231
Views
0
CrossRef citations to date
0
Altmetric
Review

Learnings in developmental and epileptic encephalopathies: what do we know?

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 45-57 | Received 08 Nov 2022, Accepted 31 Jan 2023, Published online: 08 Feb 2023

References

  • Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21:23–48. .
  • Huttenlocher PR. Neural plasticity: the Effects of environment on the development of the cerebral cortex. Cambridge (MA): Harvard University Press; 2009.
  • Acha J, Pérez A, Davidson DJ, et al. Cognitive characterization of children with Dravet syndrome: a neurodevelopmental perspective. Child Neuropsychol. 2015;21:693–715.
  • Bouyeure A, Bekha D, Patil S, et al. Maturity of white matter tracts is associated with episodic memory recall during development. Cereb cortex commun. 2022;1:3.
  • Svoboda WB. Childhood epilepsy: language, learning, and behavioral complications. Cambridge: Cambridge University Press; 2010.
  • Lin JJ, Meletti S, Vaudano A, et al. Developmental and epileptic encephalopathies: is prognosis related to different epileptic network dysfunctions? Epilepsy Behav. 2022;131:107654.
  • Scheffer IE, French J, Hirsch E, et al. Classification of the epilepsies: new concepts for discussion and debate-special report of the ILAE classification task force of the commission for classification and terminology. Open Epilepsia. 2016;1:37–44.
  • Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512–21.
  • Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain. 2021;144(1):32–43.
  • Scheffer IE, Liao J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy.” Eur J Paediatr Neurol. 2020;24:11–4.
  • Siniatchkin M, Groening K, Moehring J, et al. Neuronal networks in children with continuous spikes and waves during slow sleep. Brain J Neurol. 2010;133:2798–13.
  • Moeller F, Moehring J, Ick I, et al. EEG-fMRI in atypical benign partial epilepsy. Epilepsia. 2013;54:e103–8.
  • Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8:49–76.
  • Vaudano AE, Laufs H, Kiebel SJ, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS ONE. 2009;4:e6475.
  • Moehring J, von Spiczak S, Moeller F, et al. Variability of EEG-fMRI findings in patients with SCN1A-positiveSCN1A -positive Dravet syndrome. Epilepsia. 2013;54:918–926.
  • Ouyang M, Dubois J, Yu Q, et al. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. NeuroImage. 2009;47:836–850.
  • Williams J, Sharp GB, Griebel MI. Neuropsychological functioning in clinically referred children with epilepsy. Epilepsia. 1992;33:3–17.
  • Svoboda WB. Childhood epilepsy: language, learning, and behavioral complications. In: Svoboda WB, editor. Chapter 18, Attention and Alertness. Cambridge: Cambridge University Press; 2010. p. 268–288.
  • MacAllister W, Vasserman M, Rosenthal J, et al. Attention and executive functions in children with epilepsy: what, why, and what to do. Appl Neuropsychol. 2014;3:215–225.
  • Kowalczyk OS, Cubillo AI, Smith A, et al. Methylphenidate and atomoxetine normalize frontoparietal under activation during sustained attention in ADHD adolescents. Eur Neuropsychopharmacol. 2019;29:1102–1116.
  • Williams JP, Phillips T, Griebe ML, et al. Factors associated with academic achievement in children with controlled epilepsy. Epilepsia. 2000;7:246.
  • Kanner A, Helmstaedter C, Sadat-Hossieny Z, et al. Cognitive disorders in epilepsy I: clinical experience, real-world evidence, and recommendations. Seizure. 2020;83:216–222.
  • Svoboda WB. Childhood epilepsy: language, learning, and behavioral complications. In: Svoboda WB, editor. Chapter 19, Memory. Cambridge: Cambridge University Press; 2010. p. 190–309.
  • Arski ON, Wong SM, Warsi NM, et al. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia. 2022;63:2583–2596.
  • Svoboda WB. Childhood epilepsy: language, learning, and behavioral complications. In: Svoboda WB, editor. Chapter 20, Executive Functioning. Cambridge: Cambridge University Press; 2010. p. 310–319.
  • Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE task force on nosology and definitions. Epilepsia. 2022;63:1349–1397.
  • CE K, Cornet MC, MR C. Neonatal developmental and epileptic encephalopathies. Semin Pediatr Neurol. 2019;32:100770.
