247
Views
1
CrossRef citations to date
0
Altmetric
Review

Cortical hyperexcitability and plasticity in Alzheimer’s disease: developments in understanding and management

, &
Pages 981-993 | Received 31 Aug 2022, Accepted 17 Jan 2023, Published online: 31 Jan 2023

References

  • Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol. 2019;167:231–255.
  • Chang CH, Lane HY, Lin CH. Brain stimulation in alzheimer’s disease. Front Psychiatry. 2018;9(201).
  • Hodges JR. Alzheimer’s disease and the frontotemporal dementias: contributions to clinico-pathological studies, diagnosis, and cognitive neuroscience. J Alzheimers Dis. 2013;33(Suppl 1):S211–217.
  • Cantone M, Di Pino G, Capone F, et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol. 2014;125(8):1509–1532
  • Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;6(6):Cd001190.
  • Eisen A, Kiernan M, Mitsumoto H, et al. Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry. 2014;85(11):1232–1238.
  • Jimenez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Semin Cell Dev Biol. 2021;116:146–159.
  • de Boer EMJ, Orie VK, Williams T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2020;92(92):86–95
  • Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 1983;219(4589):1184–1190.
  • Cowburn R, Hardy J, Roberts P, et al. Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer’s disease. Brain Res. 1988;452(1–2):403–407.
  • Pike CJ, Cotman CW. Cultured GABA-immunoreactive neurons are resistant to toxicity induced by beta-amyloid. Neuroscience. 1993;56(2):269–274.
  • Busche MA, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science. 2008;321(5896):1686–1689
  • Cirrito JR, Yamada KA, Finn MB, et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron. 2005;48(6):913–922
  • Wu JW, Hussaini SA, Bastille IM, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19(8):1085–1092
  • Ulrich D. Amyloid-β Impairs Synaptic Inhibition via GABA(A) receptor endocytosis. J Neurosci. 2015;35(24):9205–9210.
  • Frisoni GB, Fox NC, Jack CR Jr., et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67–77.
  • Di Lazzaro V, Bella R, Benussi A, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol. 2021;132(10):2568–2607
  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32.
  • Vidoni ED, Thomas GP, Honea RA, et al. Evidence of altered corticomotor system connectivity in early-stage Alzheimer’s disease. J Neurol Phys Ther. 2012;36(1):8–16.
  • Mecca AP, Chen MK, O’Dell RS, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2020;16(7):974–982
  • Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):270–279
  • Petersen RC, Caracciolo B, Brayne C, et al. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275(3):214–228.
  • Rossini PM, Miraglia F, Vecchio F. Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learning methods for feature extraction from integrated biomarkers, in particular for EEG signal analysis. Alzheimer’s Dementia. 2022;18:2699–2706.
  • Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13(1):45–53.
  • Jack CR Jr., Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562
  • Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–629
  • Dubois B, Villain N, Frisoni GB, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group. Lancet Neurol. 2021;20(6):484–496
  • Ritchie C, Smailagic N, Noel-Storr AH, et al. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2014;(2014(6):Cd008782.
  • Benussi A, Grassi M, Palluzzi F, et al. Classification accuracy of TMS for the diagnosis of mild cognitive impairment. Brain Stimul. 2021;14(2):241–249
  • Benussi A, Grassi M, Palluzzi F, et al. Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias. Ann Neurol. 2020;87(3):394–404
  • Benussi A, Alberici A, Ferrari C, et al. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. Alzheimers Res Ther. 2018;10(1):94
  • Benussi A, Di Lorenzo F, Dell’Era V, et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology. 2017;89(7):665–672
  • Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–1107.
  • Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(126):1071–1107
  • Siebner HR, Funke K, Aberra AS, et al. Transcranial magnetic stimulation of the brain: what is stimulated? - A consensus and critical position paper. Clin Neurophysiol. 2022;140(59–97):59–97
  • Reis J, Swayne OB, Vandermeeren Y, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586(2):325–351
  • Ilmoniemi RJ, Kičić D. Methodology for combined TMS and EEG. Brain Topogr. 2010;22(4):233–248.
