387
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Progress, development, and challenges in amyotrophic lateral sclerosis clinical trials

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 905-913 | Received 29 Sep 2022, Accepted 20 Dec 2022, Published online: 18 Jan 2023

References

  • Charcot JM, Joffroy A. Deux cas d'atrophie musculaire progressive avec lésions de la substance grise et des faisceaux antérolatéraux de la moelle épinière. Arch Physiol Norm Pathol. 1869;2:744– 760.
  • Bensimon G, Lacomblez L, Meininger V, et al. A controlled trial of riluzole in amyotropic lateral sclerosis. ALS/Riluzole Study Group. New Engl J Med. 1994;330:585–590.
  • The Writing Group on behalf of the Edaravone ALS 19 study group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–512.
  • Paganoni S, Macklin E, Hendrix S, et al. Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. N Engl J Med. 2020;383(10):919–930.
  • Kadam RA, Borde SU, Madas SA, et al. Challenges in recruitment and retention of clinical trial subjects. Perspect Clin Res. 2016;7(3):137–143.
  • Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation. Transforming clinical research in the United States: challenges and opportunities: workshop summary. Washington (DC): National Academies Press (US); 2010.
  • Shefner J, Al-Chalabi A, Baker M , et al. A proposal for new diagnostic criteria for ALS Clin Neurophysiol. 2020;131(8):1975–1978.
  • Pugdahl K, Camdessanche JP, Cengiz B, et al. Gold Coast diagnostic criteria increase sensitivity in amyotrophic lateral sclerosis. Clin Neurophysiol. 2021;132(12):3183–3189.
  • Shen D, Yang X, Wang Y, et al. The Gold Coast criteria increases the diagnostic sensitivity for amyotrophic lateral sclerosis in a Chinese population. Transl Neurodegener. 2021;10(1):28.
  • Hannaford A, Pavey N, van den Bos M, et al. Diagnostic utility of Gold Coast criteria in amyotrophic lateral sclerosis. Ann Neurol. 2021;89(5):979–986.
  • Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156–164.
  • van Eijk RPA, Westeneng HJ, Nikolakopoulos S, et al. Refining eligibility criteria for amyotrophic lateral sclerosis clinical trials. Neurology. 2019;92(5):e451–60.
  • Burrell JR, Halliday GM, Kril JJ, et al. The frontotemporal dementia-motor neuron disease continuum. Lancet. 2016;388(10047):919–931.
  • Devenney EM, Tu S, Caga J, et al. Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALS-FTD spectrum. Ann Clin Transl Neurol. 2021;8(8):1576–1591.
  • Falcao de Campos C, Gromicho M, Uysal H, et al. Delayed diagnosis and diagnostic pathway of als patients in Portugal: where can we improve? Front Neurol. 2021;12:761355.
  • Su WM, Cheng YF, Jiang Z, et al. Predictors of survival in patients with amyotrophic lateral sclerosis: a large meta-analysis. EBioMedicine. 2021;74:103732.
  • Cheah BC, Boland RA, Brodaty NE, et al. INSPIRATIonAL–INSPIRAtory muscle training in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10(5–6):384–392.
  • DasMahapatra P, Raja P, Gilbert J, et al. Clinical trials from the patient perspective: survey in an online patient community. BMC Health Serv Res. 2017;17(1):166.
  • Bedlack RS, Pastula DM, Welsh E, et al. Scrutinizing enrollment in ALS clinical trials: room for improvement? Amyotroph Lateral Scler. 2008;9(5):257–265.
  • Wong C, Stavrou M, Elliott E, et al. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun. 2021;3(4):fcab242.
  • Skovlund PC, Nielsen BK, Thaysen HV, et al. The impact of patient involvement in research: a case study of the planning, conduct and dissemination of a clinical, controlled trial. Res Involv Engagem. 2020;6:43.
