719
Views
0
CrossRef citations to date
0
Altmetric
Review

Essential Tremor – Deep Brain Stimulation vs. Focused Ultrasound

, , &
Pages 603-619 | Received 23 Feb 2023, Accepted 01 Jun 2023, Published online: 08 Jun 2023

References

  • Benito-León J, Louis ED. Essential tremor: emerging views of a common disorder. Nat Clin Pract Neurol. 2006;2(12):666–678. quiz 2p following 691. doi:10.1038/ncpneuro0347.
  • Benito-León J, Louis ED, Bermejo-Pareja F. Elderly-onset essential tremor is associated with dementia. Neurology. 2006;66(10):1500–1505.
  • Espay AJ, Lang AE, Erro R, et al. Essential pitfalls in “essential” tremor. Mov Disord. 2017;32(3):325–331. doi:10.1002/mds.26919
  • Fasano A, Lang AE, Espay AJ. What is “essential” about essential tremor? A diagnostic placeholder. Mov Disord. 2018;33(1):58–61. doi:10.1002/mds.27288.
  • Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010;25(5):534–541.
  • Bhatia KP, Bain P, Bajaj N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the international Parkinson and movement disorder society. Mov Disord. 2018;33(1):75–87. doi:10.1002/mds.27121.
  • Deuschl G, Bain P, Brin M. Consensus statement of the movement disorder society on tremor. Ad Hoc Scientific Committee Mov Disord. 1998;13 Suppl 3:2–23.
  • Zesiewicz TA, Chari A, Jahan I, et al. Overview of essential tremor. Neuropsychiatr Dis Treat. 2010;6:401–408.
  • Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–739. doi:10.1056/NEJMoa1600159
  • Louis ED, Patel A, Gerrard JL. What is the pathway forward for the surgical management of essential tremor? Ann Neurol USA. 2017;81(3):351–353.
  • Elias WJ, Shah BB. Tremor. JAMA. 2014;311:948–954.
  • Lorenz D, Schwieger D, Moises H, et al. Quality of life and personality in essential tremor patients. Mov Disord. 2006;21(8):1114–1118. doi:10.1002/mds.20884
  • Zesiewicz TA, Elble RJ, Louis ED, et al. Evidence-based guideline update: treatment of essential tremor: report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2011;77(19):1752–1755. doi:10.1212/WNL.0b013e318236f0fd
  • Zhang K, Bhatia S, Oh MY, et al. Long-term results of thalamic deep brain stimulation for essential tremor. J Neurosurg. 2010;112(6):1271–1276. doi:10.3171/2009.10.JNS09371
  • Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013;369:640–648.
  • Lundervold DA, Pahwa R, Ament PA, et al. Validity of clinical and patient ratings of tremor disability among older adults. Parkinsonism Relat Disord. 2003;10(1):15–18. doi:10.1016/S1353-8020(03)00061-0
  • Liao Y-H, Hong C-T, Huang T-W. Botulinum toxin for essential tremor and hands tremor in the neurological diseases: a meta-analysis of randomized controlled trials. Toxins (Basel). 2022;14(3):14.
  • Dallapiazza R, McKisic MS, Shah B, et al. Neuromodulation for movement disorders. Neurosurg Clin N Am. 2014;25(1):47–58. doi:10.1016/j.nec.2013.08.002
  • Dallapiazza RF, Lee DJ, De Vloo P, et al. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry. 2019;90(4):474–482. doi:10.1136/jnnp-2018-318240
  • Krack P, Martinez-Fernandez R, Del Alamo M, et al. Current applications and limitations of surgical treatments for movement disorders. Mov Disord. 2017;32(1):36–52. doi:10.1002/mds.26890
  • Frighetto L, de Salles A, Wallace R, et al. Linear accelerator thalamotomy. Surg Neurol. 2004;62:104–106.
  • Schuurman PR, Bosch DA, Bossuyt PM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342:461–468.
  • Mundinger F. New stereotactic treatment of spasmodic torticollis with a brain stimulation system (author’s transl). Med Klin. 1977;72:1982–1986.
  • Brice J, McLellan L. Suppression of intention tremor by contingent deep-brain stimulation. Lancet. 1980;1:1221–1222.
  • Huss DS, Dallapiazza RF, Shah BB, et al. Functional assessment and quality of life in essential tremor with bilateral or unilateral DBS and focused ultrasound thalamotomy. Mov Disord. 2015;30(14):1937–1943. doi:10.1002/mds.26455
  • Alesch F, Pinter MM, Helscher RJ, et al. Stimulation of the ventral intermediate thalamic nucleus in tremor dominated parkinson’s disease and essential tremor. Acta Neurochir (Wien). 1995;136(1–2):75–81. doi:10.1007/BF01411439
  • Benabid AL, Pollak P, Gao D, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996;84(2):203–214. doi:10.3171/jns.1996.84.2.0203
  • Benabid AL, Benazzouz A, Hoffmann D, et al. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998;13 Suppl 3:119–125.
  • Limousin P, Speelman JD, Gielen F, et al. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry. 1999;66(3):289–296. doi:10.1136/jnnp.66.3.289
  • Pahwa R, Lyons KE, Wilkinson SB, et al. Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16(1):140–143. doi:10.1002/1531-8257(200101)16:1<140:AID-MDS1025>3.0.CO;2-T
  • Tasker RR, Munz M, Junn FS, et al. Deep brain stimulation and thalamotomy for tremor compared. Acta Neurochir Suppl. 1997;68:49–53.
  • Tasker RR. Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol. 1998;49:144–145.
