524
Views
0
CrossRef citations to date
0
Altmetric
Review

Current perspectives on the diagnosis and management of acute transverse myelitis

ORCID Icon & ORCID Icon
Pages 389-411 | Received 17 Feb 2023, Accepted 21 Mar 2023, Published online: 07 Apr 2023

References

  • Transverse Myelitis Consortium Working G. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology. 2002;59(4):499.
  • Epidemiologists CoSaT. Revision to the standardized case definition, case classification, and public health reporting for acute flaccid myelitis. 2021 [Cited 2023 Jan 4]. Available from: https://www.cdc.gov/acute-flaccid-myelitis/hcp/case-definitions.html
  • Abbatemarco JR, Galli JR, Sweeney ML, et al. Modern look at transverse myelitis and inflammatory myelopathy: epidemiology of the national veterans health administration population. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1071.
  • Zalewski NL, Flanagan EP, Keegan BM. Evaluation of idiopathic transverse myelitis revealing specific myelopathy diagnoses. Neurology. 2018;90(2):e96–e102.
  • Murphy OC, Barreras P, Villabona-Rueda A, et al. Identification of specific causes of myelopathy in a large cohort of patients initially diagnosed with transverse myelitis. J Neurol Sci. 2022; 442:120425.
  • Barreras P, Fitzgerald KC, Mealy MA, et al. Clinical biomarkers differentiate myelitis from vascular and other causes of myelopathy. Neurology. 2018;90(1):e12–e21.
  • Jurynczyk M, Messina S, Woodhall MR, et al. Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain. 2017;140(12):3128–3138.
  • McLaren N, Lopez A, Kidd S, et al. Characteristics of patients with acute flaccid myelitis, United States, 2015-2018. Emerg Infect Dis. 2020 Feb;26(2):212–219.
  • Flanagan EP, McKeon A, Lennon VA, et al. Paraneoplastic isolated myelopathy. Neurology. 2011;76(24):2089.
  • Kitley J, Leite MI, Küker W, et al. Longitudinally extensive transverse myelitis with and without aquaporin 4 antibodies. JAMA Neurol. 2013 Nov;70(11):1375–1381.
  • Sabel CE, Pearson JF, Mason DF, et al. The latitude gradient for multiple sclerosis prevalence is established in the early life course. Brain. 2021 Aug 17;144(7):2038–2046.
  • Langer-Gould AM, Gonzales EG, Smith JB, et al. Racial and ethnic disparities in multiple sclerosis prevalence. Neurology. 2022 May 3;98(18):e1818–e1827.
  • Flanagan EP, Cabre P, Weinshenker BG, et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol. 2016 May 01;79(5):775–783.
  • Hor JY, Asgari N, Nakashima I, et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide [Review]. Front Neurol. 2020 June 26;11:501.
  • Cheong WL, Mohan D, Warren N, et al. Multiple sclerosis in the Asia Pacific region: a systematic review of a neglected neurological disease [Systematic Review]. Front Neurol. 2018 June 08;9:432.
  • Arkema EV, Cozier YC. Sarcoidosis epidemiology: recent estimates of incidence, prevalence and risk factors. Curr Opin Pulm Med. 2020;26(5):527–534.
  • Leonardo NM, McNeil J. Behcet’s disease: is there geographical variation? A review far from the silk road. Int J Rheumatol. 2015;2015:945262–945262.
  • Brody IA, Wilkins RH. Lhermitte’s Sign. Arch Neurol. 1969;21(3):338–339.
  • Babinski J, Dubois R. Douleurs à forme de décharge électrique consécutives aux traumatismes de la nuque. Presse Med. 1918;26:64.
  • Syc-Mazurek SB, Montenegro M, Clarke MJ, et al. MRI with neck extension to diagnose cervical spondylotic myelopathy. Pract Neurol. 2022 Apr;22(2):162–163.
  • Du Q, Shi Z, Chen H, et al. Mortality of neuromyelitis optica spectrum disorders in a Chinese population. Ann Clin Transl Neurol. 2021 Jul;8(7):1471–1479.
  • Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation. 2016;13(1):280.
  • Cabre P, González-Quevedo A, Bonnan M, et al. Relapsing neuromyelitis optica: long term history and clinical predictors of death. J Neurol Neurosurg. 2009;80(10):1162–1164.
  • Dubey D, Pittock SJ, Krecke KN, et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol. 2019;76(3):301.
  • Flanagan EP, Kaufmann TJ, Krecke KN, et al. Discriminating long myelitis of neuromyelitis optica from sarcoidosis. Ann Neurol. 2016 Mar;79(3):437–447.
  • Flanagan EP, Weinshenker BG, Krecke KN, et al. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol. 2015;72(1):81–87.
  • Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177.
  • Chen JJ, Flanagan EP, Bhatti MT, et al. Details and outcomes of a large cohort of MOG-IgG associated optic neuritis. Mult Scler Relat Disord. 2022 December 01;68:104237.
  • Flanagan EP, Hinson SR, Lennon VA, et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: analysis of 102 patients. Ann Neurol. 2017;81(2):298–309.
  • Sechi E, Morris PP, McKeon A, et al. Glial fibrillary acidic protein IgG related myelitis: characterisation and comparison with aquaporin-4-IgG myelitis. J Neurol Neurosurg. 2019;90(4):488.
  • Dubey D, Hinson SR, Jolliffe EA, et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J Neuroimmunol. 2018 August 15;321:157–163.