  • Morrison-Levy N, Borlot F, Jain P, et al. Early-onset developmental and epileptic encephalopathies of infancy: an overview of the genetic basis and clinical features. Pediatr Neurol. 2021;116:85–94.
  • Pisano T, Numis AL, Heavin SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015;56:685–691.
  • Ohtahara S, Ishida T, Oka E, et al. On the specific age-dependent epileptic syndromes: the early-infantile epileptic encephalopathy with suppression-burst. No To Hattatsu. 1987;9:371–376.
  • Ohtahara S. Seizure disorders in infancy and childhood. Brain Dev. 1984;6:509–519.
  • Beal JC, Koshi C, Solomon LM. Early-onset epileptic encephalopathies: ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol. 2012;47:317–323.
  • Amin S, Monaghan M, Aledo-Serrano A, et al. International consensus recommendations for the assessment and management of individuals with CDKL5 Deficiency disorder. Front Neurol. 2022;13:874695.
  • Fehr S, Downs J, Ho G, et al. Functional abilities in children and adults with the CDKL5 disorder. Am J Med Genet A. 2016;170:2860–2869.
  • Quintiliani M, Ricci D, Petrianni M, et al. Cortical visual impairment in CDKL5 deficiency disorder. Front Neurol. 2022;12:805745.
  • Brock D, Fidell A, Thomas J, et al. Cerebral visual impairment in CDKL5 deficiency disorder correlates with developmental achievement. J Child Neurol. 2021;36(11):974–980.
  • Szafranski P, Golla S, Jin W, et al. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J Hum Genet. 2015;23:915–921.
  • Randò T, Baranello G, Ricci D, et al. Cognitive competence at the onset of West syndrome: correlation with EEG patterns and visual function. Dev Med Child Neurol. 2005;47:760–765.
  • Chapple C, Kinsella W. Psychoeducational implications of West Syndrome (infantile spams) for primary school children. Educ Psychol Pract. 2019;3:5271–5288. .
  • van Rijckevorsel K. Cognitive problems related to epilepsy syndromes, especially malignant epilepsies. Seizure. 2006;15:227–234.
  • Aldenkamp AP, Alpherts WC, Dekker MJ, et al. Neuropsychological aspects of learning disabilities in epilepsy. Epilepsia. 1990;31(Suppl 4):S9–20.
  • Berg AT. Epilepsy, cognition, and behavior: the clinical picture. Epilepsia. 2011;52(Suppl1):7–12.
  • Siniatchkin M, Coropceanu D, Moeller F, et al. EEG-fMRI reveals activation of brainstem and thalamus in patients with Lennox-Gastaut syndrome. Epilepsia. 2011;52:766–774.
  • Bertuccelli M, Verheyen K, Hallemans A, et al. Deconstructing Dravet syndrome neurocognitive development: a scoping review. Epilepsia. 2021;62:874–887.
  • Verheyen K, Wyers L, Del Felice A, et al. Independent walking and cognitive development in preschool children with Dravet syndrome. Dev Med Child Neurol. 2021;63:472–479.
  • Chieffo D, Battaglia D, Lettori D, et al. Neuropsychological development in children with Dravet syndrome. Epilepsy Res. 2011;95:86–93.
  • Chieffo D, Battaglia D, Lucibello S, et al. Disorders of early language development in Dravet syndrome. Epilepsy Behav. 2016;54:30–33.
  • Kalume F, Yu FH, Westenbroek RE, et al. Reduced sodium current in purkinje neurons from NaV1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci. 2007;27:11065–11074.
  • Guzzetta F. Cognitive and behavioral characteristics of children with dravet syndrome: an overview. Epilepsia. 2011;52:35–38.
  • Jansson JS, Hallböök T, Reilly C. Intellectual functioning and behavior in Dravet syndrome: a systematic review. Epilepsy Behav. 2020;108:107079.
  • Ragona F, Granata T, Bernardina BD, et al. Cognitive development in Dravet syndrome: a retrospective, multicenter study of 26 patients. Epilepsia. 2011;52:386–392.
  • Dell’Isola GB, Mencaroni E, Fattorusso A, et al. Expanding the genetic and clinical characteristics of Protocadherin 19 gene mutations. BMC Med Genomics. 2022;15:181.
  • Depienne C, Leguern E. PCDH19-related infantile epileptic encephalopathy: an unusual X-linked inheritance disorder. Hum Mutat. 2012;33:627–634.