  • Benabid AL, Pollak P, Louveau A, et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–346.
  • Benabid AL, Pollak P, Gervason C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–406.
  • Benabid AL, Chabardes S, Mitrofanis J, et al. Deep brain stimulation of the subthalamic nucleus for the treatment of parkinson’s disease. Lancet Neurol. 2009;8(1):67–81. doi:10.1016/S1474-4422(08)70291-6
  • Zrinzo L, Foltynie T, Limousin P, et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012;116(1):84–94. doi:10.3171/2011.8.JNS101407
  • Young RF, Li F, Vermeulen S, et al. Gamma knife thalamotomy for treatment of essential tremor: long-term results. J Neurosurg. 2010;112(6):1311–1317. doi:10.3171/2009.10.JNS09332
  • Young RF, Hesselgesser RD, Ahn E, et al. Bilateral gamma knife thalamotomy for treatment of axial tremor. Transl Cancer Res. 2014 Dec;3(6):p. 525–529.
  • Caparros-Lefebvre D, Ruchoux MM, Blond S, et al. Long-term thalamic stimulation in Parkinson’s disease: postmortem anatomoclinical study. Neurology. 1994;44:1856–1860.
  • Boockvar JA, Telfeian A, Baltuch GH, et al. Long-term deep brain stimulation in a patient with essential tremor: clinical response and postmortem correlation with stimulator termination sites in ventral thalamus. Case Report J Neurosurg. 2000;93(1):140–144. doi:10.3171/jns.2000.93.1.0140
  • Graff-Radford J, Foote KD, Mikos AE, et al. Mood and motor effects of thalamic deep brain stimulation surgery for essential tremor. Eur J Neurol. 2010;17(8):1040–1046. doi:10.1111/j.1468-1331.2010.02958.x
  • Blomstedt P, Hariz G-M, Hariz MI, et al. Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br J Neurosurg. 2007;21:504–509.
  • Pahwa R, Lyons KE, Wilkinson SB, et al. Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 2006;104(4):506–512. doi:10.3171/jns.2006.104.4.506
  • Lyons KE, Pahwa R, Busenbark KL, et al. Improvements in daily functioning after deep brain stimulation of the thalamus for intractable tremor. Mov Disord. 1998;13(4):690–692. doi:10.1002/mds.870130414
  • Obwegeser AA, Uitti RJ, Turk MF, et al. Thalamic stimulation for the treatment of midline tremors in essential tremor patients. Neurology. 2000;54(12):2342–2344. doi:10.1212/WNL.54.12.2342
  • Nazzaro JM, Pahwa R, Lyons KE. Long-term benefits in quality of life after unilateral thalamic deep brain stimulation for essential tremor. J Neurosurg. 2012;117(1):156–161.
  • Pilitsis JG, Metman LV, Toleikis JR, et al. Factors involved in long-term efficacy of deep brain stimulation of the thalamus for essential tremor. J Neurosurg. 2008;109(4):640–646. doi:10.3171/JNS/2008/109/10/0640
  • Cury RG, Fraix V, Castrioto A, et al. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology. 2017;89:1416–1423.
  • Sydow O, Thobois S, Alesch F, et al. Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry. 2003;74:1387–1391.
  • Mandat T, Koziara H, Rola R, et al. Thalamic deep brain stimulation in the treatment of essential tremor. Neurol Neurochir Pol. 2011;45(1):37–41. doi:10.1016/S0028-3843(14)60058-X
  • Ondo W, Almaguer M, Jankovic J, et al. Thalamic deep brain stimulation: comparison between unilateral and bilateral placement. Arch Neurol. 2001;58(2):218–222. doi:10.1001/archneur.58.2.218
  • Mitchell KT, Larson P, Starr PA, et al. Benefits and risks of unilateral and bilateral ventral intermediate nucleus deep brain stimulation for axial essential tremor symptoms. Parkinsonism Relat Disord. 2019;60:126–132.
  • Obeso JA, Rodríguez MC, Gorospe A, et al. Surgical treatment of Parkinson’s disease. Baillieres Clin Neurol. 1997;6:125–145.
  • Bronstein JM, Tagliati M, Alterman RL, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165. doi:10.1001/archneurol.2010.260
  • Hamid NA, Mitchell RD, Mocroft P, et al. Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J Neurol Neurosurg Psychiatry. 2005;76:409–414.
  • Shin M, Penholate MF, Lefaucheur J-P, et al. Assessing accuracy of the magnetic resonance imaging-computed tomography fusion images to evaluate the electrode positions in subthalamic nucleus after deep-brain stimulation. Neurosurgery. 2010;66(6):1193–1202. discussion 1202. doi:10.1227/01.NEU.0000369190.46510.42.
  • Kumar R, Lozano AM, Sime E, et al. Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology. 2003;61(11):1601–1604. doi:10.1212/01.WNL.0000096012.07360.1C
  • Hariz MI, Shamsgovara P, Johansson F, et al. Tolerance and tremor rebound following long-term chronic thalamic stimulation for Parkinsonian and essential tremor. Stereotact Funct Neurosurg. 1999;72(2–4):208–218. doi:10.1159/000029728
  • Favilla CG, Ullman D, Wagle Shukla A, et al. Worsening essential tremor following deep brain stimulation: disease progression versus tolerance. Brain. 2012;135(5):1455–1462. doi:10.1093/brain/aws026
  • Fasano A, Helmich RC. Tremor habituation to deep brain stimulation: underlying mechanisms and solutions. Mov Disord. 2019;34(12):1761–1773.