  • Gravier-Dumonceau A, Ameli R, Rogemond V, et al. Glial fibrillary acidic protein autoimmunity: a French cohort study. Neurology. 2022;98(6):e653–e668.
  • Pittock SJ, Yoshikawa H, Ahlskog JE, et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc. 2006;81(9):1207–1214.
  • McKeon A, Robinson MT, McEvoy KM, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol. 2012;69(2):230–238.
  • Hutchinson M, Waters P, McHugh J, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology. 2008 Oct 14;71(16):1291–1292.
  • Chamard L, Magnin E, Berger E, et al. Stiff leg syndrome and myelitis with anti-amphiphysin antibodies: a common physiopathology? Eur Neurol. 2011;66(5):253–255.
  • Fritz D, van de Beek D, Brouwer MC. Clinical features, treatment and outcome in neurosarcoidosis: systematic review and meta-analysis. BMC Neurol. 2016;16(1):220–220.
  • Toledano M. Infectious myelopathies. Continuum (Minneap Minn). 2021 Feb 1; 27(1):93–120.
  • Rinaldi S, Davies A, Fehmi J, et al. Overlapping central and peripheral nervous system syndromes in MOG antibody-associated disorders. Neurol Neuroimmunol Neuroinflamm. 2021 Jan;8(1):e924.
  • Vickers ML, Seidl B, Bigby K, et al. Inflammatory myeloradiculitis secondary to pembrolizumab: a case report and literature review. Case Rep Oncol Med. 2020;2020:8819296.
  • Shah S, Vazquez Do Campo R, Kumar N, et al. Paraneoplastic Myeloneuropathies. Neurology. 2021;96(4):e632.
  • Zalewski NL, Rabinstein AA, Krecke KN, et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol. 2019 Jan 1;76(1):56–63.
  • Andrade P, Figueiredo C, Carvalho C, et al. Transverse myelitis and acute HIV infection: a case report. BMC Infect Dis. 2014;14:149–149.
  • Bahr N, Boulware DR, Marais S, et al. Central nervous system immune reconstitution inflammatory syndrome. Curr Infect Dis Rep. 2013;15(6):583–593.
  • Clark BM, Krueger RG, Price P, et al. Compartmentalization of the immune response in varicella zoster virus immune restoration disease causing transverse myelitis. Aids. 2004 May 21;18(8):1218–1221.
  • Koga M, Takahashi T, Kawai M, et al. A serological analysis of viral and bacterial infections associated with neuromyelitis optica. J Neurol Sci. 2011 Jan 15;300(1–2):19–22.
  • Gilden D, Cohrs RJ, Mahalingam R, et al. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 2009 Aug 8;8:731–740.
  • Ng KS, Abdul Halim S. Anterior spinal cord syndrome as a rare complication of acute bacterial meningitis in an adult. BMJ Case Rep. 2018 Oct 24;2018:bcr2018226082.
  • Román GC, Gracia F, Torres A, et al. Acute Transverse Myelitis (ATM): clinicalReview of 43 patients with COVID-19-Associated ATM and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 vaccine (AZD1222). Front Immunol. 2021;12:653786.
  • Sotoca J, Rodríguez-Álvarez Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol Neuroinflamm. 2020 Sep;7(5):e803.
  • Mondal R, Deb S, Shome G, et al. COVID-19 and emerging spinal cord complications: a systematic review. Mult Scler Relat Disord. 2021 Jun;51:102917.
  • Anamnart C, Tisavipat N, Owattanapanich W, et al. Newly diagnosed neuromyelitis optica spectrum disorders following vaccination: case report and systematic review. Mult Scler Relat Disord. 2022 February 01;58:103414.
  • Ismail II, Salama S. A systematic review of cases of CNS demyelination following COVID-19 vaccination. J Neuroimmunol. 2022 Jan 15;362:577765.
  • Francis AG, Elhadd K, Camera V, et al. Acute inflammatory diseases of the central nervous system after SARS-CoV-2 vaccination. Neurol Neuroimmunol Neuroinflamm. 2022;10(1):e200063.
  • Iorio R, Damato V, Evoli A, et al. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry. 2018 Feb;89(2):138–146.
  • Asnafi S, Morris PP, Sechi E, et al. The frequency of longitudinally extensive transverse myelitis in MS: a population-based study. Mult Scler Relat Disord. 2020 January 01;37:101487.
  • Nolte JYC, Ten Dam L, van de Beek D, et al. Clinical characteristics and outcome of neurosarcoidosis-associated myelitis: a retrospective cohort study and review of the literature. Eur J Neurol. 2022;29(6):1763–1770.
  • Kunchok A, Flanagan EP, Snyder M, et al. Coexisting systemic and organ-specific autoimmunity in MOG-IgG1-associated disorders versus AQP4-IgG+ NMOSD. Mult Scler. 2021 Apr;27(4):630–635.
  • Guerra H, Pittock SJ, Moder KG, et al. Frequency of Aquaporin-4 Immunoglobulin G in longitudinally extensive transverse myelitis with antiphospholipid antibodies. Mayo Clin Proc. 2018 Sep;93(9):1299–1304.
  • Muñoz-Lopetegi A, de Bruijn MAAM, Boukhrissi S, et al. Neurologic syndromes related to anti-GAD65. Neurol Neuroimmunol Neuroinflammat. 2020;7(3):e696.
