375
Views
2
CrossRef citations to date
0
Altmetric
Review

Developments in the mechanistic understanding and clinical application of deep brain stimulation for Parkinson’s disease

, &
Pages 789-803 | Received 08 Feb 2022, Accepted 10 Oct 2022, Published online: 22 Oct 2022

References

  • Benabid AL, Pollak P, Louveau A, et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–346.
  • Limousin P, Pollak P, Benazzouz A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995 Jan 14;345(8942):91–95.
  • Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006 Aug 31;355(9):896–908.
  • Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010 Jun 3;362(22):2077–2091.
  • Williams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 2010 Jun;9(6):581–591.
  • Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003 Nov 13;349(20):1925–1934.
  • Fasano A, Romito LM, Daniele A, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain. 2010 Sep;133(9):2664–2676.
  • Castrioto A, Lozano AM, Poon YY, et al. Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol. 2011 Dec;68(12):1550–1556.
  • Zibetti M, Merola A, Rizzi L, et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord. 2011 Nov;26(13):2327–2334.
  • Bove F, Mulas D, Cavallieri F, et al. Long-term outcomes (15 Years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology. 2021 Jun 2;97(3):e254–62.
  • Vedam-Mai V, Deisseroth K, Giordano J, et al. Proceedings of the eighth annual deep brain stimulation think tank: advances in optogenetics, ethical issues affecting DBS research, neuromodulatory approaches for depression, adaptive neurostimulation, and emerging DBS technologies. Front Hum Neurosci. 2021;15:644593.
  • Ramirez-Zamora A, Ostrem JL. Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease: a review. JAMA Neurol. 2018 Mar 1;75(3):367–372.
  • Lachenmayer ML, Murset M, Antih N, et al. Subthalamic and pallidal deep brain stimulation for Parkinson’s disease-meta-analysis of outcomes. NPJ Parkinsons Dis. 2021 Sep 6;7(1):77.
  • Deuschl G, Paschen S, Witt K. Clinical outcome of deep brain stimulation for Parkinson’s disease. Handb Clin Neurol. 2013;116:107–128.
  • Follett KA. The surgical treatment of Parkinson’s disease. Annu Rev Med. 2000;51(1):135–147.
  • Chiken S, Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist. 2016 Jun;22(3):313–322.
  • Krauss JK, Lipsman N, Aziz T, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021 Feb;17(2):75–87.
  • Kuhn AA, Kempf F, Brucke C, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008 Jun 11;28(24):6165–6173.
  • Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013 Feb 6;77(3):406–424.
  • Miocinovic S, Somayajula S, Chitnis S, et al. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013 Feb;70(2):163–171.
  • Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016 Jan 1;115(1):19–38.
  • Jakobs M, Fomenko A, Lozano AM, et al. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med. 2019 Apr;11(4):e9575.
  • Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975 Nov 21;98(3):417–440.
  • McIntyre CC, Grill WM, Sherman DL, et al. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004 Apr;91(4):1457–1469.
  • McIntyre CC, Savasta M, Kerkerian-Le Goff L, et al. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004 Jun;115(6):1239–1248.
  • Chiken S, Nambu A. High-frequency pallidal stimulation disrupts information flow through the pallidum by GABAergic inhibition. J Neurosci. 2013 Feb 6;33(6):2268–2280.
  • Pollak P, Benabid AL, Gross C, et al. Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev Neurol (Paris). 1993;149(3):175–176.
  • Benabid AL, Pollak P, Gross C, et al. Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg. 1994;62(1–4):76–84.
  • Benazzouz A, Gao DM, Ni ZG, et al. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience. 2000;99(2):289–295.
  • Welter ML, Houeto JL, Bonnet AM, et al. Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol. 2004 Jan;61(1):89–96.
  • Meer W, Leblois A, Hansel D, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005 Oct;128(Pt 10):2372–2382.
  • Beurrier C, Bioulac B, Audin J, et al. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol. 2001 Apr;85(4):1351–1356.
  • Carlson JD, Cleary DR, Cetas JS, et al. Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson’s patients. J Neurophysiol. 2010 Feb;103(2):962–967.
  • Johnson MD, McIntyre CC. Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol. 2008 Nov;100(5):2549–2563.
  • McCairn KW, Turner RS. Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations. J Neurophysiol. 2009 Apr;101(4):1941–1960.
