, Lindefors N, Brené S. A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity. Brain Res Mol Brain Res. 1998;60(2):291–295.
  • Marksteiner J, Wahler R, Bellmann R, et al. Limbic seizures cause pronounced changes in the expression of neurokinin B in the hippocampus of the rat. Neuroscience. 1992;49(2):383–395.
  • Marksteiner J, Lassmann H, Saria A, et al. Neuropeptide levels after pentylenetetrazol kindling in the rat. Eur J Neurosci. 1990;2(1):98–103.
  • Röder C, Bellmann R, McCarson KE, et al. Kainic acid induced seizures cause a marked increase in the expression of neurokinin-3 receptor mRNA in the rat cerebellum. Neurosci Lett. 1994;181(1–2):158–160.
  • Stenfors C, Srinivasan GR, Theodorsson E, et al. Electroconvulsive stimuli and brain peptides: effect of modification of seizure duration on neuropeptide Y, neurokinin A, substance P and neurotensin. Brain Res. 1992;596(1–2):251–258.
  • Phan J The role of neurokinin-B in seizure and epilepsy. urc_student [Internet]. [0:00 cited 2021 Aug 18]; Available from: https://scholar.oxy.edu/handle/20.500.12711/450
  • Muñoz M, and Coveñas R. Neurokinin receptor antagonism: a patent review (2014-present). Expert Opin Ther Pat. 2020;30(7):527–539.
  • Inda C, Armando NG, Dos S CPA, et al. Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocr Connect. 2017;6(6):R99–120.
  • Gunn BG, Baram TZ. Stress and seizures: space, time and hippocampal circuits. Trends Neurosci. 2017;40(11):667–679.
  • Zoumakis E, Chrousos GP. Corticotropin-releasing hormone receptor antagonists: an update. Endocr Dev. 2010;17:36–43.
  • O’Toole KK, Hooper A, Wakefield S, et al. Seizure-induced disinhibition of the HPA axis increases seizure susceptibility. Epilepsy Res. 2014;108(1):29–43.
  • Yuhas Y, Weizman A, Chrousos GP, et al. Involvement of the neuropeptide corticotropin-releasing hormone in an animal model of shigella-related seizures. J Neuroimmunol. 2004;153(1–2):36–39.
  • Lu H, Cassis LA, Kooi CWV, et al. Structure and functions of angiotensinogen. Hypertens Res Off J Jpn Soc Hypertens. 2016;39(7):492–500
  • Uijl E, Ren L, and Danser AHJ. Angiotensin generation in the brain: a re-evaluation. Clin Sci Lond Engl 1979. 2018;132(8):839–850. .
  • Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci. 2020;27(3):905–912.
  • Becari C, Pereira GL, Oliveira JAC, et al. Epilepsy seizures in spontaneously hypertensive rats after acoustic stimulation: role of renin-angiotensin system. Front Neurosci. 2020;14:588477.
  • Georgiev VP, Lazarova MB, Petkov VD, et al. Interactions between angiotensin II, GABA and diazepam in convulsive seizures. Neuropeptides. 1986;7(4):329–336.
  • Gomes KP, Braga PPP, de Lima CQ, et al. Antiepileptic effects of long-term intracerebroventricular infusion of angiotensin-(1-7) in an animal model of temporal lobe epilepsy. Clin Sci Lond Engl 1979. 2020;134(17): 2263–2277
  • Nozaki T, Ura H, Takumi I, et al. The angiotensin II type I receptor antagonist losartan retards amygdala kindling-induced epileptogenesis. Brain Res. 2018;1694:121–128.
  • Łukawski K, Raszewski G, Czuczwar SJ. Effect of aliskiren on the anticonvulsant activity of antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice. Epilepsy Res. 2020;167:106435.
  • Sarro GD, Paola EDD, and Gratteri S, et al., Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Pharmacol Res. 65(3): 285–296. 2012
  • Łukawski K, Janowska A, Jakubus T, et al. Interactions between angiotensin AT1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock. Fundam Clin Pharmacol. 2014;28(3):277–283.
  • Tan J, Wang JM, Leenen FHH. Inhibition of brain angiotensin-converting enzyme by peripheral administration of trandolapril versus lisinopril in Wistar rats. Am J Hypertens. 2005;18(2):158–164.
  • Tschumi CW, Beckstead MJ. Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci. 2019;49(6):784–793.
  • Sperk G, Wieser R, Widmann R, et al. Kainic acid induced seizures: changes in somatostatin, substance P and neurotensin. Neuroscience. 1986;17(4):1117–1126.