  • Budhram A, Sechi E, Flanagan EP, et al. Clinical spectrum of high-titre GAD65 antibodies. J Neurol Neurosurg. 2021;92(6):645.
  • Marini A, Bernardini A, Gigli GL, et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology. 2021 Apr 20;96(16):754–766.
  • Hutto SK, Rice DR, Mateen FJ. CNS demyelination with TNFα inhibitor exposure: a retrospective cohort study. J Neuroimmunol. 2021 July 15;356:577587.
  • Redenbaugh V, Flanagan E, Floris V, et al. MOG-IgG associated disease is uncommon during treatment with TNF inhibitors (P9-1.005). Neurology. 2022;98(18Supplement):1792.
  • Lommers E, Depierreux F, Hansen I, et al. NMOSD with anti-MOG antibodies following anti-TNFα therapy: a case report. Mult Scler Relat Disord. 2018 November 01;26:37–39.
  • Kunchok A, Aksamit AJ Jr, Davis JM III, et al. Association between tumor necrosis factor inhibitor exposure and inflammatory central nervous system events. JAMA Neurol. 2020;77(8):937–946.
  • Kumar N, Abboud H. Iatrogenic CNS demyelination in the era of modern biologics. Mult Scler J. 2019;25(8):1079–1085.
  • Richter RW, Rosenberg RN. Transverse myelitis associated with heroin addiction. JAMA. 1968;206(6):1255–1257.
  • Mustafa R, Passe TJ, Lopez-Chiriboga AS, et al. Utility of MRI enhancement pattern in myelopathies with longitudinally extensive T2 lesions. Neurol Clin Pract. 2021;11(5):e601.
  • Kim HJ, Paul F, Lana-Peixoto MA, et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology. 2015;84(11):1165–1173.
  • Klawiter EC, Benzinger T, Roy A, et al. Spinal cord ring enhancement in multiple sclerosis. Arch Neurol. 2010 Nov;67(11):1395–1398.
  • Zalewski NL, Morris PP, Weinshenker BG, et al. Ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry. 2017 Mar;88(3):218–225.
  • Poullet Z, Pique J, Maarouf A, et al. Pure relapsing short myelitis: part of the multiple sclerosis spectrum or new entity? Neurol Neuroimmunol Neuroinflamm. 2022 Jul;9(4):e1167.
  • Schee JP, Viswanathan S. Pure spinal multiple sclerosis: a possible novel entity within the multiple sclerosis disease spectrum. Mult Scler. 2019 Jul;25(8):1189–1195.
  • Sechi E, Krecke KN, Messina SA, et al. Comparison of MRI lesion evolution in different central nervous system demyelinating disorders. Neurology. 2021 Sep 14;97(11):e1097–e1109.
  • Ciron J, Cobo-Calvo A, Audoin B, et al. Frequency and characteristics of short versus longitudinally extensive myelitis in adults with MOG antibodies: a retrospective multicentric study. Mult Scler. 2020 Jul;26(8):936–944.
  • Webb L, Cacciaguerra L, Chen J, et al. Spinal central canal dilation in MOG antibody-associated disease versus other CNS demyelinating disorders. Neurology. 2022;99(23 Supplement 2):S21–S22.
  • Mariano R, Messina S, Kumar K, et al. Comparison of clinical outcomes of transverse myelitis among adults with myelin oligodendrocyte glycoprotein antibody vs aquaporin-4 antibody disease. JAMA Network Open. 2019;2(10):e1912732.
  • Soni N, Bathla G, Pillenahalli Maheshwarappa R. Imaging findings in spinal sarcoidosis: a report of 18 cases and review of the current literature. Neuroradiol J. 2019 Feb;32(1):17–28.
  • Durel CA, Marignier R, Maucort-Boulch D, et al. Clinical features and prognostic factors of spinal cord sarcoidosis: a multicenter observational study of 20 BIOPSY-PROVEN patients. J Neurol. 2016 May;263(5):981–990.
  • Murphy OC, Salazar-Camelo A, Jimenez JA, et al. Clinical and MRI phenotypes of sarcoidosis-associated myelopathy. Neurol Neuroimmunol Neuroinflamm. 2020 Jul 2;7(4):e722.
  • Nesbit GM, Miller GM, Baker HL Jr., et al. Spinal cord sarcoidosis: a new finding at MR imaging with Gd-DTPA enhancement. Radiology. 1989 Dec;173(3):839–843.
  • Zalewski NL, Krecke KN, Weinshenker BG, et al. Central canal enhancement and the trident sign in spinal cord sarcoidosis. Neurology. 2016;87(7):743–744.
  • Boban J, Thurnher MM. Ventral-subpial enhancement in spinal cord sarcoidosis: a braid-like sign. Neurology. 2019 Jan;92(5):236–238.
  • McKeon A, Tracy JA. GAD65 neurological autoimmunity. Muscle Nerve. 2017;56(1):15–27.
  • Delalande S, de Seze J, Fauchais A-L, et al. Neurologic manifestations in primary sjögren syndrome: a study of 82 patients. Medicine (Baltimore). 2004;83(5):280–291.
  • Schulz SW, Shenin M, Mehta A, et al. Initial presentation of acute transverse myelitis in systemic lupus erythematosus: demographics, diagnosis, management and comparison to idiopathic cases. Rheumatol Int. 2012 Sep;32(9):2623–2627.
  • Jarius S, Jacobi C, de Seze J, et al. Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders. Mult Scler. 2011 Sep;17(9):1067–1073.