  • Cros DC. K.H. motor evoked potentials. In: Chiappa KH, editor. Evoked potentials in clinical medicine. Philadelphia: Lippincott-Raven; 1997. p. 477–507.
  • Cantone M, Lanza G, Vinciguerra L, et al. Age, height, and sex on motor evoked potentials: translational data from a large italian cohort in a clinical environment. Front Hum Neurosci. 2019;13:185.
  • Huang YZ, Rothwell JC. The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clin Neurophysiol. 2004;115(5):1069–1075.
  • Rizzo V, Siebner H, Morgante F, et al. Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. Cereb Cortex. 2009;19(4):907–915.
  • Koch G, Ponzo V, Di Lorenzo F, et al. Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci. 2013;33(23):9725–9733.
  • Aberra AS, Wang B, Grill WM, et al. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul. 2020;13(1):175–189.
  • Geeter ND, Dupré L, Crevecoeur G. Modeling transcranial magnetic stimulation from the induced electric fields to the membrane potentials along tractography-based white matter fiber tracts. J Neural Eng. 2016;13(2):026028.
  • Goodwin BD, Butson CR. Subject-specific multiscale modeling to investigate effects of transcranial magnetic stimulation. Neuromodulation: Technol Neural Interface. 2015;18(8):694–704.
  • Pashut T, Wolfus S, Friedman A, et al. Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput Biol. 2011;7(3):e1002022
  • Day BL, Rothwell JC, Thompson PD, et al. Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain. 1987;110(Pt 5):1191–1209
  • Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol. 2014;592(19):4115–4128.
  • Ilmoniemi RJ, Virtanen J, Ruohonen J, et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport. 1997;8(16):3537–3540
  • Rogasch NC, Sullivan C, Thomson RH, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software. Neuroimage. 2017;147(934–951):934–951
  • Tremblay S, Rogasch NC, Premoli I, et al. Clinical utility and prospective of TMS-EEG. Clin Neurophysiol. 2019;130(5):802–844
  • Chen R, Tam A, Butefisch C, et al. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol. 1998;80(6):2870–2881
  • Ziemann U, Chen R, Cohen LG, et al. Dextromethorphan decreases the excitability of the human motor cortex. Neurology. 1998;51(5):1320–1324.
  • Schilberg L, Ten Oever S, Schuhmann T, et al. Phase and power modulations on the amplitude of TMS-induced motor evoked potentials. PLoS One. 2021;16(9):e0255815.
  • Vucic S, Howells J, Trevillion L, et al. Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve. 2006;33(4):477–486.
  • Fisher RJ, Nakamura Y, Bestmann S, et al. Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res. 2002;143(240–248):240–248.
  • Matamala JM, Howells J, Dharmadasa T, et al. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neurosci Lett. 2018;674:18–23.
  • Samusyte G, Bostock H, Rothwell J, et al. Short-interval intracortical inhibition: comparison between conventional and threshold-tracking techniques. Brain Stimul. 2018;11(806–817):806–817.
  • Chen R, Cros D, Curra A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol, (2008). 119(119),504–532
  • Vucic S, van den Bos M, Menon P, et al. Utility of threshold tracking transcranial magnetic stimulation in ALS. Clin Neurophysiol Pract. 2018;3(164–172):164–172.
  • Cantello R, Gianelli M, Civardi C, et al. Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology. 1992;42(10):1951–1959.
  • Chen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res. 1999;128(4):539–542.
  • Roick H, Von Giesen H, Benecke R. On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res. 1993;94(3):489–498.
  • Inghilleri M, Berardelli A, Cruccu G, et al. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466(521–534):521–534.
  • Triggs WJ, Calvanio R, Macdonell RA, et al. Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation. Brain Res. 1994;636(270–276):270–276.
  • Triggs WJ, Kiers L, Cros D, et al. Facilitation of magnetic motor evoked potentials during the cortical stimulation silent period. Neurology. 1993;43(12):2615–2620.