  • Kyriatzis G, Bernard A, Bôle A, et al. Neurotensin receptor 2 is induced in astrocytes and brain endothelial cells in relation to neuroinflammation following pilocarpine-induced seizures in rats. Glia. 2021 Jul 26;69(11):2618–2643. Online ahead of print.
  • Shandra OA, Hodlevskyĭ LS, Vastíanov RS, et al. Effect of intracerebral injections of somatostatin and neurotensin on motor functions in seizure. Fiziol Zh. 1993;39(5–6):76–82.
  • Hashiguchi S, Masuda T, Fujimoto H, et al. Involvements of neuropeptides in pentylenetetrazol-induced convulsion in rats and effects of TRH and ceruletide on the convulsion. No To Shinkei. 1990;42(1):73–78.
  • Kojima M, and Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005;85(2):495–522.
  • Giordano C, Marchiò M, Timofeeva E, et al. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol. 2014;5(63):1–14.
  • Lucchi C, Curia G, Vinet J, et al. Protective but not anticonvulsant effects of ghrelin and JMV-1843 in the pilocarpine model of status epilepticus. PloS One. 2013;8(8):e72716.
  • Giordano C, Costa AM, Lucchi C, et al. Progressive seizure aggravation in the repeated 6-hz corneal stimulation model is accompanied by marked increase in hippocampal p-erk1/2 immunoreactivity in neurons. Front Cell Neurosci. 2016;10(281):1–12.
  • Lucchi C, Costa AM, Giordano C, et al. Involvement of PPARγ in the anticonvulsant activity of ep-80317, a ghrelin receptor antagonist. Front Pharmacol. 2017;8(676):1–13.
  • Marchiò M, Roli L, Giordano C, et al. High plasma levels of ghrelin and des-acyl ghrelin in responders to antiepileptic drugs. Neurology. 2018;91(1):e62–6.
  • Marchiò M, Roli L, Giordano C, et al. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet. Clin Nutr Edinb Scotl. 2019;38(2):954–957.
  • Marchiò M, Roli L, Lucchi C, et al. ghrelin plasma levels after 1 year of ketogenic diet in children with refractory epilepsy. Front Nutr. 2019;6(112):1–6.
  • Buckinx A, Pierre A, Van Den Herrewegen Y, et al. Translational potential of the ghrelin receptor agonist macimorelin for seizure suppression in pharmacoresistant epilepsy. Eur J Neurol. 2021;28(9):3100–3112.
  • Buckinx A, Van Den Herrewegen Y, Pierre A, et al. Differential effects of a full and biased ghrelin receptor agonist in a mouse kindling model. Int J Mol Sci. 2019;20(10):E2480.
  • Šípková J, Kramáriková I, and Hynie S, et al. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol Res. 2017;66(5):729–740.
  • Tiong SYX, Polgár E, van Kralingen JC, et al. Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord. Mol Pain. 2011;7:36.
  • Christiansen SH, Woldbye DPD. Regulation of the galanin system by repeated electroconvulsive seizures in mice. J Neurosci Res. 2010;88(16):3635–3643.
  • Mazarati AM, Liu H, Soomets U, et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci Off J Soc Neurosci. 1998;18(23):10070–10077.
  • Mazarati A, Lu X. Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides. 2005;39(3):277–280.
  • Drexel M, Locker F, Kofler B, et al. Effects of galanin receptor 2 and receptor 3 knockout in mouse models of acute seizures. Epilepsia. 2018;59(11):e166–71.
  • Saar K, Mazarati AM, Mahlapuu R, et al. Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A. 2002;99(10):7136–7141.
  • Engel S, Gershengorn MC. Thyrotropin-releasing hormone and its receptors–a hypothesis for binding and receptor activation. Pharmacol Ther. 2007;113(2):410–419.
  • Manaker S, Winokur A, Rostene WH, et al. Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system. J Neurosci Off J Soc Neurosci. 1985;5(1):167–174.
  • Asai H, Kinoshita K, Yamamura M, et al. Diversity of thyrotropin-releasing hormone receptors in the pituitary and discrete brain regions of rats. Jpn J Pharmacol. 1999;79(3):313–317.
  • Jaworska-Feil L, Turchan J, Przewłocka B, et al. Effects of pilocarpine- and kainate-induced seizures on thyrotropin-releasing hormone biosynthesis and receptors in the rat brain. J Neural Transm Vienna Austria 1996. 1999;106(5–6):395–407.