  • Asgari N, Jarius S, Laustrup H, et al. Aquaporin-4-autoimmunity in patients with systemic lupus erythematosus: a predominantly population-based study. Mult Scler. 2018 Mar;24(3):331–339.
  • Uygunoglu U, Zeydan B, Ozguler Y, et al. Myelopathy in behçet’s disease: the bagel sign. Ann Neurol. 2017 Aug;82(2):288–298.
  • Lee HS, Kim Do Y, Shin HY, et al. Spinal cord involvement in Behçet’s disease. Mult Scler. 2016 Jun;22(7):960–963.
  • Sechi E, Krecke KN, Pittock SJ, et al. Frequency and characteristics of MRI-negative myelitis associated with MOG autoantibodies. Mult Scler. 2021;27(2):303–308.
  • Majed M, Fryer JP, McKeon A, et al. Clinical utility of testing AQP4-IgG in CSF: guidance for physicians. Neurol Neuroimmunol Neuroinflamm. 2016;3(3):e231–e231.
  • Waters P, Reindl M, Saiz A, et al. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J Neurol Neurosurg. 2016;87(9):1005.
  • Redenbaugh V, Montalvo M, Sechi E, et al. Diagnostic value of aquaporin-4-IgG live cell based assay in neuromyelitis optica spectrum disorders. Mult Scler J Exp Transl Clin. 2021;7(4):20552173211052656.
  • Waters PJ, Komorowski L, Woodhall M, et al. A multicenter comparison of MOG-IgG cell-based assays. Neurology. 2019;92(11):e1250–e1255.
  • Williams JP, Abbatemarco JR, Galli JJ, et al. Aquaporin-4 autoantibody detection by ELISA: a retrospective characterization of a commonly used assay. Mult Scler Int. 2021;2021:8692328.
  • Reindl M, Schanda K, Woodhall M, et al. International multicenter examination of MOG antibody assays. Neurol Neuroimmunol Neuroinflammat. 2020;7(2):e674.
  • Sechi E, Buciuc M, Pittock SJ, et al. Positive predictive value of myelin oligodendrocyte glycoprotein autoantibody testing. JAMA Neurol. 2021 Jun 1;78(6):741–746.
  • Banwell B, Bennett JL, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD Panel proposed criteria. Lancet Neurol. 2023 Jan 24;22(3):268–282.
  • Graus F, Vogrig A, Muñiz-Castrillo S, et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflammat. 2021;8(4):e1014.
  • Ruiz-García R, Martínez-Hernández E, Saiz A, et al. The diagnostic value of onconeural antibodies depends on how they are tested. Front Immunol. 2020;11:1482.
  • Pittock SJ, Kryzer TJ, Lennon VA. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol. 2004;56(5):715–719.
  • Liu Z, Jiao L, Qiu Z, et al. Clinical characteristics of patients with paraneoplastic myelopathy. J Neuroimmunol. 2019 May 15;330:136–142.
  • McKeon A, Pittock SJ, Lennon VA. CSF complements serum for evaluating paraneoplastic antibodies and NMO-IgG. Neurology. 2011;76(12):1108–1110.
  • Graus F, Saiz A, Dalmau J. GAD antibodies in neurological disorders — insights and challenges. Nat Rev Neurol. 2020 July 01;16(7):353–365.
  • Dalakas MC, Li M, Fujii M, et al. Stiff person syndrome: quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology. 2001 Sep 11;57(5):780–784.
  • Flanagan EP, Geschwind MD, Lopez-Chiriboga AS, et al. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 2023 Jan 1;80(1):30–39.
  • Valencia-Sanchez C, Knight AM, Hammami MB, et al. Characterisation of TRIM46 autoantibody-associated paraneoplastic neurological syndrome. J Neurol Neurosurg Psychiatry. 2022 Feb;93(2):196–200.
  • Jarius S, Ruprecht K, Wildemann B, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation. 2012 Jan 19;9(1):14.
  • Crouser ED, Maier LA, Wilson KC, et al. Diagnosis and detection of sarcoidosis. an official american thoracic society clinical practice guideline. Am J Respir Crit Care Med. 2020 Apr 15;201(8):e26–e51.
  • Ungprasert P, Carmona EM, Crowson CS, et al. Diagnostic utility of angiotensin-converting enzyme in sarcoidosis: a population-based study. Lung. 2016 Feb;194(1):91–95.
  • Andersson M, Alvarez-Cermeño J, Bernardi G, et al. Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry. 1994 Aug;57(8):897–902.
  • Akaishi T, Takahashi T, Misu T, et al. Difference in the source of anti-AQP4-IgG and Anti-MOG-IgG antibodies in CSF in patients with neuromyelitis optica spectrum disorder. Neurology. 2021;97(1):e1.
  • Kwon YN, Kim B, Kim J-S, et al. Myelin oligodendrocyte glycoprotein-immunoglobulin G in the CSF: clinical implication of testing and association with disability. Neurol Neuroimmunol Neuroinflamm. 2022 Jan;9(1):e1095.
  • Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation. 2016 Sep 26;13(1):279.
  • Mariotto S, Gajofatto A, Batzu L, et al. Relevance of antibodies to myelin oligodendrocyte glycoprotein in CSF of seronegative cases. Neurology. 2019 Nov 12;93(20):e1867–e1872.