  • Windels F, Bruet N, Poupard A, et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci. 2000 Nov;12(11):4141–4146.
  • McIntyre CC, Savasta M, Walter BL, et al. How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol. 2004 Jan-Feb;21(1):40–50.
  • Hashimoto T, Elder CM, Okun MS, et al. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci. 2003 Mar 1;23(5):1916–1923.
  • Moran A, Stein E, Tischler H, et al. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate. Front Syst Neurosci. 2011;5:21.
  • Florence G, Sameshima K, Fonoff ET, et al. Deep brain stimulation: more complex than the inhibition of cells and excitation of fibers. Neuroscientist. 2016 Aug;22(4):332–345.
  • Cagnan H, Denison T, McIntyre C, et al. Emerging technologies for improved deep brain stimulation. Nat Biotechnol. 2019 Sep;37(9):1024–1033.
  • Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord. 2002;17(Suppl 3):S63–8.
  • Gubellini P, Salin P, Kerkerian-Le Goff L, et al. Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol. 2009 Sep;89(1):79–123.
  • Deniau JM, Degos B, Bosch C, et al. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci. 2010 Oct;32(7):1080–1091.
  • Holsheimer J, Dijkstra EA, Demeulemeester H, et al. Chronaxie calculated from current-duration and voltage-duration data. J Neurosci Methods. 2000 Apr 1;97(1):45–50.
  • Irnich W. The chronaxie time and its practical importance. Pacing Clin Electrophysiol. 1980 May;3(3):292–301.
  • Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp Brain Res. 1998 Feb;118(4):477–488.
  • McIntyre CC, Hahn PJ. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis. 2010 Jun;38(3):329–337.
  • Vanegas-Arroyave N, Lauro PM, Huang L, et al. Tractography patterns of subthalamic nucleus deep brain stimulation. Brain. 2016 Apr;139(Pt 4):1200–1210.
  • Horn A, Reich M, Vorwerk J, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017 Jul;82(1):67–78.
  • Brown P, Oliviero A, Mazzone P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001 Feb 1;21(3):1033–1038.
  • Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord. 2003 Apr;18(4):357–363.
  • Tinkhauser G, Pogosyan A, Tan H, et al. Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain. 2017 Nov 1;140(11):2968–2981.
  • Kuhn AA, Kupsch A, Schneider GH, et al. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006 Apr;23(7):1956–1960.
  • Brown P, Williams D. Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol. 2005 Nov;116(11):2510–9.
  • Tinkhauser G, Pogosyan A, Little S, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017 Apr 1;140(4):1053–1067.
  • Deffains M, Iskhakova L, Katabi S, et al. Longer beta oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism. Mov Disord. 2018 Oct;33(10):1609–1618.
  • Anidi C, JJ O, RW A, et al. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson’s disease. Neurobiol Dis. 2018 Dec;120:107–117.
  • Swann NC, de Hemptinne C, Miocinovic S, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci. 2016 Jun 15;36(24):6445–6458.
  • Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015 Oct;133:27–49.
  • Alegre M, Lopez-Azcarate J, Alonso-Frech F, et al. Subthalamic activity during diphasic dyskinesias in Parkinson’s disease. Mov Disord. 2012 Aug;27(9):1178–1181.
  • Rodriguez MC, Guridi OJ, Alvarez L, et al. The subthalamic nucleus and tremor in Parkinson’s disease. Mov Disord. 1998;13(Suppl 3):111–118.
  • Asch N, Herschman Y, Maoz R, et al. Independently together: subthalamic theta and beta opposite roles in predicting Parkinson’s tremor. Brain Commun. 2020;2(2):fcaa074.
  • Contarino MF, Bour LJ, Bot M, et al. Tremor-specific neuronal oscillation pattern in dorsal subthalamic nucleus of parkinsonian patients. Brain Stimul. 2012 Jul;5(3):305–314.
  • Klimesch W. alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012 Dec;16(12):606–617.
  • Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007 Jul;30(7):357–364.
  • Bronte-Stewart H, Barberini C, Koop MM, et al. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol. 2009 Jan;215(1):20–28.
  • Kehnemouyi YM, Wilkins KB, Anidi CM, et al. Modulation of beta bursts in subthalamic sensorimotor circuits predicts improvement in bradykinesia. Brain. 2021 Mar 3;144(2):473–486.
  • Feingold J, Gibson DJ, DePasquale B, et al. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci USA. 2015 Nov 3;112(44):13687–13692.
