293
Views
0
CrossRef citations to date
0
Altmetric
Review

Deep brain stimulation: new programming algorithms and teleprogramming

&
Pages 467-478 | Received 13 Feb 2023, Accepted 26 Apr 2023, Published online: 03 May 2023

References

  • França C, Carra RB, Diniz JM, et al. Deep brain stimulation in Parkinson’s disease: state of the art and future perspectives. Arq Neuropsiquiatr. 2022;80(5 Suppl 1):105–115. DOI:10.1590/0004-282x-anp-2022-s133
  • Fasano A, Lozano AM. Deep brain stimulation for movement disorders: 2015 and beyond. Curr Opin Neurol. 2015;28(4):423–436. DOI:10.1097/WCO.0000000000000226.
  • Vedam-Mai V, Deisseroth K, Giordano J, et al. Proceedings of the eighth annual deep brain stimulation think tank: advances in optogenetics, ethical issues affecting dbs research, neuromodulatory approaches for depression, adaptive neurostimulation, and emerging DBS Technologies. Front Hum Neurosci. 2021;15:644593.
  • Brandão P, Grippe TC, Modesto LC, et al. Decisions about deep brain stimulation therapy in Parkinson’s disease. Arq Neuropsiquiatr. 2018;76(6):411–420. DOI:10.1590/0004-282x20180048
  • Krauss JK, Lipsman N, Aziz T, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17(2):75–87. DOI:10.1038/s41582-020-00426-z.
  • Zeng Q, Yu S, Fan Z, et al. Nanocone-array-based platinum-iridium oxide neural microelectrodes: structure, electrochemistry, durability and biocompatibility study. Nanomaterials (Basel). 2022;12(19):3445. DOI:10.3390/nano12193445
  • Frey J, Cagle J, Johnson KA, et al. Past, present, and future of deep brain stimulation: hardware, software, imaging, physiology and novel approaches. Front Neurol. 2022;13:825178. doi:10.3389/fneur.2022.825178.
  • Paff M, Loh A, Sarica C, et al. Update on current technologies for deep brain stimulation in Parkinson’s disease. J Mov Disord. 2020;13(3):185–198. DOI:10.14802/jmd.20052
  • Sarica C, Iorio-Morin C, Aguirre-Padilla DH, et al. Implantable pulse generators for deep brain stimulation: challenges, complications, and strategies for practicality and longevity. Front Human Neurosci. 2021;15:708481. doi:10.3389/fnhum.2021.708481.
  • Butson CR, Maks CB, McIntyre CC. Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol. 2006;117(2):447–454.
  • Lettieri C, Rinaldo S, Devigili G, et al. Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. 2015;22(6):919–926. DOI:10.1111/ene.12515
  • Rezaei Haddad A, Samuel M, Hulse N, et al. Long-term efficacy of constant current deep brain stimulation in essential tremor. Neuromodulation: Technol Neural Interface. 2017;20(5):437–443. DOI:10.1111/ner.12592
  • Ramirez-Zamora A, Kahn M, Campbell J, et al. Interleaved programming of subthalamic deep brain stimulation to avoid adverse effects and preserve motor benefit in Parkinson’s disease. J Neurol. 2015;262(3):578–584. DOI:10.1007/s00415-014-7605-3
  • Zhang S, Silburn P, Pouratian N, et al. Comparing current steering technologies for directional deep brain stimulation using a computational model that incorporates heterogeneous tissue properties. Neuromodulation: Technol Neural Interface. 2020;23(4):469–477. DOI:10.1111/ner.13031
  • Rawal PV, Almeida L, Smelser LB, et al. Shorter pulse generator longevity and more frequent stimulator adjustments with pallidal DBS for dystonia versus other movement disorders. Brain Stimul. 2014;7(3):345–349.
  • Lillie EM, Urban JE, Lynch SK, et al. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res. 2016;31(2):299–307. DOI:10.1002/jbmr.2613
  • Jarosiewicz B, Morrell M. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Rev Med Devices. 2021;18(2):129–138.
  • BeMent SL, Ranck JB Jr. A quantitative study of electrical stimulation of central myelinated fibers. Exp Neurol. 1969;24(2):147–170.
  • Anderson DN, Duffley G, Vorwerk J, et al. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural Eng. 2019;16(1):e016026. DOI:10.1088/1741-2552/aae590
  • Picillo M, Lozano AM, Kou N, et al. Programming deep brain stimul for Parkinson’s disease: the Toronto Western Hospital algorithms. Brain Stimulation. 2016;9(3):425–437. DOI:10.1016/j.brs.2016.02.004.