  • Smith L, Singhal N. el Achkar CM, et al. Epilepsia. 2018;59:679–689.
  • Kurian M, Korff CM, Ranza E, et al. Focal cortical malformations in children with early infantile epilepsy and PCDH19 mutations: case report. Dev Med Child Neurol. 2018;60:100–105.
  • Denervaud S, Korff C, Fluss J, et al. Structural brain abnormalities in epilepsy with myoclonic atonic seizures. Epilepsy Res. 2021;177:106771.
  • Nickels K, Kossoff EH, Eschbach K, et al. Epilepsy with myoclonic-atonic seizures (Doose syndrome): clarification of diagnosis and treatment options through a large retrospective multicenter cohort. Epilepsia. 2021;62:1207.
  • Samanta D. Management of Lennox-Gastaut syndrome beyond childhood: a comprehensive review. Epilepsy Behav. 2020;114(PtA):107612.
  • Asadi-Pooya AA, Bazrafshan M, Farazdaghi M. Long-term medical and social outcomes of patients with Lennox-Gastaut syndrome. Epilepsy Res. 2021;178:106813.
  • Camfield PR. Definition and natural history of Lennox-Gastaut syndrome. Epilepsia. 2011;52:3–9.
  • Cross JH, Auvin S, Falip M, et al. Expert opinion on the management of Lennox-Gastaut syndrome: treatment alghorithms and practical considerations. Front Neurol. 2017;8:505.
  • Verrotti A, ANONYMISED, Iapadre G, Iapadre G, et al. The pharmacological management of Lennox-Gastaut syndrome and critical literature review. Seizure. 2018;63:17–25.
  • Marchese F, Cappelletti S, Filippini M, et al. Comorbidities in dravet syndrome and lennox–gastaut syndrome. SN Compr Clin Med. 2021;3:2167–2179.
  • Warren AEL, Abbott DF, Jackson GD, et al. Thalamocortical functional connectivity in Lennox–Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks. Epilepsia. 2017;58:2085–2097.
  • Berg AT, Levy SR, Testa FM. Evolution and course of early life developmental encephalopathic epilepsies: focus on lennox-gastaut syndrome. Epilepsia. 2018;59:2096–2105.
  • Mastrangelo M. Lennox-Gastaut syndrome: a state of the art review. Neuropediatrics. 2017;48(3):143–151.
  • Chourasia N, Maheshwari A, Kalamangalam G. Cognitive and functional status in late-onset Lennox-Gastaut syndrome: variation on a classic phenotype. Epilepsy Behav. 2020;102:106660.
  • De Ridder J, Verhelle B, Vervisch J, et al. Early epileptiform EEG activity in infants with tuberous sclerosis complex predicts epilepsy and neurodevelopmental outcomes. Epilepsia. 2021;62(5):1208–1219.
  • Jones AC, Shyamsundar MM, Thomas MW, et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet. 1999;64:1305–1315.
  • van Eeghen AM, Chu-Shore CJ, Pulsifer MB, et al. Cognitive and adaptive development of patients with tuberous sclerosis complex: a retrospective, longitudinal investigation. Epilepsy Behav. 2012;23:10–15.
  • Humphrey A, Williams J, Pinto E, et al. A prospective longitudinal study of early cognitive development in tuberous sclerosis. Eur Child Adolesc Psychiatry. 2012;13:159–65.
  • Tye C, Mcewen FS, Liang H, et al. Long-term cognitive outcomes in tuberous sclerosis complex. Dev Med Child Neurol. 2020;62:322–329.
  • Hulshof HM, Slot EMH, Lequin M, et al. Fetal brain magnetic resonance imaging findings predict neurodevelopment in children with tuberous sclerosis complex. J Paediatr. 2021;233:156–162.
  • Sachdev P, Blacker D, Blazer D, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014;10:634–642.
  • Hermann B, Jones J, Sheth R, et al. Children with new-onset epilepsy: neuropsychological status and brain structure. Brain. 2006;129:2609–2619.
  • Stores G. The investigation and managements of school children with epilepsy. Publ Health Lond. 1976;90:171–177.
  • Arzimanoglou A, French J, Blume WT, et al. Lennox-Gastut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol. 2009;8:82–93.
  • Ouss L, Leunen D, Lashet J, et al. Autism spectrum disorder and cognitive profile in children with Dravet syndrome: delineation of a specific phenotype. Epilepsia Open. 2019;4:40–53.