  • Kujirai T, Caramia MD, Rothwell JC, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471(501–519):501–519
  • Ziemann U, Reis J, Schwenkreis P, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–1868
  • Di Lazzaro V, Oliviero A, Meglio M, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111(5):794–799
  • Di Lazzaro V, Oliviero A, Pilato F, et al. Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clin Neurophysiol. 2002;113(1):114–119
  • Tokimura H, Ridding MC, Tokimura Y, et al. Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101(4):263–272.
  • Van den Bos MAJ, Menon P, Howells J, et al. Physiological processes underlying short interval intracortical facilitation in the human motor cortex. Front Neurosci. 2018;12(240).
  • Ziemann U, Tergau F, Wischer S, et al. Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol. 1998;109(4):321–330.
  • Ziemann U. TMS and drugs. Clin Neurophysiol. 2004;115(1717–1729):1717–1729.
  • Ilic TV, Meintzschel F, Cleff U, et al. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol. 2002;545(Pt 1):153–167.
  • Chen R, Cros D, Curra A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol, (2008). 119(3),504–532.
  • Cash RF, Noda Y, Zomorrodi R, et al. Characterization of glutamatergic and GABAA-mediated neurotransmission in motor and dorsolateral prefrontal cortex using paired-pulse TMS-EEG. Neuropsychopharmacology. 2017;42(2):502–511
  • Volz LJ, Hamada M, Rothwell JC, et al. What makes the muscle twitch: motor system connectivity and TMS-induced activity. Cereb Cortex. 2015;25(9):2346–2353.
  • Di Lazzaro V, Pilato F, Oliviero A, et al. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. J Neurophysiol. 2006;96(4):1765–1771
  • Valls-Sole J, Pascual-Leone A, Wassermann EM, et al. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85(6):355–364.
  • McDonnell MN, Orekhov Y, Ziemann U. The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res. 2006;173:86–93.
  • Sanger TD, Garg RR, Chen R. Interactions between two different inhibitory systems in the human motor cortex. J Physiol. 2001;530(Pt 2):307–317.
  • Tokimura H, Di Lazzaro V, Tokimura Y, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000;523(Pt 2):503–513
  • Ziemann U. Pharmacology of TMS. Clin Neurophysiol. 2003;56:226–231.
  • Di Lazzaro V, Oliviero A, Profice P, et al. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res. 2000;135(4):455–461
  • Ferbert A, Priori A, Rothwell JC, et al. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453(525–546):525–546.
  • Hanajima R, Ugawa Y, Machii K, et al. Interhemispheric facilitation of the hand motor area in humans. J Physiol. 2001;531(Pt 3):849–859
  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, et al. The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol. 2002;543(Pt 1):317–326.
  • Meyer BU, Roricht S, Grafin von Einsiedel H, et al. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 1995;118(Pt 2):429–440.
  • Kukaswadia S, Wagle-Shukla A, Morgante F, et al. Interactions between long latency afferent inhibition and interhemispheric inhibitions in the human motor cortex. J Physiol. 2005;563(Pt 3):915–924.
  • Koch G, Fernandez Del Olmo M, Cheeran B, et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci. 2007;27(25):6815–6822
  • Strigaro G, Ruge D, Chen JC, et al. Interaction between visual and motor cortex: a transcranial magnetic stimulation study. J Physiol. 2015;593(10):2365–2377
  • Ugawa Y, Uesaka Y, Terao Y, et al. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–713.
  • Buch ER, Mars RB, Boorman ED, et al. A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J Neurosci. 2010;30(4):1395–1401.
  • Komssi S, Aronen HJ, Huttunen J, et al. Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol. 2002;113(2):175–184
  • Hallett M, Di Iorio R, Rossini PM, et al. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol. 2017;128(11):2125–2139
  • Ferreri F, Pasqualetti P, Maatta S, et al. Human brain connectivity during single and paired pulse transcranial magnetic stimulation. Neuroimage. 2011;54(1):90–102
  • Ferreri F, Ponzo D, Hukkanen T, et al. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study. J Neurophysiol. 2012;108(1):314–323
  • Ferreri F, Vecchio F, Ponzo D, et al. Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG-TMS study. Hum Brain Mapp. 2014;35(5):1969–1980.