  • Rehncrona S, Johnels B, Widner H, et al. Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord. 2003;18(2):163–170. doi:10.1002/mds.10309
  • Baizabal-Carvallo JF, Kagnoff MN, Jimenez-Shahed J, et al. The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond. J Neurol Neurosurg Psychiatry. 2014;85(5):567–572. doi:10.1136/jnnp-2013-304943
  • Shih LC, LaFaver K, Lim C, et al. Loss of benefit in VIM thalamic deep brain stimulation (DBS) for essential tremor (ET): how prevalent is it? Parkinsonism Relat Disord. 2013;19(7):676–679. doi:10.1016/j.parkreldis.2013.03.006
  • Dowsey-Limousin P. Postoperative management of Vim DBS for tremor. Mov Disord. 2002;17(Suppl 3):S208–11.
  • Pollak P, Benabid AL, Gervason CL, et al. Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor. Adv Neurol. 1993;60:408–413.
  • Kronenbuerger M, Fromm C, Block F, et al. On-demand deep brain stimulation for essential tremor: a report on four cases. Mov Disord. 2006;21(3):401–405. doi:10.1002/mds.20714
  • Garcia Ruiz P, de Igneson J M, Lopez Ferro O, et al. Deep brain stimulation holidays in essential tremor. J Neurol Germany. 2001;248(8):725–726. doi:10.1007/s004150170127
  • Picillo M, Lozano AM, Kou N, et al. Programming deep brain stimulation for tremor and dystonia: the Toronto Western Hospital Algorithms. Brain Stimul. 2016;9(3):438–452. doi:10.1016/j.brs.2016.02.003
  • Sandoe C, Krishna V, Basha D, et al. Predictors of deep brain stimulation outcome in tremor patients. Brain Stimul. 2018;11(3):592–599. doi:10.1016/j.brs.2017.12.014
  • Reich MM, Brumberg J, Pozzi NG, et al. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy? Brain. 2016;139(11):2948–2956. doi:10.1093/brain/aww223
  • Akbostanci MC, Slavin KV, Burchiel KJ. Stereotactic ventral intermedial thalamotomy for the treatment of essential tremor: results of a series of 37 patients. Stereotact Funct Neurosurg. 1999;72(2–4):174–177.
  • Fasano A, De Vloo P, Llinas M, et al. Magnetic resonance imaging-guided focused ultrasound thalamotomy in Parkinson tremor: reoperation after benefit decay. Mov Disord USA. 2018;33(5):848–849. doi:10.1002/mds.27348
  • Coenen VA, Mädler B, Schiffbauer H, et al. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery. 2011;68:1066–1069.
  • Coenen VA, Allert N, Paus S, et al. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75(6):657–670. doi:10.1227/NEU.0000000000000540
  • Murata J, Kitagawa M, Uesugi H, et al. Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor. J Neurosurg. 2003;99(4):708–715. doi:10.3171/jns.2003.99.4.0708
  • Barbe MT, Reker P, Hamacher S, et al. DBS of the PSA and the VIM in essential tremor: a randomized, double-blind, crossover trial. Neurology. 2018;91(6):e543–e550. doi:10.1212/WNL.0000000000005956
  • Schlaier J, Anthofer J, Steib K, et al. Deep brain stimulation for essential tremor: targeting the dentato-rubro-thalamic tract? Neuromodulation: Technol Neural Interface. 2015;18(2):105–112. doi:10.1111/ner.12238
  • Fiechter M, Nowacki A, Oertel MF, et al. Deep brain stimulation for tremor: is there a common structure? Stereotact Funct Neurosurg. 2017;95(4):243–250. doi:10.1159/000478270
  • Eisinger RS, Wong J, Almeida L, et al. Ventral intermediate nucleus versus zona incerta region deep brain stimulation in essential tremor. Mov Disord Clin Pract. 2018;5(1):75–82. doi:10.1002/mdc3.12565
  • Holslag JAH, Neef N, Beudel M, et al. Deep brain stimulation for essential tremor: a comparison of targets. World Neurosurg. 2018;110:e580–e584.
  • Barbe MT, Liebhart L, Runge M, et al. Deep brain stimulation of the ventral intermediate nucleus in patients with essential tremor: stimulation below intercommissural line is more efficient but equally effective as stimulation above. Exp Neurol. 2011;230(1):131–137. doi:10.1016/j.expneurol.2011.04.005
  • Kvernmo N, Konglund AE, Reich MM, et al. Deep brain stimulation for arm tremor: a randomized trial comparing two targets. Ann Neurol. 2022;91(5):585–601. doi:10.1002/ana.26317
  • Blomstedt P, Sandvik U, Tisch S. Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor. Mov Disord. 2010;25(10):1350–1356.
  • Blomstedt P, Sandvik U, Hariz MI, et al. Influence of age, gender and severity of tremor on outcome after thalamic and subthalamic DBS for essential tremor. Parkinsonism Relat Disord. 2011;17(8):617–620. doi:10.1016/j.parkreldis.2011.05.014
  • Plaha P, Patel NK, Gill SS. Stimulation of the subthalamic region for essential tremor. J Neurosurg. 2004;101(1):48–54.
  • Plaha P, Khan S, Gill SS. Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry. 2008;79(5):504–513.