  • Chen Y, Gong C, Tian Y, et al. Neuromodulation effects of deep brain stimulation on beta rhythm: a longitudinal local field potential study. Brain Stimul. 2020 Nov - Dec;13(6):1784–1792.
  • Murthy VN, Fetz EE. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J Neurophysiol. 1996 Dec;76(6):3949–3967.
  • Anderson RW, Wilkins KB, Parker JE, et al. Lack of progression of beta dynamics after long-term subthalamic neurostimulation. Ann Clin Transl Neurol. 2021 Nov;8(11):2110–2120.
  • Haumesser JK, Beck MH, Pellegrini F, et al. Subthalamic beta oscillations correlate with dopaminergic degeneration in experimental parkinsonism. Exp Neurol. 2021 Jan;335:113513.
  • Wichmann T, DeLong MR, Guridi J, et al. Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord. 2011 May;26(6):1032–1041.
  • de Hemptinne C, Ryapolova-Webb ES, Air EL, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci USA. 2013 Mar 19;110(12):4780–4785.
  • de Hemptinne C, Swann NC, Ostrem JL, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015 May;18(5):779–786.
  • Ray S, Crone NE, Niebur E, et al. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci. 2008 Nov 5;28(45):11526–36.
  • Ray S, Maunsell JHR, Ungerleider JH. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011 Apr;9(4):e1000610.
  • Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013 Mar 20;77(6):1002–1016.
  • Canolty RT, Edwards E, Dalal SS, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006 Sep 15;313(5793):1626–1628.
  • Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007 Jul;11(7):267–269.
  • von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000 Dec 1;38(3):301–313.
  • Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010 Nov;14(11):506–515.
  • Munia TTK, Aviyente S. Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Sci Rep. 2019 Aug 27;9(1):12441.
  • Shimamoto SA, Ryapolova-Webb ES, Ostrem JL, et al. Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease. J Neurosci. 2013 Apr 24;33(17):7220–7233.
  • Gong R, Wegscheider M, Muhlberg C, et al. Spatiotemporal features of beta-gamma phase-amplitude coupling in Parkinson’s disease derived from scalp EEG. Brain. 2021 Mar 3;144(2):487–503.
  • Lopez-Azcarate J, Tainta M, Rodriguez-Oroz MC, et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci. 2010 May 12;30(19):6667–6677.
  • Yang AI, Vanegas N, Lungu C, et al. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. J Neurosci. 2014 Sep 17;34(38):12816–12827.
  • van Wijk BC, Beudel M, Jha A, et al. Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson’s disease. Clin Neurophysiol. 2016 Apr;127(4):2010–2019.
  • Horn A, Wenzel G, Irmen F, et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain. 2019 Oct 1;142(10):3129–3143.
  • Saenger VM, Kahan J, Foltynie T, et al. Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease. Sci Rep. 2017 Aug 29;7(1):9882.
  • Ogawa S. Finding the BOLD effect in brain images. Neuroimage. 2012 Aug 15;62(2):608–609.
  • Baudrexel S, Witte T, Seifried C, et al. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage. 2011 Apr 15;55(4):1728–1738.
  • Logothetis NK, Parker A, Derrington A. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):1003–1037.
  • Esposito F, Tessitore A, Giordano A, et al. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain. 2013 Mar;136(Pt 3):710–725.
  • Hacker CD, Perlmutter JS, Criswell SR, et al. Resting state functional connectivity of the striatum in Parkinson’s disease. Brain. 2012 Dec;135(Pt 12):3699–3711.
  • Wu T, Wang L, Chen Y, et al. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett. 2009 Aug 21;460(1):6–10.
  • Mori S, Crain BJ, Chacko VP, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999 Feb;45(2):265–269.
  • Tan WQ, Yeoh CS, Rumpel H, et al. Deterministic tractography of the nigrostriatal-nigropallidal pathway in Parkinson’s disease. Sci Rep. 2015 Dec;1(5):17283.
  • Theisen F, Leda R, Pozorski V, et al. Evaluation of striatonigral connectivity using probabilistic tractography in Parkinson’s disease. Neuroimage Clin. 2017;16:557–563.
  • Mosley PE, Paliwal S, Robinson K, et al. The structural connectivity of discrete networks underlies impulsivity and gambling in Parkinson’s disease. Brain. 2019 Dec 1;142(12):3917–3935.