  • Premoli I, Castellanos N, Rivolta D, et al. TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J Neurosci. 2014;34(16):5603–5612
  • Premoli I, Bergmann TO, Fecchio M, et al. The impact of GABAergic drugs on TMS-induced brain oscillations in human motor cortex. Neuroimage. 2017;163(1–12):1–12
  • Belardinelli P, Konig F, Liang C, et al. TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Sci Rep. 2021;11(1):8159
  • Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–39.
  • Larson J, Lynch G. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science. 1986;232(4753):985–988.
  • Hess G, Aizenman CD, Donoghue JP. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol. 1996;75(5):1765–1778.
  • Stefan K, Kunesch E, Cohen LG, et al. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–584.
  • Stefan K, Kunesch E, Benecke R, et al. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002;543(Pt 2):699–708.
  • Lee NJ, Ahn HJ, Jung KI, et al. Reduction of continuous theta burst stimulation-induced motor plasticity in healthy elderly with COMT Val158Met polymorphism. Ann Rehabil Med. 2014;38(5):658–664
  • Hamada M, Murase N, Hasan A, et al. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex. 2013;23(7):1593–1605.
  • Fried PJ, Pascual-Leone A, Bolo NR. Diabetes and the link between neuroplasticity and glutamate in the aging human motor cortex. Clin Neurophysiol. 2019;130(9):1502–1510.
  • Di Lorenzo F, Motta C, Bonnì S, et al. LTP-like cortical plasticity is associated with verbal memory impairment in Alzheimer’s disease patients. Brain Stimul. 2019;12(1):148–151
  • Huang YZ, Lu MK, Antal A, et al. Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin Neurophysiol. 2017;128(11):2318–2329
  • Alagona G, Bella R, Ferri R, et al. Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity. Neurosci Lett. 2001;314(1–2):57–60
  • Alagona G, Ferri R, Pennisi G, et al. Motor cortex excitability in Alzheimer’s disease and in subcortical ischemic vascular dementia. Neurosci Lett. 2004;362(2):95–98
  • Brem AK, Atkinson NJ, Seligson EE, et al. Differential pharmacological effects on brain reactivity and plasticity in Alzheimer’s disease. Front Psychiatry. 2013;4(124).
  • de Carvalho M, de Mendonça A, Miranda PC, et al. Magnetic stimulation in Alzheimer’s disease. J Neurol. 1997;244(5):304–307.
  • Ferreri F, Pasqualetti P, Määttä S, et al. Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation follow-up study. Neurosci Lett. 2011;492(2):94–98
  • Ferreri F, Pauri F, Pasqualetti P, et al. Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation study. Ann Neurol. 2003;53(1):102–108.
  • Inghilleri M, Conte A, Frasca V, et al. Altered response to rTMS in patients with Alzheimer’s disease. Clin Neurophysiol. 2006;117(1):103–109
  • Hoeppner J, Wegrzyn M, Thome J, et al. Intra- and inter-cortical motor excitability in Alzheimer’s disease. J Neural Transm (Vienna). 2012;119(5):605–612
  • Issac TG, Chandra SR, Nagaraju BC. Transcranial magnetic stimulation in patients with early cortical dementia: a pilot study. Ann Indian Acad Neurol. 2013;16(4):619–622.
  • Khedr EM, Ahmed MA, Darwish ES, et al. The relationship between motor cortex excitability and severity of Alzheimer’s disease: a transcranial magnetic stimulation study. Neurophysiol Clin. 2011;41(3):107–113.
  • Di Lazzaro V, Oliviero A, Pilato F, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75(4):555–559
  • Di Lazzaro V, Oliviero A, Tonali PA, et al. Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology. 2002;59(3):392–397.
  • Di Lazzaro V, Pilato F, Dileone M, et al. In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol. 2008;119(11):2494–2500
  • Di Lazzaro V, Pilato F, Dileone M, et al. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology. 2006;66(7):1111–1113
  • Di Lazzaro V, Pilato F, Dileone M, et al. Functional evaluation of cerebral cortex in dementia with Lewy bodies. NeuroImage. 2007;37(2):422–429
  • Di Lorenzo F, Martorana A, Ponzo V, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients. Front Aging Neurosci. 2013;5(2):1–8.