  • Mullins CD, Vandigo J, Zheng Z, et al. Patient-centeredness in the design of clinical trials. Value Health. 2014;17(4):471–475.
  • Sacristan JA, Aguaron A, Avendano-Sola C, et al. Patient involvement in clinical research: why, when, and how. Patient Prefer Adherence. 2016;10:631–640.
  • Hogden A, Greenfield D, Nugus P, et al. What influences patient decision-making in amyotrophic lateral sclerosis multidisciplinary care? A study of patient perspectives. Patient Prefer Adherence. 2012;6:829–838.
  • Beswick E, Glasmacher SA, Dakin R, et al. Prospective observational cohort study of factors influencing trial participation in people with motor neuron disease (FIT-participation-MND): a protocol. BMJ Open. 2021;11(3):e044996.
  • Graves DT Adaptive Multi-Arm Platform Trials: Benefits and Efficiencies 2022 [cited 2022 23 May]; Available from: https://clinicaltrialsalliance.org.au/adaptive-multi-arm-platform-trials-benefits-efficiencies/#:~:text=Platform%20trials%20can%20find%20beneficial,to%20efficiently%20evaluate%20modern%20treatments.
  • Saville BR, Berry SM. Efficiencies of platform clinical trials: a vision of the future. Clin Trials. 2016;13(3):358–366.
  • Kiernan MC, Vucic S, Talbot K, et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol. 2021;17(2):104–118.
  • Hirakawa A, Asano J, Sato H, et al. Master protocol trials in oncology: review and new trial designs. Contemp Clin Trials Commun. 2018;12:1–8.
  • Mahajan R, Gupta K. Adaptive design clinical trials: methodology, challenges and prospect. Indian J Pharmacol. 2010;42(4):201–207.
  • Temp AGM, Naumann M, Hermann A, et al. Applied bayesian approaches for research in motor neuron disease. Front Neurol. 2022;13:796777.
  • Bethlehem RAI, Seidlitz J, White SR, et al. Brain charts for the human lifespan. Nature. 2022;604(7906):525–533.
  • Wilmanski T, Diener C, Rappaport N, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3(2):274–286.
  • Paganoni S, Berry JD, Quintana M, et al. Adaptive platform trials to transform amyotrophic lateral sclerosis therapy development. Ann Neurol. 2022;91(2):165–175. •• Future direction of clinical trial designs in ALS
  • Gov CT. HEALEY ALS platform trial - master protocol. [Master Protocol] 2020 Apr 29 [cited 2022 Apr 29]; Available from: https://clinicaltrials.gov/ct2/show/NCT04297683
  • Bechtel J, Chuck T, Forrest A, et al. Improving the quality conduct and efficiency of clinical trials with training: recommendations for preparedness and qualification of investigators and delegates. Contemp Clin Trials. 2020;89:105918.
  • Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med. 2017;377(1):62–70.
  • Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1–2):5–14.
  • Verde F, Otto M, Silani V. Neurofilament light chain as biomarker for amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci. 2021;15:679199.
  • Benatar M, Wuu J, Andersen PM, et al. Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol. 2018;84(1):130–139.
  • Behzadi A, Pujol-Calderón F, Tjust AE, et al. Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics. Sci Rep. 2021;11(1):22128.
  • Chio A, Logroscino G, Hardiman O, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler. 2009;10(5–6):310–323.
  • Yunusova Y, Plowman EK, Green JR, et al. Clinical measures of bulbar dysfunction in ALS. Front Neurol. 2019;10:106.
  • Jo M, Lee S, Jeon YM, et al. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp Mol Med. 2020;52(10):1652–1662.
  • Majumder V, Gregory JM, Barria MA, et al. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol. 2018;18(1):90.
  • Tan RH, Devenney E, Dobson-Stone C, et al. Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One. 2014;9(8):e105632.
  • Beyer L, Gunther R, Koch JC, et al. TDP-43 as structure-based biomarker in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2021;8(1):271–277.