  • Kupsch A, Tagliati M, Vidailhet M, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. 2011;26(Suppl S1):S37–53. DOI:10.1002/mds.23624.
  • Mruk M, Stroop R, Boergel J, et al. Neurostimulator-induced ECG artefacts: a systematic analysis. Clin Neurol Neurosur. 2021;203:106557.
  • Soh D, Ten Brinke TR, Lozano AM, et al. Therapeutic window of deep brain stimulation using cathodic monopolar, bipolar, semi-bipolar, and anodic stimulation. Neuromodulation. 2019;22(4):451–455. DOI:10.1111/ner.12957
  • Zhang S, Zhou P, Jiang S, et al. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: a report of 12 cases. Medicine (Baltimore). 2016;95(49):e5575. DOI:10.1097/MD.0000000000005575
  • Barbe MT, Maarouf M, Alesch F, et al. Multiple source current steering – a novel deep brain stimulation concept for customized programming in a Parkinson’s disease patient. Parkinsonism Relat Disord. 2014;20(4):471–473. DOI:10.1016/j.parkreldis.2013.07.021
  • Anderson DN, Osting B, Vorwerk J, et al. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J Neural Eng. 2018;15(2):e026005. DOI:10.1088/1741-2552/aaa14b.
  • Gross RE, Rolston JD. The clinical utility of methods to determine spatial extent and volume of tissue activated by deep brain stimulation. Clin Neurophysiol. 2008;119(9):1947–1950.
  • Hidding U, Schaper M, Gulberti A, et al. Short pulse and directional thalamic deep brain stimulation have differential effects in parkinsonian and essential tremor. Sci Rep. 2022;12(1):7251. DOI:10.1038/s41598-022-11291-9
  • Reich MM, Steigerwald F, Sawalhe AD, et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol. 2015;2(4):427–432. DOI:10.1002/acn3.168
  • Steigerwald F, Timmermann L, Kühn A, et al. Pulse duration settings in subthalamic stimulation for Parkinson’s disease. Mov Disord. 2018;33(1):165–169. DOI:10.1002/mds.27238.
  • Zibetti M, Moro E, Krishna V, et al. Low-frequency subthalamic stimulation in Parkinson’s disease: long-term outcome and predictors. Brain Stimul. 2016;9(5):774–779. DOI:10.1016/j.brs.2016.04.017
  • Jia F, Wagle Shukla A, Hu W, et al. Deep brain stimulation at variable frequency to improve motor outcomes in Parkinson’s disease. Mov Disord Clin Pract. 2018;5(5):538–541. DOI:10.1002/mdc3.12658.
  • Zhang C, Zhu K, Lin Z, et al. Utility of deep brain stimulation telemedicine for patients with movement disorders during the COVID-19 outbreak in China. Neuromodulation. 2021;24(2):337–342. DOI:10.1111/ner.13274
  • Fasano A, Antonini A, Katzenschlager R, et al. Management of advanced therapies in Parkinson’s disease patients in times of humanitarian crisis: the COVID-19 Experience. Mov Disord Clin Pract. 2020;7(4):361–372. DOI:10.1002/mdc3.12965
  • Zhang C, Zhang Y, Zhan S, et al. Telemedical deep brain stimulation: merits and limitations. Stereotact Funct Neurosurg. 2018;96(4):272–273. DOI:10.1159/000491603
  • Chen S, Xu SJ, Li WG, et al. Remote programming for subthalamic deep brain stimulation in Parkinson’s disease. Front Neurol. 2022;13:1061274.
  • Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson’s disease and related disorders. Expert Rev Med Devices. 2021;18:319–332.
  • Eusebio A, Thevathasan W, Doyle Gaynor L, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2021;82(5):569–573. DOI:10.1136/jnnp.2010.217489
  • Chen PL, Chen YC, Tu PH, et al. Subthalamic high-beta oscillation informs the outcome of deep brain stimulation in patients with Parkinson’s disease. Front Hum Neurosci. 2022;16:958521.