  • Martorana A, Mori F, Esposito Z, et al. Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology. 2009;34(10):2323–2328
  • Martorana A, Stefani A, Palmieri MG, et al. L-dopa modulates motor cortex excitability in Alzheimer’s disease patients. J Neural Transm (Vienna). 2008;115(9):1313–1319
  • Terranova C, SantAngelo A, Morgante F, et al. Impairment of sensory-motor plasticity in mild Alzheimer’s disease. Brain Stimul. 2013;6(1):62–66
  • Motta C, Di Lorenzo F, Ponzo V, et al. Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2018;89(12):1237–1242
  • Pennisi G, Alagona G, Ferri R, et al. Motor cortex excitability in Alzheimer disease: one year follow-up study. Neurosci Lett. 2002;329(3):293–296
  • Pepin JL, Bogacz D, de Pasqua V, et al. Motor cortex inhibition is not impaired in patients with Alzheimer’s disease: evidence from paired transcranial magnetic stimulation. J Neurol Sci. 1999;170(2):119–123.
  • Rossini PM, Rossi S, Babiloni C, et al. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007;83(6):375–400.
  • Schirinzi T, Di Lorenzo F, Sancesario GM, et al. Amyloid-mediated cholinergic dysfunction in motor impairment related to Alzheimer’s disease. J Alzheimers dis. 2018;64(2):525–532
  • Trebbastoni A, Gilio F, D’Antonio F, et al. Chronic treatment with rivastigmine in patients with Alzheimer’s disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2012;123(5):902–909
  • Wang P, Zhang H, Han L, et al. Cortical function in Alzheimer’s disease and frontotemporal dementia. Transl Neurosci. 2016;7(1):116–125.
  • Wegrzyn M, Teipel SJ, Oltmann I, et al. Structural and functional cortical disconnection in Alzheimer’s disease: a combined study using diffusion tensor imaging and transcranial magnetic stimulation. Psychiatry Res. 2013;212(3):192–200
  • Di Lazzaro V, Oliviero A, Pilato F, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease: evidence of impaired glutamatergic neurotransmission?[comment]. Ann Neurol. 2003;53(6):824–825.
  • Zadey S, Buss SS, McDonald K, et al. Higher motor cortical excitability linked to greater cognitive dysfunction in Alzheimer’s disease: results from two independent cohorts. Neurobiol Aging. 2021;108(24–33).
  • Perretti A, Grossi D, Fragassi N, et al. Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease. J Neurol Sci. 1996;135(1):31–37
  • Sakuma K, Murakami T, Nakashima K. Short latency afferent inhibition is not impaired in mild cognitive impairment. Clin Neurophysiol. 2007;118(7):1460–1463.
  • Nardone R, Bergmann J, Christova M, et al. Short latency afferent inhibition differs among the subtypes of mild cognitive impairment. J neural transm. 2012;119(4):463–471
  • Padovani A, Benussi A, Cantoni V, et al. Diagnosis of mild cognitive impairment due to Alzheimer’s disease with transcranial magnetic stimulation. J Alzheimers dis. 2018;65(1):221–230
  • Tsutsumi R, Hanajima R, Hamada M, et al. Reduced interhemispheric inhibition in mild cognitive impairment. Exp Brain Res. 2012;218(1):21–26
  • Alberici A, Bonato C, Calabria M, et al. The contribution of TMS to frontotemporal dementia variants. Acta Neurol Scand. 2008;118(4):275–280
  • Martorana A, Di Lorenzo F, Esposito Z, et al. Dopamine D₂-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology. 2013;64(108–113):108–113
  • Benussi A, Dell’Era V, Cantoni V, et al. Discrimination of atypical parkinsonisms with transcranial magnetic stimulation. Brain Stimul. 2018;11(2):366–373
  • Nardone R, Bergmann J, Kronbichler M, et al. Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J Neural Transm (Vienna). 2008;115(11):1557–1562
  • Olazarán J, Hernández-Tamames JA, Molina E, et al. Clinical and anatomical correlates of gait dysfunction in Alzheimer’s disease. J Alzheimers dis. 2013;33(2):495–505
  • Liepert J, Bar KJ, Meske U, et al. Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol. 2001;112(8):1436–1441.