  • Fytagoridis A, Sandvik U, Aström M, et al. Long term follow-up of deep brain stimulation of the caudal zona incerta for essential tremor. J Neurol Neurosurg Psychiatry. 2012;83(3):258–262. doi:10.1136/jnnp-2011-300765
  • Plaha P, Javed S, Agombar D, et al. Bilateral caudal zona incerta nucleus stimulation for essential tremor: outcome and quality of life. J Neurol Neurosurg Psychiatry. 2011;82(8):899–904. doi:10.1136/jnnp.2010.222992
  • Herzog J, Hamel W, Wenzelburger R, et al. Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain. 2007;130(6):1608–1625. doi:10.1093/brain/awm077
  • Fasano A, Herzog J, Raethjen J, et al. Gait ataxia in essential tremor is differentially modulated by thalamic stimulation. Brain. 2010;133(12):3635–3648. doi:10.1093/brain/awq267
  • Fasano A, Herzog J, Raethjen J, et al. Lower limb joints kinematics in essential tremor and the effect of thalamic stimulation. Gait Posture. 2012;36(2):187–193. doi:10.1016/j.gaitpost.2012.02.013
  • Lozano CS, Ranjan M, Boutet A, et al. Imaging alone versus microelectrode recording–guided targeting of the STN in patients with parkinson’s disease. J Neurosurg. 2018;130(6):1847–1852. doi:10.3171/2018.2.JNS172186
  • Servello D, Zekaj E, Saleh C, et al. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: a retrospective study. Surg Neurol Int. 2016;7(20):S551–6. doi:10.4103/2152-7806.187534
  • Ho AL, Ali R, Connolly ID, et al. Awake versus asleep deep brain stimulation for parkinson’s disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry. 2018;89(7):687–691. doi:10.1136/jnnp-2016-314500
  • Holewijn RA, Verbaan D, van den Munckhof PM, et al. General anesthesia vs local anesthesia in microelectrode recording-guided deep-brain stimulation for Parkinson disease: the GALAXY randomized clinical trial. JAMA Neurol. 2021;78:1212–1219.
  • Mahvash M, Pechlivanis I, Charalampaki P, et al. Visualization of small veins with susceptibility-weighted imaging for stereotactic trajectory planning in deep brain stimulation. Clin Neurol Neurosur. 2014;124:151–155.
  • Sammartino F, Krishna V, King NKK, et al. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):1217–1225. doi:10.1002/mds.26633
  • Pouratian N, Zheng Z, Bari AA, et al. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115(5):995–1004. doi:10.3171/2011.7.JNS11250
  • Sammartino F, Hodaie M. Diffusion tensor imaging of the basal ganglia for functional neurosurgery applications. Prog Neurol Surg. 2018;33:62–79.
  • Aviles-Olmos I, Kefalopoulou Z, Tripoliti E, et al. Long-term outcome of subthalamic nucleus deep brain stimulation for parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. 2014;85(12):1419–1425. doi:10.1136/jnnp-2013-306907
  • Kochanski RB, Pal G, Bus S, et al. Improving the accuracy of microelectrode recording in deep brain stimulation surgery with intraoperative CT. J Clin Neurosci. 2017;40:130–135.
  • Bot M, van den Munckhof P, Bakay R, et al. Accuracy of intraoperative computed tomography during deep brain stimulation procedures: comparison with postoperative magnetic resonance imaging. Stereotact Funct Neurosurg. 2017;95(3):183–188. doi:10.1159/000475672
  • Jakobs M, Krasniqi E, Kloß M, et al. Intraoperative stereotactic magnetic resonance imaging for deep brain stimulation electrode planning in patients with movement disorders. World Neurosurg. 2018;119:e801–e808.
  • Tinkhauser G, Pogosyan A, Debove I, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord. 2018;33(1):159–164. doi:10.1002/mds.27215
  • Dayal V, De Roquemaurel A, Grover T, et al. Novel programming features help alleviate subthalamic nucleus stimulation-induced side effects. Mov Disord. 2020;35(12):2261–2269. doi:10.1002/mds.28252
  • Fernández-García C, Foffani G, Dileone M, et al. Directional local field potential recordings for symptom-specific optimization of deep brain stimulation. Mov Disord USA. 2017;32(4):626–628. doi:10.1002/mds.26949
  • Steigerwald F, Müller L, Johannes S, et al. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord. 2016;31(8):1240–1243. doi:10.1002/mds.26669
  • Graupe D, Basu I, Tuninetti D, et al. Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol Res. 2010;32(9):899–904. doi:10.1179/016164110X12767786356354
  • Cagnan H, Pedrosa D, Little S, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2017;140(1):132–145. doi:10.1093/brain/aww286
  • Bouwyn J-P, Derrey S, Lefaucheur R, et al. Age limits for deep brain stimulation of subthalamic nuclei in Parkinson’s disease. J Parkinsons Dis. 2016;6(2):393–400. doi:10.3233/JPD-150742
  • Vidailhet M, Jutras M-F, Grabli D, et al. Deep brain stimulation for dystonia. J Neurol Neurosurg Psychiatry. 2013;84(9):1029–1042. doi:10.1136/jnnp-2011-301714
  • Fukaya C, Yamamoto T. Deep brain stimulation for parkinson’s disease: recent trends and future direction. Neurol Med Chir (Tokyo). 2015;55:422–431.
  • Fernandez-Garcia C, Alonso-Frech F, Monje MHG, et al. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: current situation and future prospects. Expert Rev Neurother. 2020;20(1):7–21. doi:10.1080/14737175.2020.1677465
  • Kimmelman J, Duckworth K, Ramsay T, et al. Risk of surgical delivery to deep nuclei: a meta-analysis. Mov Disord. 2011;26(8):1415–1421. doi:10.1002/mds.23770
  • Ben-Haim S, Asaad WF, Gale JT, et al. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64:753–754.
  • Hariz MI, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg. 1999;72(2–4):157–169.