  • Pace S, Orrell M, Woodhall M, et al. Frequency of MOG-IgG in cerebrospinal fluid versus serum. J Neurol Neurosurg. 2022;93(3):334–335.
  • Van Haren K, Ayscue P, Waubant E, et al. Acute flaccid myelitis of unknown etiology in California, 2012-2015. Jama. 2015 Dec 22-29;314(24):2663–2671.
  • Messacar K, Schreiner TL, Maloney JA, et al. A cluster of acute flaccid paralysis and cranial nerve dysfunction temporally associated with an outbreak of enterovirus D68 in children in Colorado, USA. Lancet. 2015 Apr 25;385(9978):1662–1671.
  • Messacar K, Schreiner TL, Van Haren K, et al. Acute flaccid myelitis: a clinical review of US cases 2012–2015. Ann Neurol. 2016 Sep;80(3):326–338.
  • Chong PF, Kira R, Mori H, et al. Clinical features of acute flaccid myelitis temporally associated with an enterovirus d68 outbreak: results of a nationwide survey of acute flaccid paralysis in Japan, August–December 2015. Clin Infect Dis. 2018 Feb 10;66(5):653–664.
  • Kidd S, Yee E, English R, et al. National surveillance for acute flaccid myelitis — United States, 2018–2020. MMWR Morb Mortal Wkly Rep. 2021;70(44):1534–1538.
  • Knoester M, Helfferich J, Poelman R, et al. Twenty-nine cases of enterovirus-d68–associated acute flaccid myelitis in Europe 2016. Pediatr Infect Dis J. 2019 Jan;38(1):16–21.
  • Carballo CM, Erro MG, Sordelli N, et al. Acute flaccid myelitis associated with enterovirus D68 in children, Argentina, 2016. Emerg Infect Dis. 2019;25(3):573–576.
  • Messacar K, Spence-Davizon E, Osborne C, et al. Clinical characteristics of enterovirus A71 neurological disease during an outbreak in children in Colorado, USA, in 2018: an observational cohort study. Lancet Infect Dis. 2020 Feb;20(2):230–239.
  • Lopalco PL. Wild and vaccine-derived poliovirus circulation, and implications for polio eradication. Epidemiol Infect. 2017 Feb;145(3):413–419.
  • Estivariz CF, Kovacs SD, Mach O. Review of use of inactivated poliovirus vaccine in campaigns to control type 2 circulating vaccine derived poliovirus (cVDPV) outbreaks. Vaccine. 2022 March 29. doi: 10.1016/j.vaccine.2022.03.027.
  • Flanagan EP, Krecke KN, Marsh RW, et al. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann Neurol. 2014 Jul;76(1):54–65.
  • Minami S, Sagoh T, Nishimura K, et al. Spinal arteriovenous malformation: MR imaging. Radiology. 1988;169(1):109–115.
  • Zalewski NL, Rabinstein AA, Brinjikji W, et al. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol. 2018 Dec 1;75(12):1542–1545.
  • Terwey B, Becker H, Thron AK, et al. Gadolinium-DTPA enhanced MR imaging of spinal dural arteriovenous fistulas. J Comput Assist Tomogr. 1989;13(1):30–37.
  • Brinjikji W, Colombo E, Cloft HJ, et al. Clinical and imaging characteristics of spinal dural arteriovenous fistulas and spinal epidural arteriovenous fistulas. Neurosurgery. 2021 Feb 16;88(3):666–673.
  • Nasr DM, Brinjikji W, Rabinstein AA, et al. Clinical outcomes following corticosteroid administration in patients with delayed diagnosis of spinal arteriovenous fistulas. J Neurointerv Surg. 2017 Jun;9(6):607–610.
  • Zalewski NL. Vascular Myelopathies. Continuum (Minneap Minn). 2021 Feb 1;27(1):30–61.
  • Goodman BP. Metabolic and toxic causes of myelopathy. Continuum (Minneap Minn). 2015 Feb;21(1Spinal Cord Disorders):84–99.
  • Gosavi T, Diong CP, Lim SH. Methotrexate-induced myelopathy mimicking subacute combined degeneration of the spinal cord. J Clin Neurosci. 2013 Jul;20(7):1025–1026.
  • Rykken JB, Diehn FE, Hunt CH, et al. Rim and flame signs: postgadolinium MRI findings specific for non-CNS intramedullary spinal cord metastases. AJNR Am J Neuroradiol. 2013;34(4):908–915.
  • Madhavan AA, Diehn FE, Rykken JB, et al. The central dot sign: a specific post-gadolinium enhancement feature of intramedullary spinal cord metastases. Clin Neuroradiol. 2021 Jun;31(2):383–390.
  • Rykken JB, Diehn FE, Hunt CH, et al. Intramedullary spinal cord metastases: MRI and relevant clinical features from a 13-year institutional case series. AJNR Am J Neuroradiol. 2013 Oct;34(10):2043–2049.
  • Flanagan EP, Neill BP, Porter AB, et al. Primary intramedullary spinal cord lymphoma. Neurology. 2011;77(8):784.
  • Flanagan EP, O’Neill BP, Habermann TM, et al. Secondary intramedullary spinal cord non-Hodgkin’s lymphoma. J Neurooncol. 2012 May;107(3):575–580.
  • Flanagan EP, Hunt CH, Lowe V, et al. [(18)F]-fluorodeoxyglucose-positron emission tomography in patients with active myelopathy. Mayo Clin Proc. 2013 Nov;88(11):1204–1212.