  • Nardone R, Bratti A, Tezzon F. Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer’s disease. J Neural Transm (Vienna). 2006;113(11):1679–1684.
  • Pierantozzi M, Panella M, Palmieri MG, et al. Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol. 2004;115(10):2410–2418
  • Olazarán J, Prieto J, Cruz I, et al. Cortical excitability in very mild Alzheimer’s disease: a long-term follow-up study. J Neurol. 2010;257(12):2078–2085.
  • Mimura Y, Nishida H, Nakajima S, et al. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;121(47–59):47–59
  • Martorana A, Di Lorenzo F, Esposito Z, et al. Dopamine D(2)-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology. 2013;64(108–113):108–113.
  • Koch G, Martorana A, Caltagirone C. Transcranial magnetic stimulation: emerging biomarkers and novel therapeutics in Alzheimer’s disease. Neurosci Lett. 2020;719(134355):134355.
  • Di Lorenzo F, Ponzo V, Bonnì S, et al. Long-term potentiation-like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Ann Neurol. 2016;80(2):202–210
  • Nardone R, Höller Y, Thomschewski A, et al. Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL. J neural transm. 2014;121(10):1313–1320
  • Martorana A, Esposito Z, Di Lorenzo F, et al. Cerebrospinal fluid levels of Aβ42 relationship with cholinergic cortical activity in Alzheimer’s disease patients. J neural transm. 2012;119(7):771–778
  • Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann Neurol. 2022;92(2):322–334
  • Benussi A, Cantoni V, Cotelli MS, et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul. 2021;14(3):531–540
  • Bella R, Cantone M, Lanza G, et al. Cholinergic circuitry functioning in patients with vascular cognitive impairment–no dementia. Brain Stimul. 2016;9(2):225–233
  • Hwang YT, Rocchi L, Hammond P, et al. Effect of donepezil on transcranial magnetic stimulation parameters in Alzheimer’s disease. Alzheimer’s Dementia. 2018;4:103–107.
  • Koch G, Di Lorenzo F, Del Olmo MF, et al. Reversal of LTP-like cortical plasticity in alzheimer’s disease patients with tau-related faster clinical progression. J Alzheimers dis. 2016;50(2):605–616
  • Yildiz FG, Saka E, Elibol B, et al. Modulation of cerebellar-cortical connections in multiple system atrophy type c by cerebellar repetitive transcranial magnetic stimulation. Neuromodulation. 2018;21(4):402–408.
  • Peter J, Lahr J, Minkova L, et al. Contribution of the cholinergic system to verbal memory performance in mild cognitive impairment. J Alzheimers dis. 2016;53(3):991–1001
  • Celebi O, Temucin CM, Elibol B, et al. Short latency afferent inhibition in Parkinson’s disease patients with dementia. Mov Disord. 2012;27(8):1052–1055.
  • Bologna M, Guerra A, Colella D, et al. Bradykinesia in Alzheimer’s disease and its neurophysiological substrates. Clin Neurophysiol. 2020;131(4):850–858
  • Balla C, Maertens de Noordhout A, Pepin JL. Motor cortex excitability changes in mild Alzheimer’s disease are reversed by donepezil. Dement Geriatr Cogn Disord. 2014;38(3–4):264–270.
  • Khedr EM, Ahmed OG, Sayed HM, et al. Electrophysiological differences in cortical excitability in different forms of dementia: a transcranial magnetic stimulation and laboratory biomarkers study. Neurophysiol Clin. 2020;50(3):185–193.
  • Vucic S, Ziemann U, Eisen A, et al. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry. 2013;84(84):1161–1170.