  • Inguanzo A, Segura B, Sala-Llonch R, et al. Impaired structural connectivity in Parkinson’s disease patients with mild cognitive impairment: a study based on probabilistic tractography. Brain Connect. 2021 Jun;11(5):380–392.
  • Barbagallo G, Caligiuri ME, Arabia G, et al. Structural connectivity differences in motor network between tremor-dominant and nontremor Parkinson’s disease. Hum Brain Mapp. 2017 Sep;38(9):4716–29.
  • Sporns O, Tononi G, Kotter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005 Sep;1(4):e42.
  • Hagmann P, Cammoun L, Gigandet X, et al. MR connectomics: principles and challenges. J Neurosci Methods. 2010 Dec 15;194(1):34–45.
  • Akram H, Sotiropoulos SN, Jbabdi S, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage. 2017 Sep;158:332–345.
  • Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005 Aug;62(8):1250–1255.
  • Li N, Baldermann JC, Kibleur A, et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun. 2020 Jul 3;11(1):3364.
  • Sweet JA, Thyagaraj S, Chen Z, et al. Connectivity-based identification of a potential neurosurgical target for mood disorders. J Psychiatr Res. 2020 Jun;125:113–120.
  • Hollunder B, Rajamani N, Siddiqi SH, et al. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol. 2021 Dec;24(210):102211.
  • Bronstein JM, Tagliati M, Alterman RL, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011 Feb;68(2):165.
  • Moro E, Allert N, Eleopra R, et al. A decision tool to support appropriate referral for deep brain stimulation in Parkinson’s disease. J Neurol. 2009 Jan;256(1):83–88.
  • Moro E, Lang AE. Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Expert Rev Neurother. 2006 Nov;6(11):1695–1705.
  • Pollak P. Deep brain stimulation for Parkinson’s disease - patient selection. Handb Clin Neurol. 2013;116:97–105.
  • Charles PD, Van Blercom N, Krack P, et al. Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology. 2002 Sep 24;59(6):932–934.
  • Kleiner-Fisman G, Herzog J, Fisman DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006 Jun;21(Suppl 14):S290–304.
  • Katz M, Luciano MS, Carlson K, et al. Differential effects of deep brain stimulation target on motor subtypes in Parkinson’s disease. Ann Neurol. 2015 Apr;77(4):710–719.
  • Cavallieri F, Fraix V, Bove F, et al. Predictors of long-term outcome of subthalamic stimulation in Parkinson disease. Ann Neurol. 2021 Mar;89(3):587–597.
  • Piboolnurak P, Lang AE, Lozano AM, et al. Levodopa response in long-term bilateral subthalamic stimulation for Parkinson’s disease. Mov Disord. 2007 May 15;22(7):990–997.
  • Daniels C, Krack P, Volkmann J, et al. Is improvement in the quality of life after subthalamic nucleus stimulation in Parkinson’s disease predictable? Mov Disord. 2011 Dec;26(14):2516–2521.
  • Siderowf A, Jaggi JL, Xie SX, et al. Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Mov Disord. 2006 Jun;21(6):746–753.
  • Volkmann J, Albanese A, Kulisevsky J, et al. Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson’s disease. Mov Disord. 2009 Jun 15;24(8):1154–1161.
  • Dafsari HS, Reker P, Stalinski L, et al. Quality of life outcome after subthalamic stimulation in Parkinson’s disease depends on age. Mov Disord. 2018 Jan;33(1):99–107.
  • Witt K, Daniels C, Krack P, et al. Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Sci. 2011 Nov 15;310(1–2):261–266.
  • Geraedts VJ, Koch M, Kuiper R, et al. Preoperative electroencephalography-based machine learning predicts cognitive deterioration after subthalamic deep brain stimulation. Mov Disord. 2021 Oct;36(10):2324–2334.
  • Rizzone MG, Martone T, Balestrino R, et al. Genetic background and outcome of deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2019 Jul;64:8–19.
  • de Oliveira LM, Barbosa ER, Aquino CC, et al. Deep brain stimulation in patients with mutations in Parkinson’s disease-related genes: a systematic review. Mov Disord Clin Pract. 2019 Jun 6;6(5):359–368.
  • Angeli A, Mencacci NE, Duran R, et al. Genotype and phenotype in Parkinson’s disease: lessons in heterogeneity from deep brain stimulation. Mov Disord. 2013 Sep;28(10):1370–1375.