  • Ptaszynski AE, Hooten WM, Huntoon MA. The incidence of spontaneous epidural abscess in olmsted county from 1990 through 2000: a rare cause of spinal pain. Pain Med. 2007;8(4):338–343.
  • O’Keeffe DT, Mikhail MA, Lanzino G, et al. Corticosteroid-induced paraplegia—A diagnostic clue for spinal dural arterial venous fistula. JAMA Neurol. 2015;72(7):833–834.
  • Kessler RA, Mealy MA, Levy M. Early indicators of relapses vs pseudorelapses in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e269–e269.
  • Morrow SA, Stoian CA, Dmitrovic J, et al. The bioavailability of IV methylprednisolone and oral prednisone in multiple sclerosis. Neurology. 2004 Sep 28;63(6):1079–1080.
  • Le Page E, Veillard D, Laplaud DA, et al. Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): a randomised, controlled, double-blind, non-inferiority trial. Lancet. 2015;386(9997):974–981.
  • Demuth S, Guillaume M, Bourre B, et al. Treatment regimens for neuromyelitis optica spectrum disorder attacks: a retrospective cohort study. J Neuroinflammation. 2022 March 02;19(1):62.
  • Banerjee A, Ng J, Coleman J, et al. Outcomes from acute attacks of neuromyelitis optica spectrum disorder correlate with severity of attack, age and delay to treatment. Mult Scler Relat Disord. 2019;28:60–63.
  • Akaishi T, Takahashi T, Misu T, et al. Progressive patterns of neurological disability in multiple sclerosis and neuromyelitis optica spectrum disorders. Sci Rep. 2020;10(1):13890.
  • Sechi E, Cacciaguerra L, Chen JJ, et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): a review of clinical and MRI features, diagnosis, and management [Review]. Front Neurol. 2022 June 17;13:885218.
  • Petrou P, Kassis I, Levin N, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020 Dec 1;143(12):3574–3588.
  • Boffa G, Massacesi L, Inglese M, et al. Long-term clinical outcomes of hematopoietic stem cell transplantation in multiple sclerosis. Neurology. 2021 Feb;20(8):e1215–e1226.
  • Burt RK, Balabanov R, Burman J, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA. 2019;321(2):165–174.
  • Chalmer TA, Baggesen LM, Nørgaard M, et al. Early versus later treatment start in multiple sclerosis: a register-based cohort study. Eur J Neurol. 2018 Oct;25(10):1262–e110.
  • Brown JWL, Coles A, Horakova D, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. Jama. 2019 Jan 15;321(2):175–187.
  • Faer S, Plemel JR, Gold R, et al. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov. 2019 December 01;18(12):905–922.
  • Cross A, Riley C. Treatment of multiple sclerosis. Continuum (Minneap Minn). 2022 Aug 1; 28(4):1025–1051.
  • McLaughlin L, Clarke L, Khalilidehkordi E, et al. Vitamin D for the treatment of multiple sclerosis: a meta-analysis. J Neurol. 2018 Dec;265(12):2893–2905.
  • Kleiter I, Gahlen A, Borisow N, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol. 2016;79(2):206–216.
  • Weinshenker BG, O’Brien PC, Petterson TM, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol. 1999;46(6):878–886.
  • Noland DK, Greenberg BM. Safety and efficacy of plasma exchange in pediatric transverse myelitis. Neurol Clin Pract. 2018;8(4):327–330.
  • Songthammawat T, Srisupa - Olan T, Siritho S, et al. A pilot study comparing treatments for severe attacks of neuromyelitis optica spectrum disorders: intravenous methylprednisolone (IVMP) with add-on plasma exchange (PLEX) versus simultaneous ivmp and PLEX. Mult Scler Relat Disord. 2020 February 01;38:101506.
  • Bonnan M, Valentino R, Olindo S, et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult Scler J. 2009;15(4):487–492.
  • Lim Y-M, Pyun SY, Kang B-H, et al. Factors associated with the effectiveness of plasma exchange for the treatment of NMO-IgG-positive neuromyelitis optica spectrum disorders. Mult Scler J. 2013;19(9):1216–1218.
  • Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005 January 01;44(1):61–98.
  • Elsone L, Panicker J, Mutch K, et al. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult Scler J. 2014;20(4):501–504.
  • Li X, Tian D-C, Fan M, et al. Intravenous immunoglobulin for acute attacks in neuromyelitis optica spectrum disorders (NMOSD). Mult Scler Relat Disord. 2020 September 01;44:102325.
  • Lin J, Xue B, Zhu R, et al. Intravenous immunoglobulin as the rescue treatment in NMOSD patients. Neurol Sci. 2021 September 01;42(9):3857–3863.
  • Pan J, Zhu R, Lin J, et al. Incidence and risk factors for venous thromboembolism during an acute attack in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2022 February 01;58:103513.
  • Guo Y, Tian X, Wang X, et al. Adverse effects of immunoglobulin therapy. Front Immunol. 2018;9:1299–1299.
  • Poupart J, Giovannelli J, Deschamps R, et al. Evaluation of efficacy and tolerability of first-line therapies in NMOSD. Neurology. 2020;94(15):e1645.
  • Azzopardi L, Cox AL, McCarthy CL, et al. Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. J Neurol. 2016 Jan;263(1):25–29.
  • Min JH, Kim BJ, Lee KH. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler. 2012 Jan;18(1):113–115.
  • Kleiter I, Hellwig K, Berthele A, et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol. 2012 Feb;69(2):239–245.