  • Chail A, Saini RK, Bhat PS, et al. Transcranial magnetic stimulation: a review of its evolution and current applications. Ind Psychiatry J. 2018;27(2):172–180.
  • Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208–213.
  • Huynh W, Dharmadasa T, Vucic S, et al. Functional biomarkers for amyotrophic lateral sclerosis. Front Neurol. 2018;9:1141.
  • Vucic S, Ziemann U, Eisen A, et al. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry. 2013;84(10):1161–1170.
  • Vucic S, Cheah BC, Yiannikas C, et al. Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol. 2011;122(9):1860–1866.
  • Menon P, Geevasinga N, Yiannikas C, et al. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol. 2015;14(5):478–484.
  • Rawji V, Latorre A, Sharma N, et al. On the use of TMS to investigate the pathophysiology of neurodegenerative diseases. Front Neurol. 2020;11:584–664.
  • Vucic S, van den Bos M, Menon P, et al. Utility of threshold tracking transcranial magnetic stimulation in ALS. Clin Neurophysiol Pract. 2018;3:164–172.
  • Tu S, Menke RAL, Talbot K, et al. Cerebellar tract alterations in PLS and ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(3–4):281–284.
  • Sarica A, Cerasa A, Valentino P, et al. The corticospinal tract profile in amyotrophic lateral sclerosis. Hum Brain Mapp. 2017;38(2):727–739.
  • Nitert AD, Tan HH, Walhout R, et al. Sensitivity of brain MRI and neurological examination for detection of upper motor neurone degeneration in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2022;93(1):82–92.
  • Bede P, Hardiman O. Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotrophic Lateral Scler Frontotemporal Degener. 2018;19(3–4):232–241.
  • Menke RAL, Proudfoot M, Talbot K, et al. The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. Neuroimage Clin. 2018;17:953–961.
  • Tu S, Menke RAL, Talbot K, et al. Regional thalamic MRI as a marker of widespread cortical pathology and progressive frontotemporal involvement in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2018;89(12):1250–1258.
  • Tu S, Wang C, Menke RAL, et al. Regional callosal integrity and bilaterality of limb weakness in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(5–6):396–402.
  • Westeneng HJ, Verstraete E, Walhout R, et al. Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging. 2015;36(2):1075–1082.
  • Westeneng HJ, Walhout R, Straathof M, et al. Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. J Neurol Neurosurg Psychiatry. 2016;87(12):1354–1360.
  • Bocchetta M, Todd EG, Tse NY, et al. Thalamic and Cerebellar Regional Involvement across the ALS-FTD Spectrum and the Effect of C9orf72. Brain Sci. 2022;12(3):336.
  • Genc B, Jara JH, Lagrimas AK, et al. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci Rep. 2017;7:41765.
  • Ahmed RM, Devenney EM, Irish M, et al. Neuronal network disintegration: common pathways linking neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2016;87(11):1234–1241.
  • Rizzo G, Marliani AF, Battaglia S, et al. Diagnostic and prognostic value of conventional brain mri in the clinical work-up of patients with amyotrophic lateral sclerosis. J Clin Med. 2020;9(8):2538.
  • Fekete T, Zach N, Mujica-Parodi LR, et al. Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PLoS One. 2013;8(12):e85190.
  • Welsh RC, Jelsone-Swain LM, Foerster BR. The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front Hum Neurosci. 2013;7:251.
  • Bede P, Murad A, Hardiman O. Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. J Neurol. 2022;269(5):2440–2452.
  • Shefner JM, Al-Chalabi A, Baker MR, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol. 2020;131(8):1975–1978.
  • van der Burgh HK, Schmidt R, Westeneng HJ, et al. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin. 2017;13:361–369.
  • Westeneng HJ, Debray TPA, Visser AE, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 2018;17(5):423–433.
  • Vucic S, Kiernan MC. Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis. Curr Mol Med. 2009;9(3):255–272.
  • Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain. 2008;131(Pt 6):1540–1550.
  • Caldwell S, Rothman DL. (1)H magnetic resonance spectroscopy to understand the biological basis of ALS, diagnose patients earlier, and monitor disease progression. Front Neurol. 2021;12:701170.
  • Kalra S. Magnetic resonance spectroscopy in ALS. Front Neurol. 2019;10:482.
  • Rule RR, Suhy J, Schuff N, et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(3):141–149.
  • Menon P, Kiernan MC, Yiannikas C, et al. Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol. 2013;124(2):410–416.
  • Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6:171.
  • Goutman SA, Hardiman O, Al-Chalabi A, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 2022;21(5):480–493.
  • Chio A, Moglia C, Canosa A, et al. ALS phenotype is influenced by age, sex, and genetics: a population-based study. Neurology. 2020;94(8):e802–e810.
  • Cook SF, Rhodes T, Schlusser C, et al. A descriptive review of global real world evidence efforts to advance drug discovery and clinical development in amyotrophic lateral sclerosis. Front Neurol. 2021;12:770001.
  • Wei QQ, Chen Y, Chen X, et al. Clinical and prognostic features of ALS/MND in different phenotypes-data from a hospital-based registry. Brain Res Bull. 2018;142:403–408.
  • Talman P, Duong T, Vucic S, et al. Identification and outcomes of clinical phenotypes in amyotrophic lateral sclerosis/motor neuron disease: Australian National Motor Neuron Disease observational cohort. BMJ Open. 2016;6(9):e012054.
  • McCann EP, Williams KL, Fifita JA, et al. The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet. 2017;92(3):259–266.
  • de Boer EMJ, Orie VK, Williams T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2020;92(1):86–95.
  • Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet. 2007;16(Spec No. 2):R233–42.
  • Chia R, Chio A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94–102.
  • Mejzini R, Flynn LL, Pitout IL, et al. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci. 2019;13:1310.
  • Goutman SA, Chen KS, Paez-Colasante X, et al. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. Handb Clin Neurol. 2018;148:603–623.
  • Vucic S, Kiernan MC. Upregulation of persistent sodium conductances in familial ALS. J Neurol Neurosurg Psychiatry. 2010;81(2):222–227.
  • Su WM, Gu XJ, Duan QQ, et al. Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis. BMC Med. 2022;20(1):209.
  • Miltenberger-Miltenyi G, Conceicao VA, Gromicho M, et al. C9orf72 expansion is associated with accelerated decline of respiratory function and decreased survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(1):118–120.
  • Berdynski M, Miszta P, Safranow K, et al. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep. 2022;12(1):103.
  • Zhou K, Stawicki TM, Goncharov A, et al. Position of UNC-13 in the active zone regulates synaptic vesicle release probability and release kinetics. Elife. 2013;2:e01180.
  • van Es MA, Veldink JH, Saris CG, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009;41(10):1083–1087.
  • Daoud H, Belzil V, Desjarlais A, et al. Analysis of the UNC13A gene as a risk factor for sporadic amyotrophic lateral sclerosis. Arch Neurol. 2010;67(4):516–517.
  • Diekstra FP, Van Deerlin VM, van Swieten JC, et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann Neurol. 2014;76(1):120–133.
  • van Eijk RPA, Jones AR, Sproviero W, et al. Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology. 2017;89(18):1915–1922.
  • Jewett G, Khayambashi S, Frost GS, et al. Gold Coast criteria expand clinical trial eligibility in amyotrophic lateral sclerosis. Muscle Nerve. 2022;66(4):397–403.
  • Samarasekera U. Making a difference for motor neuron diseases. Lancet Neurol. 2022;21(3):219–220.
  • Dharmadasa T, Henderson RD, Talman PS, et al. Motor neurone disease: progress and challenges. Med J Aust. 2017;206(8):357–362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.