  • Lythe V, Athauda D, Foley J, et al. GBA-associated Parkinson’s disease: progression in a deep brain stimulation cohort. J Parkinsons Dis. 2017;7(4):635–644.
  • Schupbach M, Lohmann E, Anheim M, et al. Subthalamic nucleus stimulation is efficacious in patients with Parkinsonism and LRRK2 mutations. Mov Disord. 2007 Jan;22(1):119–122.
  • Kim HJ, Yun JY, Kim YE, et al. Parkin mutation and deep brain stimulation outcome. J Clin Neurosci. 2014 Jan;21(1):107–10.
  • Gomez-Esteban JC, Lezcano E, Zarranz JJ, et al. Outcome of bilateral deep brain subthalamic stimulation in patients carrying the R1441G mutation in the LRRK2 dardarin gene. Neurosurgery. 2008 Apr;62(4):857–863. discussion 862-3.
  • Moro E, Volkmann J, Konig IR, et al. Bilateral subthalamic stimulation in Parkin and PINK1 parkinsonism. Neurology. 2008 Apr 1;70(14):1186–1191.
  • Antonini A, Pilleri M, Padoan A, et al. Successful subthalamic stimulation in genetic Parkinson’s disease caused by duplication of the alpha-synuclein gene. J Neurol. 2012 Jan;259(1):165–167.
  • Fleury V, Wider C, Horvath J, et al. Successful long-term bilateral subthalamic nucleus deep brain stimulation in VPS35 Parkinson’s disease. Parkinsonism Relat Disord. 2013 Jul;19(7):707–708.
  • Mangone G, Bekadar S, Cormier-Dequaire F, et al. Early cognitive decline after bilateral subthalamic deep brain stimulation in Parkinson’s disease patients with GBA mutations. Parkinsonism Relat Disord. 2020 Jul;76:56–62.
  • Pal G, Mangone G, Hill EJ, et al. Parkinson disease and subthalamic nucleus deep brain stimulation: cognitive effects in GBA mutation carriers. Ann Neurol. 2022 Mar;91(3):424–435.
  • Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021 Jul 1;7(1):47.
  • Hely MA, Reid WG, Adena MA, et al. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008 Apr 30;23(6):837–844.
  • Saint-Cyr JA, Trépanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000 Oct;123(Pt 10):2091–2108.
  • Witt K, Granert O, Daniels C, et al. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain. 2013 Jul;136(Pt 7):2109–2119.
  • Wojtecki L, Timmermann L, Jorgens S, et al. Frequency-dependent reciprocal modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. Arch Neurol. 2006 Sep;63(9):1273–1276.
  • Rinne JO, Portin R, Ruottinen H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol. 2000 Apr;57(4):470–475.
  • Massano J, Garrett C. Deep brain stimulation and cognitive decline in Parkinson’s disease: a clinical review. Front Neurol. 2012;3:66.
  • Mosley PE, Akram H. Neuropsychiatric effects of subthalamic deep brain stimulation. Handb Clin Neurol. 2021;180:417–431.
  • Ardouin C, Pillon B, Peiffer E, et al. Bilateral subthalamic or pallidal stimulation for Parkinson’s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol. 1999 Aug;46(2):217–223.
  • Alegret M, Junque C, Valldeoriola F, et al. Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol. 2001 Aug;58(8):1223–1227.
  • Daniele A, Albanese A, Contarino MF, et al. Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003 Feb;74(2):175–182.
  • Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol. 2008 Jul 7;7(7):605–614.
  • Bove F, Fraix V, Cavallieri F, et al. Dementia and subthalamic deep brain stimulation in Parkinson disease: a long-term overview. Neurology. 2020 Jul 28;95(4):e384–92.
  • Caparros-Lefebvre D, Blond S, Pecheux N, et al. Neuropsychological evaluation before and after thalamic stimulation in 9 patients with Parkinson disease. Rev Neurol (Paris). 1992;148(2):117–122.
  • Troster AI, Fields JA, Wilkinson SB, et al. Unilateral pallidal stimulation for Parkinson’s disease: neurobehavioral functioning before and 3 months after electrode implantation. Neurology. 1997 Oct;49(4):1078–1083.
  • Rouaud T, Dondaine T, Drapier S, et al. Pallidal stimulation in advanced Parkinson’s patients with contraindications for subthalamic stimulation. Mov Disord. 2010 Sep 15;25(12):1839–1846.