  • Petersen EA, Holl EM, Martinez-Torres I, et al. Minimizing brain shift in stereotactic functional neurosurgery. Operative Neurosurg. 2010;67(3):ons213–21. discussion ons221. doi:10.1227/01.NEU.0000380991.23444.08.
  • Harary M, Segar DJ, Hayes MT, et al. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg. 2019;126:e144–e152.
  • Fenoy AJ, Simpson RKJ. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg. 2014;120(1):132–139.
  • Abode-Iyamah KO, Chiang H-Y, Woodroffe RW, et al. Deep brain stimulation hardware–related infections: 10-year experience at a single institution. J Neurosurg. 2018;130(2):629–638. doi:10.3171/2017.9.JNS1780
  • Barbe MT, Dembek TA, Becker J, et al. Individualized current-shaping reduces DBS-induced dysarthria in patients with essential tremor. Neurology. 2014;82(7):614–619. doi:10.1212/WNL.0000000000000127
  • Alomar S, King NKK, Tam J, et al. Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: a meta-analysis. Mov Disord. 2017;32(1):53–63. doi:10.1002/mds.26924
  • Matsumoto JY, Fossett T, Kim M, et al. Precise stimulation location optimizes speech outcomes in essential tremor. Parkinsonism Relat Disord. 2016;32:60–65.
  • Peng-Chen Z, Morishita T, Vaillancourt D, et al. Unilateral thalamic deep brain stimulation in essential tremor demonstrates long-term ipsilateral effects. Parkinsonism Relat Disord. 2013;19(12):1113–1117. doi:10.1016/j.parkreldis.2013.08.001
  • Pedrosa DJ, Auth M, Pauls KAM, et al. Verbal fluency in essential tremor patients: the effects of deep brain stimulation. Brain Stimul. 2014;7(3):359–364. doi:10.1016/j.brs.2014.02.012
  • FDA approves first MRI-guided focused ultrasound device to treat essential tremor. 2016. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-mri-guided-focused-ultrasound-device-treat-essential-tremor.
  • Chang WS, Jung HH, Kweon EJ, et al. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry. 2015;86(3):257–264. doi:10.1136/jnnp-2014-307642.
  • Lipsman N, Schwartz ML, Huang Y, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12(5):462–468. doi:10.1016/S1474-4422(13)70048-6.
  • Iorio-Morin C, Hodaie M, Lozano AM. Adoption of focused ultrasound thalamotomy for essential tremor: why so much fuss about FUS? J Neurol Neurosurg Psychiatry. 2021;92(5):549–554.
  • Bauer R, Martin E, Haegele-Link S, et al. Noninvasive functional neurosurgery using transcranial MR imaging-guided focused ultrasound. Parkinsonism Relat Disord. 2014;20(Suppl 1):S197–9. doi:10.1016/S1353-8020(13)70046-4
  • Tempany CMC, McDannold NJ, Hynynen K, et al. Focused ultrasound surgery in oncology: overview and principles. Radiology. 2011;259(1):39–56. doi:10.1148/radiol.11100155
  • Lynn JG, Zwemer RL, Chick AJ, et al. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol. 1942;26(2):179–193. doi:10.1085/jgp.26.2.179
  • WJ FRY, BARNARD JW, EJ FRY, et al. Ultrasonic lesions in the mammalian central nervous system. Science. 1955;122:517–518.
  • WJ FRY, BARNARD JW, FJ FRY, et al. Ultrasonically produced localized selective lesions in the central nervous system. Am J Phys Med. 1955;34:413–423.
  • WJ FRY, MOSBERG WHJ, BARNARD JW, et al. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg. 1954;11:471–478.
  • Connor CW, Hynynen K. Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery. IEEE Trans Biomed Eng. 2004;51(10):1693–1706.
  • Fry WJ, FJ F. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron. 1960;7:166–181.
  • Heimburger RF. Ultrasound augmentation of central nervous system tumor therapy. Indiana Med. 1985;78:469–476.
  • Fry FJ, Goss SA, Patrick JT. Transkull focal lesions in cat brain produced by ultrasound. J Neurosurg. 1981;54(5):659–663.
  • Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol. 2018;75(2):246–254.
  • Vimeux FC, De Zwart JA, Palussiére J, et al. Real-time control of focused ultrasound heating based on rapid MR thermometry. Invest Radiol. 1999;34(3):190–193. doi:10.1097/00004424-199903000-00006
  • Fry FJ, Barger JE. Acoustical properties of the human skull. J Acoust Soc Am. 1978;63(5):1576–1590.
  • Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol. 1998;24(2):275–283.
  • Hynynen K, Sun J. Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion. IEEE Trans Ultrason Ferroelectr Freq Control USA. 1999;46:752–755.
  • Ebbini ES, Cain CA. A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Trans Biomed Eng. 1991;38(7):634–643.
  • Chang WS, Jung HH, Zadicario E, et al. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J Neurosurg. 2016;124(2):411–416. doi:10.3171/2015.3.JNS142592
  • Hynynen K, McDannold N, Clement G, et al. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain–a primate study. Eur J Radiol. 2006;59:149–156.
  • Clement GT, Sun J, Giesecke T, et al. A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol. 2000;45(12):3707–3719. doi:10.1088/0031-9155/45/12/314
  • Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med. 2004;52(1):100–107. doi:10.1002/mrm.20118
  • Sokka SD, King R, Hynynen K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol. 2003;48(2):223–241.