  • Abad VC, Guilleminault C. New developments in the management of narcolepsy. Nat Sci Sleep. 2017;9:39–57.
  • Renming X, Ishihara K, Sasa M, et al. Antiepileptic effects of CNK-602A, a novel thyrotropin-releasing hormone analog, on absence-like and tonic seizures of spontaneously epileptic rats. Eur J Pharmacol. 1992;223(2–3):185–192.
  • Yatsugi S, Yamamoto M. Anticonvulsive properties of YM-14673, a new TRH analogue, in amygdaloid-kindled rats. Pharmacol Biochem Behav. 1991;38(3):669–672.
  • Jaworska-Feil L, Kajta M, Budziszewska B, et al. Protective effects of TRH and its stable analogue, RGH-2202, on kainate-induced seizures and neurotoxicity in rodents. Epilepsy Res. 2001;43(1):67–73.
  • Mori N, Fukatsu T. Anticonvulsant effect of DN-1417, a derivative of thyrotropin-releasing hormone, and liposome-entrapped DN-1417, on amygdaloid-kindled rats. Epilepsia. 1992;33(6):994–1000.
  • Sakai S, Baba H, Sato M, et al. Effect of DN-1417 on photosensitivity and cortically kindled seizure in Senegalese baboons, Papio papio. Epilepsia. 1991;32(1):16–21.
  • Ogawa T, Moriwake T, Morimoto K, et al. The effect of a novel TRH analog (DN-1417) on postictal seizure inhibition in amygdaloid kindled cats. No To Shinkei. 1984;36(10):951–955.
  • Jancsik V, Bene R, and Sótonyi P, et al. Sub-cellular organization of the melanin-concentrating hormone neurons in the hypothalamus. Peptides. 2018;99:56–60.
  • Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone (MCH) system: a tale of two peptides. Front Neurosci. 2019;13:1280.
  • Knigge KM, Wagner JE. Melanin-concentrating hormone (MCH) involvement in pentylenetetrazole (PTZ)-induced seizure in rat and guinea pig. Peptides. 1997;18(7):1095–1097.
  • Parks GS, Okumura SM, Gohil K, et al. Mice lacking melanin concentrating hormone 1 receptor are resistant to seizures. Neurosci Lett. 2010;484(2):104–107.
  • Boutin JA, Suply T, Audinot V, et al. Melanin-concentrating hormone and its receptors: state of the art. Can J Physiol Pharmacol. 2002;80(5):388–395.
  • Nagasaki H, Chung S, Dooley CT, et al. The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries. Eur J Pharmacol. 2009;602(2–3):194–202.
  • Cippitelli A, Karlsson C, Shaw JL, et al. Suppression of alcohol self-administration and reinstatement of alcohol seeking by melanin-concentrating hormone receptor 1 (MCH1-R) antagonism in Wistar rats. Psychopharmacology (Berl). 2010;211(4):367–375.
  • Ghaddhab C, Vuissoz J-M, Deladoëy J. From bioinactive ACTH to ACTH antagonist: the clinical perspective. Front Endocrinol. 2017;8:17.
  • D’Alonzo R, Rigante D, Mencaroni E, et al. West syndrome: a review and guide for paediatricians. Clin Drug Investig. 2018;38(2):113–124.
  • Trivisano M, Lucchi C, Rustichelli C, et al. Reduced steroidogenesis in patients with PCDH19-female limited epilepsy. Epilepsia. 2017;58(6):e91–5.
  • Baba S, Okanishi T, Homma Y, et al. Efficacy of long-term adrenocorticotropic hormone therapy for West syndrome: a retrospective multicenter case series. Epilepsia Open. 2021;6(2):402–412.
  • Wanigasinghe J, Arambepola C, Ranganathan SS, et al. Epilepsy outcome at four years in a randomized clinical trial comparing oral prednisolone and intramuscular ACTH in West syndrome. Pediatr Neurol. 2021;119:22–26.
  • He S, Ye Z, Dobbelaar PH, et al. Discovery of a spiroindane based compound as a potent, selective, orally bioavailable melanocortin subtype-4 receptor agonist. Bioorg Med Chem Lett. 2010;20(7):2106–2110.
  • Hong Q, Bakshi RK, Palucki BL, et al. Discovery of a piperazine urea based compound as a potent, selective, orally bioavailable melanocortin subtype-4 receptor partial agonist. Bioorg Med Chem Lett. 2011;21(8):2330–2334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.