  • Dalic LJ, Warren AEL, Malpas CB, et al. Cognition, adaptive skills and epilepsy disability/severity in patients with Lennox-Gastaut syndrome undergoing deep brain stimulation for epilepsy in the ESTEL trial. Seizure. 2022;101:67–74.
  • Ricci D, Chieffo D, Battaglia D, et al. A prospective longitudinal study on visuo-cognitive development in Dravet syndrome: is there a “dorsal stream vulnerability”? Epilepsy Res. 2015;109:57–64.
  • O‘Reilly H, Eltze C, Bennett K, et al. Cognitive outcomes following epilepsy in infancy: a longitudinal community-based study. Epilepsia. 2018;59:2240–2248.
  • Battaglia D, Chieffo D, Siracusano R, et al. Cognitive decline in Dravet syndrome: is there a cerebral role? Epilepsy Res. 2013;106:211–221.
  • Palmer EE, Howell K, Scheffer IE. Natural history studies and clinical trial readiness for genetic developmental and epileptic encephalopathies. Neurotherapeutics. 2021;18:1432–1444.
  • Villeneuve N, Laguitton V, Viellard M, et al. Cognitive and adaptive evaluation of 21 consecutive patients with Dravet syndrome. Epilepsy Behav. 2014;31:143–148.
  • Sparrow SS, Cicchetti DV, Saunier CA. Vineland adaptive behavior scales. 3rd ed. Vineland-3: Pearson: San Antonio; 2016.
  • Koegel LK, Koegel RL, Ashbaugh K, et al. The importance of early identification and intervention for children with or at risk for autism spectrum disorders. Int J Speech Lang Pathol. 2014;16(1):50–6.
  • Inguaggiato E, Sgandurra G, Cioni G. Brain plasticity and early development: implications for early intervention in neurodevelopmental disorders. Neuropsychiatrie de l’Enfance et de l’Adolescence. 2017;65:299–6.
  • Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647e58.
  • Guzzetta A, Baldini S, Bancale A, et al. Massage accelerates brain development and the maturation of visual function. J Neurosci. 2009;29:6042–6045.
  • Field T, Diego M, Hernandez-Reif M, et al. Insulin and insulin-like growth factor-1 increased in preterm neonates following massage therapy. J Dev Behav Pediatr. 2008;29:463–466.
  • Chieffo D, Ricci D, Baranello G, et al. Early development in Dravet syndrome; visual function impairment precedes cognitive decline. Epilepsy Res. 2011;93:73–79.
  • Richards N. Play. In: Stein J, editor. Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier. 2017.
  • Del Toro V. El juego simbólico en alumnos con Síndrome de West y otras Encefalopatías Epilépticas. [Symbolic play in students with West Syndrome and other Epileptic Encephalopathies]. Revista de Educación Inclusiva. 2017;6:72–87. Spanish.
  • Del Toro Alonso V, Cuevas PG, Torres Gonzales JA. Play as a stimulator for the development of children with West syndrome and other epileptic encephalopathies at early ages. Educar. 2021;57:155–171.
  • Kolb B, Gibb R. Searching for the principles of brain plasticity and behavior. Cortex. 2014;251–260
  • Nevin SM, Wakefield CE, Barlow-Stewart K, et al. Psychosocial impact of genetic testing on parents of children with developmental and epileptic encephalopathy. Dev Med Child Neurol. 2022;64(1):95–104.
  • Bailey LD, Schwartz L, Dixon-Salazar T, et al. Psychosocial impact on siblings of patients with developmental and epileptic encephalopathies. Epilepsy Behav. 2020;112:107377.
  • Sofia F. Quality of lives matter in developmental and epileptic encephalopathy. Dev Med Child Neurol. 2022;64:935.
  • Meador KJ, et al. The cognitive effect of epilepsy and its treatments. In: Wyllie E , editors. Wyllie’s treatment of epilepsy: principle & practice . Philadelphia: Lippincott Williams & Wilkins; 2015. (Vol. 6).
  • Strzelczyk A, Schubert-Bast S. Psychobehavioural and cognitive adverse events of anti-seizure medications for the treatment of developmental and epileptic encephalopathies. CNS Drugs. 2022;36:1079–1111.
  • Raga S, Specchio N, Rheims S, et al. Developmental and epileptic encephalopathies: recognition and approaches to care. Epileptic Disord. 2021;23:40–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.