  • Curiel L, Chavrier F, Gignoux B, et al. Experimental evaluation of lesion prediction modelling in the presence of cavitation bubbles: intended for high-intensity focused ultrasound prostate treatment. Med Biol Eng Comput. 2004;42(1):44–54. doi:10.1007/BF02351010
  • Vykhodtseva NI, Hynynen K, Damianou C. Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol. 1995;21(7):969–979.
  • Jolesz FA, Hynynen K. Magnetic resonance image-guided focused ultrasound surgery. Cancer J. 2002;8(Suppl1):S100–12.
  • Jolesz FA. MRI-guided focused ultrasound surgery. Annu Rev Med. 2009;60(1):417–430.
  • Chen L, Rivens I, Ter Haar G, et al. Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound Med Biol. 1993;19(1):67–74. doi:10.1016/0301-5629(93)90019-K
  • Yoo S, Mittelstein DR, Hurt RC, et al. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun. 2022;13(1):493. doi:10.1038/s41467-022-28040-1
  • Wang S, Meng W, Ren Z, et al. Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation. Front Physiol. 2020;11:787.
  • Liu Y, Kon T, Li C, et al. High intensity focused ultrasound-induced gene activation in solid tumors. J Acoust Soc Am. 2006;120(1):492–501. doi:10.1121/1.2205129
  • Quadri SA, Waqas M, Khan I, et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus. 2018;44(2):E16. doi:10.3171/2017.11.FOCUS17610
  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer Eng. 2005;5(4):321–327.
  • Wu F, Chen WZ, Bai J, et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol. 2001;27(8):1099–1106. doi:10.1016/S0301-5629(01)00389-1
  • Clarke RL, Ter Haar GR. Temperature rise recorded during lesion formation by high-intensity focused ultrasound. Ultrasound Med Biol. 1997;23(2):299–306.
  • Ter GR, Clarke RL, Vaughan MG, et al. Trackless surgery using focused ultrasound: technique and case report. Minim Invasive Surg. 1991;1(1):13–19. doi:10.3109/13645709109152791
  • Hill CR, Ter Haar GR. Review article: high intensity focused ultrasound–potential for cancer treatment. Br J Radiol. 1995;68:1296–1303.
  • Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25(Suppl 1):S69–83.
  • Kobus T, McDannold N. Update on clinical magnetic resonance-guided focused ultrasound applications. Magn Reson Imaging Clin N Am. 2015;23:657–667.
  • Umemura S, Kawabata K, Hashiba K Enhancement of ultrasonic absorption by microbubbles for therapeutic application. 2001 IEEE Ultrasonics Symposium Proceedings An International Symposium (Cat No01CH37263); Omni Hotel Atlanta, Georgia, USA. 2001;2:p. 1311–1314.
  • Tran BC, Seo J, Hall TL, et al. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(10):1296–1304. doi:10.1109/TUFFC.2003.1244746
  • TG L. The acoustic bubble. First. 1997.
  • Carstensen EL, Gracewski S, Dalecki D. The search for cavitation in vivo. Ultrasound Med Biol. 2000;26(9):1377–1385.
  • Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng. 2004;6:229–248.
  • Kimmel E. Cavitation bioeffects. Crit Rev Biomed Eng. 2006;34:105–161.
  • Hynynen K, Vykhodtseva NI, Chung AH, et al. Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology. 1997;204(1):247–253. doi:10.1148/radiology.204.1.9205255
  • Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A. 2011;108(8):3258–3263. doi:10.1073/pnas.1015771108
  • Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist. 2011;17(1):25–36.
  • Yoo S-S, Bystritsky A, Lee J-H, et al. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56(3):1267–1275. doi:10.1016/j.neuroimage.2011.02.058
  • Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66(5):681–694. doi:10.1016/j.neuron.2010.05.008
  • Mihran RT, Barnes FS, Wachtel H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med Biol. 1990;16(3):297–309.
  • Menz MD, Oralkan O, Khuri-Yakub PT, et al. Precise neural stimulation in the retina using focused ultrasound. J Neurosci. 2013;33:4550–4560.
  • Tufail Y, Yoshihiro A, Pati S, et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc. 2011;6(9):1453–1470. doi:10.1038/nprot.2011.371
  • King RL, Brown JR, Newsome WT, et al. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol. 2013;39(2):312–331. doi:10.1016/j.ultrasmedbio.2012.09.009
  • Prieto ML, Ömer O, Khuri-Yakub BT, et al. Dynamic response of model lipid membranes to ultrasonic radiation force. PLoS ONE. 2013;8:e77115.
  • Plaksin M, Shoham S, Kimmel E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys Rev X. 2014;4(1):11004.
  • Nicoletti V, Cecchi P, Pesaresi I, et al. Cerebello-thalamo-cortical network is intrinsically altered in essential tremor: evidence from a resting state functional MRI study. Sci Rep. 2020;10(1):16661. doi:10.1038/s41598-020-73714-9
  • Tani N, Oshino S, Hosomi K, et al. Altered thalamic connectivity due to focused ultrasound thalamotomy in patients with essential tremor. World Neurosurg. 2022;164:e1103–e1110.
  • Wintermark M, Huss DS, Shah BB, et al. Thalamic connectivity in patients with essential tremor treated with MR imaging-guided focused ultrasound: in vivo fiber tracking by using diffusion-tensor MR imaging. Radiology. 2014;272:202–209.
  • Frenkel V, Oberoi J, Stone MJ, et al. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model. Radiology. 2006;239(1):86–93. doi:10.1148/radiol.2391042181
  • O’Neill B, Quinn T, Frankel V, et al. A multi-phasic continuum damage mechanics model of mechanically induced increased permeability in tissues. Proceedings of the 2005 Fall MRS Meeting, Boston, MA, USA, 2005.
  • Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640–646.
  • Martin E, Jeanmonod D, Morel A, et al. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol. 2009;66(6):858–861. doi:10.1002/ana.21801
  • Thévenot E, Jordão JF, O’Reilly MA, et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther. 2012;23(11):1144–1155. doi:10.1089/hum.2012.013
  • Zhu L, Nazeri A, Pacia CP, et al. Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation. PLoS ONE. 2020;15(6):e0234182. doi:10.1371/journal.pone.0234182
  • D’Haese P-F, Ranjan M, Song A, et al. β-amyloid plaque reduction in the hippocampus after focused ultrasound-induced blood-brain barrier opening in alzheimer’s disease. Front Hum Neurosci. 2020;14:593672.
  • Karakatsani ME, Blesa J, Konofagou EE. Blood-brain barrier opening with focused ultrasound in experimental models of parkinson’s disease. Mov Disord. 2019;34:1252–1261.
  • Jolesz FA, Hynynen K, McDannold N, et al. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am. 2005;13:545–560.
  • Kong CY, Meng L, Omer ZB, et al. MRI-guided focused ultrasound surgery for uterine fibroid treatment: a cost-effectiveness analysis. AJR Am J Roentgenol. 2014;203(2):361–371. doi:10.2214/AJR.13.11446
  • Napoli A, Anzidei M, Marincola BC, et al. MR imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics. 2013;33:1555–1568.
  • Gianfelice D, Gupta C, Kucharczyk W, et al. Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound. Radiology. 2008;249(1):355–363. doi:10.1148/radiol.2491071523
  • Gagliardo C, Cannella R, Quarrella C, et al. Intraoperative imaging findings in transcranial MR imaging-guided focused ultrasound treatment at 1.5T may accurately detect typical lesional findings correlated with sonication parameters. Eur Radiol. 2020;30(9):5059–5070. doi:10.1007/s00330-020-06712-0
  • Gagliardo C, Midiri M, Cannella R, et al. Transcranial magnetic resonance-guided focused ultrasound surgery at 1.5T: a technical note. Neuroradiol J. 2019;32(2):132–138. doi:10.1177/1971400918818743
  • Gagliardo C, Cannella R, D’Angelo C, et al. Transcranial magnetic resonance imaging-guided focused ultrasound with a 1.5 tesla scanner: a prospective intraindividual comparison study of intraoperative imaging. Brain Sci. 2021;11:11.
  • Jeanmonod D, Werner B, Morel A, et al. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 2012;32:E1.
  • Hirai T, Miyazaki M, Nakajima H, et al. The correlation between tremor characteristics and the predicted volume of effective lesions in stereotaxic nucleus ventralis intermedius thalamotomy. Brain. 1983;106(Pt 4):1001–1018. doi:10.1093/brain/106.4.1001
  • Wintermark M, Druzgal J, Huss DS, et al. Imaging findings in MR imaging-guided focused ultrasound treatment for patients with essential tremor. AJNR Am J Neuroradiol. 2014;35(5):891–896. doi:10.3174/ajnr.A3808
  • Halpern CH, Santini V, Lipsman N, et al. Three-year follow-up of prospective trial of focused ultrasound thalamotomy for essential tremor. Neurology. 2019;93(24):e2284–e2293. doi:10.1212/WNL.0000000000008561
  • Wang K-L, Ren Q, Chiu S, et al. Deep brain stimulation and other surgical modalities for the management of essential tremor. Expert Rev Med Devices. 2020;17(8):817–833. doi:10.1080/17434440.2020.1806709
  • Gallay MN, Moser D, Rossi F, et al. Incisionless transcranial MR-guided focused ultrasound in essential tremor: cerebellothalamic tractotomy. J Ther Ultrasound. 2016;4(1):5. doi:10.1186/s40349-016-0049-8
  • Bahgat D, Raslan AM, McCartney S, et al. Lesioning and stimulation in tremor-predominant movement disorder patients: an institutional case series and patient-reported outcome. Stereotact Funct Neurosurg. 2012;90(3):181–187. doi:10.1159/000338710
  • Wang TR, Dallapiazza RF, Moosa S, et al. Thalamic deep brain stimulation salvages failed focused ultrasound thalamotomy for essential tremor: a case report. Stereotact Funct Neurosurg. 2018;96(1):60–64. doi:10.1159/000486646
  • Levi V, Eleopra R, Franzini A, et al. Is deep brain stimulation still an option for tremor recurrence after focused ultrasound thalamotomy? A case report. J Clin Neurosci. 2019;68:344–346.
  • Yamamoto K, Sarica C, Elias GJB, et al. Ipsilateral and axial tremor response to focused ultrasound thalamotomy for essential tremor: clinical outcomes and probabilistic mapping. J Neurol Neurosurg Psychiatry. 2022;93(10):1049–1058. doi:10.1136/jnnp-2021-328459
  • Martínez-Fernández R, Mahendran S, Pineda-Pardo JA, et al. Bilateral staged magnetic resonance-guided focused ultrasound thalamotomy for the treatment of essential tremor: a case series study. J Neurol Neurosurg Psychiatry. 2021;92(9):927–931. doi:10.1136/jnnp-2020-325278
  • Fukutome K, Hirabayashi H, Osakada Y, et al. Bilateral magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor. Stereotact Funct Neurosurg. 2022;100(1):44–52. doi:10.1159/000518662.