  • Thenaisie Y, Palmisano C, Canessa A, et al. Towards adaptive deep brain stimulation: clinical and technical notes on a novel commercial device for chronic brain sensing. J Neural Eng. 2021;18(4):042002. DOI:10.1088/1741-2552/ac1d5b
  • Meidahl AC, Tinkhauser G, Herz DM, et al. Adaptive deep brain stimulation for mov disord: the long road to clinical therapy. Mov Disord. 2017;32(6):810–819. DOI:10.1002/mds.27022
  • di Biase L, Tinkhauser G, Martin Moraud E, et al. Adaptive, personalized closed-loop therapy for Parkinson’s disease: biochemical, neurophysiological, and wearable sensing systems. Expert Rev Neurother. 2021;21(12):1371–1388. DOI:10.1080/14737175.2021.2000392
  • Cuschieri A, Borg N, Zammit C. Closed loop deep brain stimulation: a systematic scoping review. Clin Neurol Neurosur. 2022;223:107516.
  • Little S, Beudel M, Zrinzo L, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(7):717–721. DOI:10.1136/jnnp-2015-310972
  • An Q, Yin Z, Ma R, et al. Adaptive deep brain stimulation for Parkinson’s disease: looking back at the past decade on motor outcomes. J Neurol. 2023;270(3):1371–1387. DOI:10.1007/s00415-022-11495-z
  • Zarzycki M, Domitrz I. Stimulation-induced side effects after deep brain stimulation – a systematic review. Acta Neuropsychiatr. 2020;32(2):57–64.
  • Kim MJ, Chang KW, Park SH, et al. Stimulation-induced side effects of deep brain stimulation in the ventralis intermedius and posterior subthalamic area for essential tremor. Front Neurol. 2021;12:678592.
  • Loh A, Elias GJB, Germann J, et al. Neural correlates of optimal deep brain stimulation for cervical dystonia. Ann Neurol. 2022;92(3):418–424. DOI:10.1002/ana.26450.
  • Baizabal-Carvallo JF, Jankovic J. Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord. 2016;25:1–9. doi:10.1016/j.parkreldis.2016.01.014.
  • Picillo M, Lozano AM, Kou N, et al. Programming deep brain stimul for tremor and dystonia: the Toronto Western Hospital algorithms. Brain Stimulation. 2016;9(3):438–452. DOI:10.1016/j.brs.2016.02.003
  • Zou X, Shi Y, Wu X, et al. Efficacy of short pulse and conventional deep brain stimulation in Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci. 2022;44(3):815–825. DOI:10.1007/s10072-022-06484-z
  • Gorodetsky C, Fasano A. Basic tips: how do i start programming deep brain stimulation in Parkinson disease patients? Mov Disord Clin Pract. 2021;8(4):639–644.
  • Maciel R, Soh D, Munhoz RP, et al. Programming directional deep brain stimulation in Parkinson’s disease: a randomized prospective trial comparing early versus delayed stimulation steering. Stereotact Funct Neurosurg. 2021;99(6):484–490. DOI:10.1159/000517054
  • Merola A, Singh J, Reeves K, et al. New frontiers for deep brain stimulation: directionality, sensing technologies, remote programming, robotic stereotactic assistance, asleep procedures, and connectomics. Front Neurol. 2021;12:694747.
  • Tinkhauser G, Pogosyan A, Debove I, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord. 2018;33(1):159–164. DOI:10.1002/mds.27215
  • Strelow JN, Dembek TA, Baldermann JC, et al. Local field potential-guided contact selection using chronically implanted sensing devices for deep brain stimulation in Parkinson’s disease. Brain Sci. 2022;12(12):1726. DOI:10.3390/brainsci12121726
  • Reitz SC, Luger S, Lapa S, et al. Comparing programming Sessions of Vim-DBS. Front Neurol. 2020;11:987.
  • Tai CH, Chou SC, Lin CH, et al. Long-term outcomes of idiopathic and acquired dystonia after pallidal deep brain stimulation: a case series. World Neurosurg. 2022;22:1153–1156.
  • Wang J, Nebeck S, Muralidharan A, et al. Coordinated reset deep brain stimul of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of Parkinsonism. Brain Stimulation. 2016;9(4):609–617. DOI:10.1016/j.brs.2016.03.014
  • Chelangat Bore J, Campbell B A, Cho H, et al. Long-lasting effects of subthalamic nucleus coordinated reset deep brain stimulation in the non-human primate model of parkinsonism: a case report. Brain Stimul. 2022;15(3):598–600. DOI:10.1016/j.brs.2022.04.005
  • Wang J, Fergus SP, Johnson LA, et al. Shuffling improves the acute and carryover effect of subthalamic coordinated reset deep brain stimulation. Front Neurol. 2022;13:716046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.