  • Padovani A, Benussi A, Cotelli MS, et al. Transcranial magnetic stimulation and amyloid markers in mild cognitive impairment: impact on diagnostic confidence and diagnostic accuracy. Alzheimer’s Res Ther. 2019;11(1):95
  • Bonnì S, Lupo F, Lo Gerfo E, et al. Altered parietal-motor connections in Alzheimer’s disease patients. J Alzheimers dis. 2013;33(2):525–533
  • Bagattini C, Mutanen TP, Fracassi C, et al. Predicting Alzheimer’s disease severity by means of TMS-EEG coregistration. Neurobiol Aging. 2019;80(38–45):38–45
  • Di Lazzaro V, Oliviero A, Pilato F, et al. Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg. 2005;76(8):1064–1069
  • Badawy RA, Curatolo JM, Newton M, et al. Changes in cortical excitability differentiate generalized and focal epilepsy. Ann Neurol. 2007;61(4):324–331.
  • Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry. 2022;12(1):257.
  • Vossel KA, Tartaglia MC, Nygaard HB, et al. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311–322.
  • Csernus EA, Werber T, Kamondi A, et al. The significance of subclinical epileptiform activity in alzheimer’s disease: a review. Front Neurol. 2022;13(856500).
  • Vossel K, Ranasinghe KG, Beagle AJ, et al. Effect of levetiracetam on cognition in patients with alzheimer disease with and without epileptiform activity: a randomized clinical trial. JAMA Neurol. 2021;78(11):1345–1354
  • Badawy RA, Macdonell RA, Berkovic SF, et al. Predicting seizure control: cortical excitability and antiepileptic medication. Ann Neurol. 2010;67(1):64–73.
  • Koch G, Di Lorenzo F, Bonnì S, et al. Impaired LTP- but not LTD-like cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis. 2012;31(3):593–599.
  • Cantone M, Lanza G, Ranieri F, et al. Editorial: non-invasive brain stimulation in the study and modulation of metaplasticity in neurological disorders. Front Neurol. 2021;12(721906).
  • Sundman MH, Lim K, Ton That V, et al. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Commun. 2020;2(2):fcaa203
  • Kumar S, Zomorrodi R, Ghazala Z, et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with alzheimer disease. JAMA Psychiatry. 2017;74(12):1266–1274
  • Cotelli M, Calabria M, Manenti R, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82(7):794–797
  • Zhang F, Qin Y, Xie L, et al. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer’s disease. J neural transm. 2019;126(8):1081–1094.
  • Wu Y, Xu W, Liu X, et al. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer’s disease: a randomized, double-blind, sham-controlled study. Shanghai Arch Psychiatry. 2015;27(5):280–288.
  • Rutherford G, Lithgow B, Moussavi Z. Short and long-term effects of rTMS treatment on alzheimer’s disease at different stages: a pilot study. J Exp Neurosci. 2015;9(43–51):JEN.S24004.
  • Koch G, Di Lorenzo F, Bonnì S, et al. Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology. 2014;39(11):2654–2661
  • Ahmed MA, Darwish ES, Khedr EM, et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol. 2012;259(1):83–92.
  • Turriziani P, Smirni D, Mangano GR, et al. Low-frequency repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex enhances recognition memory in alzheimer’s disease. J Alzheimers dis. 2019;72(2):613–622
  • Klaassens BL, van Gerven JMA, van der Grond J, et al. Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from alzheimer’s disease. Front Aging Neurosci. 2017;9(97).
  • Koch G, Bonnì S, Pellicciari MC, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage. 2018;169:302–311.
  • Brier MR, Thomas JB, Ances BM. Network dysfunction in Alzheimer’s disease: refining the disconnection hypothesis. Brain Connect. 2014;4(5):299–311.
  • Rabey JM, Dobronevsky E, Aichenbaum S, et al. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J neural transm. 2013;120(5):813–819.
  • Lee J, Choi BH, Oh E, et al. Treatment of Alzheimer’s disease with repetitive transcranial magnetic stimulation combined with cognitive training: a prospective, randomized, double-blind, placebo-controlled study. J Clin Neurol. 2016;12(1):57–64.
  • Zhao J, Li Z, Cong Y, et al. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget. 2017;8(20):33864–33871
  • Bentwich J, Dobronevsky E, Aichenbaum S, et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study. J Neural Transm (Vienna). 2011;118(3):463–471
  • Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimers Dement. 2020;16(4):641–650
  • Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018). Clin Neurophysiol. 2020;131(2):474–528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.