  • Odekerken VJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013 Jan;12(1):37–44.
  • Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009 May;65(5):586–595.
  • Pigott K, Rick J, Xie SX, et al. Longitudinal study of normal cognition in Parkinson disease. Neurology. 2015 Oct 13;85(15):1276–1282.
  • Pedersen KF, Larsen JP, Tysnes OB, et al. Natural course of mild cognitive impairment in Parkinson disease: a 5-year population-based study. Neurology. 2017 Feb 21;88(8):767–774.
  • Domellof ME, Ekman U, Forsgren L, et al. Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol Scand. 2015 Aug;132(2):79–88.
  • Anang JB, Gagnon JF, Bertrand JA, et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology. 2014 Sep 30;83(14):1253–1260.
  • Fasano A, Aquino CC, Krauss JK, et al. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol. 2015 Feb;11(2):98–110.
  • Li H, Han S, Feng J. Delirium after deep brain stimulation in Parkinson’s disease. Parkinsons Dis. 2021;2021:8885386.
  • Abboud H, Floden D, Thompson NR, et al. Impact of mild cognitive impairment on outcome following deep brain stimulation surgery for Parkinson’s disease. Parkinsonism Relat Disord. 2015 Mar;21(3):249–253.
  • Aarsland D, Larsen JP, Lim NG, et al. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999 Oct;67(4):492–496.
  • Aarsland D, Larsen JP, Karlsen K, et al. Mental symptoms in Parkinson’s disease are important contributors to caregiver distress. Int J Geriatr Psychiatry. 1999 Oct;14(10):866–874.
  • Doshi PK, Chhaya N, Bhatt MH. Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002 Sep;17(5):1084–1085.
  • Voon V, Krack P, Lang AE, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain. 2008 Oct;131(Pt 10):2720–2728.
  • Houeto JL, Mesnage V, Mallet L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002 Jun;72(6):701–707.
  • Castrioto A, Lhommee E, Moro E, et al. Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014 Mar;13(3):287–305.
  • Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. 1999 May 13;340(19):1476–1480.
  • Romito LM, Raja M, Daniele A, et al. Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002 Nov;17(6):1371–1374.
  • Lim SY, O’Sullivan SS, Kotschet K, et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci. 2009 Sep;16(9):1148–1152.
  • Zoon TJ, de Bie RM, Schuurman PR, et al. Resolution of apathy after dorsal instead of ventral subthalamic deep brain stimulation for Parkinson’s disease. J Neurol. 2019 May;266(5):1267–1269.
  • Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain. 2010 Apr;133(Pt 4):1111–1127.
  • Buhmann C, Huckhagel T, Engel K, et al. Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological, psychiatric and other occurrences. Plos One. 2017;12(7):e0178984.
  • Weintraub D, Duda JE, Carlson K, et al. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2013 Oct;84(10):1113–1118.
  • Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013 Feb 14;368(7):610–622.
  • Giannini G, Francois M, Lhommee E, et al. Suicide and suicide attempts after subthalamic nucleus stimulation in Parkinson disease. Neurology. 2019 Jul 2;93(1):e97–105.
  • Wolz M, Hauschild J, Koy J, et al. Immediate effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms in Parkinson’s disease. Parkinsonism Relat Disord. 2012 Sep;18(8):994–997.
  • Gourisankar A, Eisenstein SA, Trapp NT, et al. Mapping movement, mood, motivation and mentation in the subthalamic nucleus. R Soc Open Sci. 2018 Jul;5(7):171177.
  • Petry-Schmelzer JN, Krause M, Dembek TA, et al. Non-motor outcomes depend on location of neurostimulation in Parkinson’s disease. Brain. 2019 Nov 1;142(11):3592–3604.
  • Lhommee E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain. 2012 May;135(Pt 5):1463–1477.
  • Eusebio A, Witjas T, Cohen J, et al. Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2013 Aug;84(8):868–874.
  • Lhommee E, Wojtecki L, Czernecki V, et al. Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson’s disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol. 2018 Mar;17(3):223–231.
  • Abbes M, Lhommee E, Thobois S, et al. Subthalamic stimulation and neuropsychiatric symptoms in Parkinson’s disease: results from a long-term follow-up cohort study. J Neurol Neurosurg Psychiatry. 2018 Aug;89(8):836–843.