  • Palace J, Leite MI, Nairne A, et al. Interferon Beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol. 2010 Aug;67(8):1016–1017.
  • Tahara M, Oeda T, Okada K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020 April 01;19(4):298–306.
  • Cohen M, Romero G, Bas J, et al. Monitoring CD27+ memory B-cells in neuromyelitis optica spectrum disorders patients treated with rituximab: results from a bicentric study. J Neurol Sci. 2017 Feb 15;373:335–338.
  • Kim S-H, Huh S-Y, Lee SJ, et al. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013;70(9):1110–1117.
  • Kim S-H, Park NY, Kim KH, et al. Rituximab-induced hypogammaglobulinemia and risk of infection in neuromyelitis optica spectrum disorders: a 14-year real-life experience. Neurol Neuroimmunol Neuroinflamm. 2022;9(5):e1179.
  • Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020;19(5):391–401.
  • Fujihara K, Bennett JL, de Seze J, et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurol Neuroimmunol Neuroinflamm. 2020 Sep 3;7(5):e841.
  • Du C, Zeng P, Han JR, et al. Early initiation of tocilizumab treatment against moderate-to-severe myelitis in neuromyelitis optica spectrum disorder. Front Immunol. 2021;12:660230.
  • Kharel S, Shrestha S, Ojha R, et al. Safety and efficacy of interleukin-6-receptor inhibitors in the treatment of neuromyelitis optica spectrum disorders: a meta-analysis. BMC Neurol. 2021 Nov 23;21(1):458.
  • Ringelstein M, Ayzenberg I, Lindenblatt G, et al. Interleukin-6 receptor blockade in treatment-refractory MOG-IgG–associated disease and neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflammat. 2022;9(1):e1100.
  • Lotan I, Charlson RW, Ryerson LZ, et al. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2020;39:101920.
  • Thomas TC, Rollins SA, Rother RP, et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol. 1996 Dec;33(17–18):1389–1401.
  • Duan T, Smith AJ, Verkman AS. Complement-dependent bystander injury to neurons in AQP4-IgG seropositive neuromyelitis optica. J Neuroinflammation. 2018 October 22;15(1):294.
  • Saadoun S, Waters P, Bell BA, et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain. 2010;133(2):349–361.
  • Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4–positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614–625.
  • Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019 Oct 12;394(10206):1352–1363.
  • Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(22):2114–2124.
  • Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020;19(5):402–412.
  • Espiritu AI, Pasco PMD. Efficacy and tolerability of azathioprine for neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. Mult Scler Relat Disord. 2019 Aug;33:22–32.
  • Songwisit S, Kosiyakul P, Jitprapaikulsan J, et al. Efficacy and safety of mycophenolate mofetil therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. Sci Rep. 2020;10(1):16727.
  • Sanderson J, Ansari A, Marinaki T, et al. Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann Clin Biochem. 2004 Jul;41(Pt 4):294–302.
  • Rual C, Biotti D, Lepine Z, et al. 2 grams versus 1 gram rituximab as maintenance schedule in multiple sclerosis, neuromyelitis optica spectrum disorders and related diseases: what B-cell repopulation data tell us. Mult Scler Relat Disord. 2023 Feb 10;71:104563.
  • Zhao-Fleming HH, Valencia Sanchez C, Sechi E, et al. CNS demyelinating attacks requiring ventilatory support with myelin oligodendrocyte glycoprotein or aquaporin-4 antibodies. Neurology. 2021;97(13):e1351–e1358.
  • Ramanathan S, Mohammad S, Tantsis E, et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J Neurol Neurosurg. 2018;89(2):127.
  • Chen JJ, Flanagan EP, Bhatti MT, et al. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology. 2020;95(2):e111–e120.
  • Elsbernd PM, Hoffman WR, Carter JL, et al. Interleukin-6 inhibition with tocilizumab for relapsing MOG-IgG associated disorder (MOGAD): a case-series and review. Mult Scler Relat Disord. 2021 Feb;48:102696.
  • Chen JJ, Huda S, Hacohen Y, et al. Association of maintenance intravenous immunoglobulin with prevention of relapse in adult myelin oligodendrocyte glycoprotein antibody–associated disease. JAMA Neurol. 2022;79(5):518–525.
  • Hacohen Y, Wong YY, Lechner C, et al. Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 2018 Apr 1;75(4):478–487.
  • Sotirchos ES, Vasileiou ES, Salky R, et al. Treatment of myelin oligodendrocyte glycoprotein antibody associated disease with subcutaneous immune globulin. Mult Scler Relat Disord. 2022 Jan;57:103462.
  • Durozard P, Rico A, Boutiere C, et al. Comparison of the response to rituximab between myelin oligodendrocyte glycoprotein and aquaporin-4 antibody diseases. Ann Neurol. 2020 Feb;87(2):256–266.
  • Peter -H-H, Ochs HD, Cunningham-Rundles C, et al. Targeting FcRn for immunomodulation: benefits, risks, and practical considerations. J Allergy Clin Immunol. 2020;146(3):479–491.e5.
  • A Study to evaluate the efficacy and safety of rozanolixizumab in adult participants with Myelin Oligodendrocyte Glycoprotein (MOG) Antibody-associated Disease (MOG-AD) (cosMOG) [Internet]. 2021 [cited 2023 Jan 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT05063162.