  • Iorio-Morin C, Yamamoto K, Sarica C, et al. Bilateral Focused Ultrasound Thalamotomy for Essential Tremor (BEST-FUS phase 2 Trial). Mov Disord. 2021;36(11):2653–2662. doi:10.1002/mds.28716
  • Fishman PS, Elias WJ, Ghanouni P, et al. Neurological adverse event profile of magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor. Mov Disord. 2018;33(5):843–847. doi:10.1002/mds.27401
  • Hynynen K, Darkazanli A, Damianou CA, et al. The usefulness of a contrast agent and gradient-recalled acquisition in a steady-state imaging sequence for magnetic resonance imaging-guided noninvasive ultrasound surgery. Invest Radiol. 1994;29(10):897–903. doi:10.1097/00004424-199410000-00006
  • Alshaikh J, Fishman PS. Revisiting bilateral thalamotomy for tremor. Clin Neurol Neurosur. 2017;158:103–107.
  • Giordano M, Caccavella VM, Zaed I, et al. Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry. 2020;91(12):1270–1278. doi:10.1136/jnnp-2020-323216
  • Williams M. Insightec receives FDA approval to treat essential tremor patients’ second side, expanding total available market in United states. 2022. Available from: https://insightec.com/insightec-receives-fda-approval-to-treat-essential-tremor-patients-second-side-expanding-total-available-market-in-united-states/.
  • Fraix V, Pollak P, Moro E, et al. Subthalamic nucleus stimulation in tremor dominant parkinsonian patients with previous thalamic surgery. J Neurol Neurosurg Psychiatry. 2005;76:246–248.
  • Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–1255. doi:10.1001/archneur.62.8.noc40425
  • Timmermann L, Jain R, Chen L, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14(7):693–701. doi:10.1016/S1474-4422(15)00087-3
  • Castrioto A, Kistner A, Klinger H, et al. Psychostimulant effect of levodopa: reversing sensitisation is possible. J Neurol Neurosurg Psychiatry. 2013;84(1):18–22. doi:10.1136/jnnp-2012-302444
  • Haddock A, Mitchell KT, Miller A, et al. Automated deep brain stimulation programming for tremor. IEEE Trans Neural Syst Rehabil Eng. 2018;26(8):1618–1625. doi:10.1109/TNSRE.2018.2852222
  • Tan H, Debarros J, He S, et al. Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul. 2019;12(4):858–867. doi:10.1016/j.brs.2019.02.011
  • Stanslaski S, Afshar P, Cong P, et al. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):410–421. doi:10.1109/TNSRE.2012.2183617
  • Pepper J, Zrinzo L, Mirza B, et al. The risk of hardware infection in deep brain stimulation surgery is greater at impulse generator replacement than at the primary procedure. Stereotact Funct Neurosurg. 2013;91(1):56–65. doi:10.1159/000343202
  • Reuter S, Deuschl G, Falk D, et al. Uncoupling of dopaminergic and subthalamic stimulation: life-threatening DBS withdrawal syndrome. Mov Disord. 2015;30(10):1407–1413. doi:10.1002/mds.26324
  • Hariz MI, Johansson F. Hardware failure in parkinsonian patients with chronic subthalamic nucleus stimulation is a medical emergency. Mov Disord. 2001;16(1):166–168.
  • Neuneier J, Barbe MT, Dohmen C, et al. Malignant deep brain stimulation-withdrawal syndrome in a patient with parkinson’s disease. Mov Disord. 2013;28(12):1640–1641. doi:10.1002/mds.25494
  • Hamani C, Lozano AM. Hardware-related complications of deep brain stimulation: a review of the published literature. Stereotact Funct Neurosurg. 2006;84(5–6):248–251.
  • Ravikumar VK, Parker JJ, Hornbeck TS, et al. Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor. Mov Disord. 2017;32(8):1165–1173. doi:10.1002/mds.26997
  • Hitti FL, Vaughan KA, Ramayya AG, et al. Reduced long-term cost and increased patient satisfaction with rechargeable implantable pulse generators for deep brain stimulation. J Neurosurg. 2018;131:799–806.
  • Alshimemeri S, Vargas-Méndez D, Chen R, et al. Functional tremor developing after successful MRI-guided focused ultrasound thalamotomy for essential tremor. J Neurol Neurosurg Psychiatry. 2022;93(6):625–627. doi:10.1136/jnnp-2021-327524
  • Linhares MN, Tasker RR. Microelectrode-guided thalamotomy for parkinson’s disease. Neurosurgery. 2000;46:390–398.
  • Louis ED, Agnew A, Gillman A, et al. Estimating annual rate of decline: prospective, longitudinal data on arm tremor severity in two groups of essential tremor cases. J Neurol Neurosurg Psychiatry. 2011;82(7):761–765. doi:10.1136/jnnp.2010.229740
  • Thenganatt MA, Louis ED. Personality profile in essential tremor: a case-control study. Parkinsonism Relat Disord. 2012;18:1042–1044.
  • Paff M, Boutet A, Neudorfer C, et al. Magnetic resonance-guided focused ultrasound thalamotomy to treat essential tremor in nonagenarians. Stereotact Funct Neurosurg. 2020;98(3):182–186. doi:10.1159/000506817
  • Chen L, Bouley D, Yuh E, et al. Study of focused ultrasound tissue damage using MRI and histology. J Magn Reson Imaging. 1999;10(2):146–153. doi:10.1002/(SICI)1522-2586(199908)10:2<146:AID-JMRI6>3.0.CO;2-C
  • Chung AH, Jolesz FA, Hynynen K. Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys. 1999;26(9):2017–2026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.