  • Aarsland D, Andersen K, Larsen JP, et al. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. 2003 Mar;60(3):387–392.
  • Weiss D, Volkmann J, Fasano A, et al. Changing gears - DBS for dopaminergic desensitization in Parkinson’s disease? Ann Neurol. 2021 Nov;90(5):699–710.
  • Castrioto A, Kistner A, Klinger H, et al. Psychostimulant effect of levodopa: reversing sensitisation is possible. J Neurol Neurosurg Psychiatry. 2013 Jan;84(1):18–22.
  • Charles D, Konrad PE, Neimat JS, et al. Subthalamic nucleus deep brain stimulation in early stage Parkinson’s disease. Parkinsonism Relat Disord. 2014 Jul;20(7):731–737.
  • Maesawa S, Kaneoke Y, Kajita Y, et al. Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J Neurosurg. 2004 Apr;100(4):679–687.
  • Temel Y, Visser-Vandewalle V, Kaplan S, et al. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res. 2006 Nov 20;1120(1):100–105.
  • Wallace BA, Ashkan K, Heise CE, et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain. 2007 Aug;130(Pt 8):2129–2145.
  • Spieles-Engemann AL, Behbehani MM, Collier TJ, et al. Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss. Neurobiol Dis. 2010 Jul;39(1):105–115.
  • Musacchio T, Rebenstorff M, Fluri F, et al. Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T alpha-synuclein Parkinson’s disease rat model. Ann Neurol. 2017 Jun;81(6):825–836.
  • Spieles-Engemann AL, Steece-Collier K, Behbehani MM, et al. Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J Parkinsons Dis. 2011;1(1):123–136.
  • Rizzo G, Copetti M, Arcuti S, et al. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016 Feb 9;86(6):566–576.
  • Hoang KB, Cassar IR, Grill WM, et al. Biomarkers and stimulation algorithms for adaptive brain stimulation. Front Neurosci. 2017;11:564.
  • Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013 Sep;74(3):449–457.
  • Little S, Beudel M, Zrinzo L, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016 Jul;87(7):717–721.
  • Velisar A, Syrkin-Nikolau J, Blumenfeld Z, et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 2019 Jul - Aug;12(4):868–876.
  • Rosa M, Arlotti M, Marceglia S, et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017 Apr;32(4):628–629.
  • Arlotti M, Marceglia S, Foffani G, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018 Mar 13;90(11):e971–6.
  • Little S, Brown P. Debugging adaptive deep brain stimulation for Parkinson’s disease. Mov Disord. 2020 Apr;35(4):555–561.
  • Little S, Tripoliti E, Beudel M, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016 Dec;87(12):1388–1389.
  • Herz DM, Little S, Pedrosa DJ, et al. Mechanisms underlying decision-making as revealed by deep-brain stimulation in patients with Parkinson’s disease. Curr Biol. 2018Apr23; 28(8)1169–1178. e6
  • Marceglia S, Conti C, Svanidze O, et al. Double-blind cross-over pilot trial protocol to evaluate the safety and preliminary efficacy of long-term adaptive deep brain stimulation in patients with Parkinson’s disease. BMJ Open. 2022 Jan 3;12(1):e049955.
  • Montgomery EB Jr. Debugging adaptive deep brain stimulation for Parkinson’s disease. Mov Disord. 2020 Oct;35(10):1891.
  • Hwang BY, Salimpour Y, Tsehay YK, et al. Perspective: phase amplitude coupling-based phase-dependent neuromodulation in Parkinson’s disease. Front Neurosci. 2020;14:558967.
  • Ding H, Groppa S, Muthuraman M. Toward future adaptive deep brain stimulation for Parkinson’s disease: the novel biomarker - narrowband gamma oscillation. Neural Regen Res. 2022 Mar;17(3):557–558.
  • Yamamoto T, Katayama Y, Ushiba J, et al. On-demand control system for deep brain stimulation for treatment of intention tremor. Neuromodulation. 2013 May-Jun;16(3):230–235.
  • Basu I, Graupe D, Tuninetti D, et al. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design. J Neural Eng. 2013 Jun;10(3):036019.
  • Butson CR, McIntyre CC. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul. 2008 Jan 1;1(1):7–15.
  • Steigerwald F, Muller L, Johannes S, et al. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord. 2016 Aug;31(8):1240–1243.