  • Patel DD, Bussel JB. Neonatal Fc receptor in human immunity: function and role in therapeutic intervention. J Allergy Clin Immunol. 2020 September 01;146(3):467–478.
  • A study to evaluate the efficacy, safety, pharmacokinetics, and pharmacodynamics of satralizumab in patients with myelin oligodendrocyte glycoprotein antibody-associated disease (meteoroid) [internet]. 2022 [cited 2023 Jan 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT05271409.
  • Scott TF, Yandora K, Valeri A, et al. Aggressive Therapy for Neurosarcoidosis: long-term Follow-up of 48 Treated Patients. Arch Neurol. 2007;64(5):691–696.
  • Bradshaw MJ, Pawate S, Koth LL, et al. Neurosarcoidosis: pathophysiology, diagnosis, and treatment. Neurol Neuroimmunol Neuroinflamm. 2021 Nov;8(6):e1084.
  • Gelfand JM, Bradshaw MJ, Stern BJ, et al. Infliximab for the treatment of CNS sarcoidosis: a multi-institutional series. Neurology. 2017 Nov 14;89(20):2092–2100.
  • Santos E, Shaunak S, Renowden S, et al. Treatment of refractory neurosarcoidosis with Infliximab. J Neurol Neurosurg. 2010;81(3):241–246.
  • Hilezian F, Maarouf A, Boutiere C, et al. TNF-α inhibitors used as steroid-sparing maintenance monotherapy in parenchymal CNS sarcoidosis. J Neurol Neurosurg Psychiatry. 2021;92(8):890–896.
  • Kalden JR, Schulze-Koops H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev Rheumatol. 2017 Nov 21;13(12):707–718.
  • Bitoun S, Bouvry D, Borie R, et al. Treatment of neurosarcoidosis: a comparative study of methotrexate and mycophenolate mofetil. Neurology. 2016 Dec 13;87(24):2517–2521.
  • Devine MF, Kothapalli N, Elkhooly M, et al. Paraneoplastic neurological syndromes: clinical presentations and management. Ther Adv Neurol Disord. 2021;14:175628642098532.
  • Farber RS, Gross R, Zakin E, et al. Risk of venous thromboembolism in neuromyelitis optica patients hospitalized for acute relapse. Mult Scler J. 2017;23(7):988–994.
  • Schünemann HJ, Cushman M, Burnett AE, et al. American society of hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018;2(22):3198–3225.
  • Sadowsky CL, Becker D, Bosques G, et al. Rehabilitation in transverse myelitis. Continuum (Minneap Minn). 2011 Aug;17(4):816–830.
  • Usmani N, Bedi G, Lam BL, et al. Association between paroxysmal tonic spasms and neuromyelitis optica. Arch Neurol. 2012 Jan;69(1):121–124.
  • Ferrell PB Jr., McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008;9(10):1543–1546.
  • Chen P, Lin JJ, Lu CS, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011 Mar 24;364(12):1126–1133.
  • Otero-Romero S, Sastre-Garriga J, Comi G, et al. Pharmacological management of spasticity in multiple sclerosis: systematic review and consensus paper. Mult Scler. 2016 Oct;22(11):1386–1396.
  • Fujihara K, Hattori S, Kleiter I, et al. Patient-reported burden of symptoms in neuromyelitis optica: a secondary analysis on pain and quality of life. J Neurol Sci. 2021 September 15;428:117546.
  • Ayzenberg I, Richter D, Henke E, et al. Pain, depression, and quality of life in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflammat. 2021;8(3):e985.
  • Asseyer S, Henke E, Trebst C, et al. Pain, depression, and quality of life in adults with MOG-antibody-associated disease. Eur J Neurol. 2021 May;28(5):1645–1658.
  • Mealy MA, Kozachik SL, Cook LJ, et al. Scrambler therapy improves pain in neuromyelitis optica: a randomized controlled trial. Neurology. 2020 May 5;94(18):e1900–e1907.
  • Galati A, Brown ES, Bove R, et al. Glucocorticoids for therapeutic immunosuppression: clinical pearls for the practicing neurologist. J Neurol Sci. 2021 Nov 15;430:120004.
  • Sechi E, Shosha E, Williams JP, et al. Aquaporin-4 and MOG autoantibody discovery in idiopathic transverse myelitis epidemiology. Neurology. 2019;93(4):e414.
  • Cortese R, Prados Carrasco F, Tur C, et al. Differentiating multiple sclerosis from AQP4-neuromyelitis optica spectrum disorder and MOG-antibody disease with Imaging. Neurology. 2023;100(3):e308–e323.
  • Mariano R, Messina S, Roca-Fernandez A, et al. Quantitative spinal cord MRI in MOG-antibody disease, neuromyelitis optica and multiple sclerosis. Brain. 2021 Feb 12;144(1):198–212.
  • Zhuo Z, Zhang J, Duan Y, et al. Automated classification of intramedullary spinal cord tumors and inflammatory demyelinating lesions using deep learning. Radiol Art Int. 2022;4(6):e210292–e210292.
  • Rice DR, Nishiyama S, Pardo S, et al. A point-of-care diagnostic test for aquaporin-4 antibody seropositive neuromyelitis optica. Mult Scler Relat Disord. 2022 April 01;60:103716.
  • Kothur K, Wienholt L, Brilot F, et al. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine. 2016 Jan;77:227–237.
  • Wilson R, Makuch M, Kienzler A-K, et al. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica. Brain. 2018;141(4):1063–1074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.