  • Dembek TA, Reker P, Visser-Vandewalle V, et al. Directional DBS increases side-effect thresholds-A prospective, double-blind trial. Mov Disord. 2017 Oct;32(10):1380–1388.
  • Kramme J, Dembek TA, Treuer H, et al. Potentials and limitations of directional deep brain stimulation: a simulation approach. Stereotact Funct Neurosurg. 2021;99(1):65–74.
  • Connolly AT, Vetter RJ, Hetke JF, et al. A novel lead design for modulation and sensing of deep brain structures. IEEE Trans Biomed Eng. 2016 Jan;63(1):148–57.
  • Tinkhauser G, Pogosyan A, Debove I, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord. 2018 Jan;33(1):159–164.
  • Vitek JL, Jain R, Chen L, et al. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson’s disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurol. 2020 Jun;19(6):491–501.
  • Zhang C, Zhu K, Lin Z, et al. Utility of deep brain stimulation telemedicine for patients with movement disorders during the COVID-19 outbreak in China. Neuromodulation. 2021 Feb;24(2):337–342.
  • Sharma VD, Safarpour D, Mehta SH, et al. Telemedicine and deep brain stimulation - current practices and recommendations. Parkinsonism Relat Disord. 2021 Aug;89:199–205.
  • Roberts ET, Mehrotra A. Assessment of disparities in digital access among medicare beneficiaries and implications for telemedicine. JAMA Intern Med. 2020 Oct 1;180(10):1386–1389.
  • Powers R, Etezadi-Amoli M, Arnold EM, et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci Transl Med. 2021 Feb 3;13(579). 10.1126/scitranslmed.abd7865.
  • Pycroft L, Boccard SG, Owen SLF, et al. Brainjacking: implant security issues in invasive neuromodulation. World Neurosurg. 2016 Aug;92:454–462.
  • Kreitmair KV. Dimensions of ethical direct-to-consumer neurotechnologies. AJOB Neurosci. 2019 Oct-Dec;10(4):152–166.
  • Wexler A, Reiner PB. Oversight of direct-to-consumer neurotechnologies. Science. 2019 Jan 18;363(6424):234–235.
  • Kostick-Quenet K, Kalwani L, Koenig B, et al. Researchers’ ethical concerns about using adaptive deep brain stimulation for enhancement. Front Hum Neurosci. 2022;16:813922.
  • Watts J, Khojandi A, Shylo O, et al. Machine learning’s application in deep brain stimulation for Parkinson’s disease: a review. Brain Sci. 2020 Nov 1;10(11):11.
  • Chan AK, McGovern RA, Brown LT, et al. Disparities in access to deep brain stimulation surgery for Parkinson disease: interaction between African American race and Medicaid use. JAMA Neurol. 2014 Mar;71(3):291–299.
  • Duffley G, Lutz BJ, Szabo A, et al. Home health management of Parkinson disease deep brain stimulation: a randomized clinical trial. JAMA Neurol. 2021 Aug 1;78(8):972–981.
  • Valsky D, Marmor-Levin O, Deffains M, et al. Stop! Border ahead: automatic detection of subthalamic exit during deep brain stimulation surgery. Mov Disord. 2017 Jan;32(1):70–79.
  • Segato A, Pieri V, Favaro A, et al. Automated steerable path planning for deep brain stimulation safeguarding fiber tracts and deep gray matter nuclei. Front Robot AI. 2019;6:70.
  • Bermudez C, Rodriguez W, Huo Y, et al. Towards machine learning prediction of Deep Brain Stimulation (DBS) intra-operative efficacy maps. Proc SPIE Int Soc Opt Eng. 2019 Mar;10949: 1094922–1/7.
  • Habets JGV, Janssen MLF, Duits AA, et al. Machine learning prediction of motor response after deep brain stimulation in Parkinson’s disease-proof of principle in a retrospective cohort. PeerJ. 2020;8:e10317.
  • Boutet A, Madhavan R, Elias GJB, et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat Commun. 2021 May 24;12(1):3043.
  • Mazzone P, Sposato S, Insola A, et al. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm (Vienna). 2011 Oct;118(10):1431–1451.
  • Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol. 2019 Apr;15(4):234–242.
  • Bennett J, MacGuire J, Novakovic E, et al. Characterizing complications of deep brain stimulation devices for the treatment of Parkinsonian symptoms without tremor: a federal MAUDE database analysis. Cureus. 2021 Jun;13(6):e15539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.