428
Views
1
CrossRef citations to date
0
Altmetric
Review

Objective measurement versus clinician-based assessment for Parkinson’s disease

, , , &
Pages 689-702 | Received 28 Apr 2023, Accepted 22 Jun 2023, Published online: 06 Jul 2023

References

  • Ou Z, Pan J, Tang S, et al. Global trends in the incidence, prevalence, and years lived with disability of parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847. doi: 10.3389/fpubh.2021.776847
  • Bloem BR, Okun MS, Klein C. Parkinson’s disease. The Lancet. 2021;397(10291):2284–2303. doi: 10.1016/S0140-6736(21)00218-X
  • Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease: mDS-PD clinical diagnostic criteria. Mov Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424
  • Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease: a review. JAMA. 2020;323(6):548. doi: 10.1001/jama.2019.22360
  • Amboni M, Stocchi F, Abbruzzese G, et al. Prevalence and associated features of self-reported freezing of gait in Parkinson disease: the DEEP FOG study. Parkinsonism Relat Disord. 2015;21(6):644–649. doi: 10.1016/j.parkreldis.2015.03.028
  • Bastide MF, Meissner WG, Picconi B, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol. 2015;132:96–168. doi: 10.1016/j.pneurobio.2015.07.002
  • Fabbrini A, Guerra A. Pathophysiological mechanisms and experimental pharmacotherapy for L-Dopa-induced Dyskinesia. J Exp Pharmacol. 2021;13:469–485. doi: 10.2147/JEP.S265282
  • Marras C, Lang AE. Outcome measures for clinical trials in Parkinson’s disease: achievements and shortcomings. Expert Rev Neurother. 2004;4(6):985–993. doi: 10.1586/14737175.4.6.985
  • Rahman S, Griffin HJ, Quinn NP, et al. Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov Disord. 2008;23(10):1428–1434. doi: 10.1002/mds.21667
  • Stocchi F, Antonini A, Barone P, et al. Early DEtection of wEaring off in Parkinson disease: the DEEP study. Parkinsonism Relat Disord. 2014;20(2):204–211. doi: 10.1016/j.parkreldis.2013.10.027
  • Deuschl G, Antonini A, Costa J, et al. European academy of neurology/movement disorder society-European section guideline on the treatment of Parkinson’s disease: i. invasive therapies. Mov Disord. 2022;37(7):1360–1374. doi: 10.1002/mds.29066
  • Martinez-Martin P, Skorvanek M, Henriksen T, et al. Impact of advanced Parkinson’s disease on caregivers: an international real-world study. J Neurol. 2023;270(4):2162–2173. doi: 10.1007/s00415-022-11546-5
  • Antonini A, Pahwa R, Odin P, et al. Comparative effectiveness of device-aided therapies on quality of life and off-time in Advanced Parkinson’s disease: a systematic review and Bayesian network meta-analysis. CNS Drugs. 2022;36(12):1269–1283. doi: 10.1007/s40263-022-00963-9
  • Goetz CG, Nutt JG, Stebbins GT. The unified Dyskinesia rating scale: presentation and clinimetric profile. Mov Disord. 2008;23(16):2398–2403. doi: 10.1002/mds.22341
  • Horváth K, Aschermann Z, Ács P, et al. Minimal clinically important difference on the motor examination part of MDS-UPDRS. Parkinsonism Relat Disord. 2015;21(12):1421–1426. doi: 10.1016/j.parkreldis.2015.10.006
  • Martínez-Martín P, Rodríguez-Blázquez C, Alvarez M, et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s disease rating scale. Parkinsonism & Related Disorders. 2015;21(1):50–54. doi: 10.1016/j.parkreldis.2014.10.026
  • Antonini A, Martinez-Martin P, Chaudhuri RK, et al. Wearing-off scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2011;26(12):2169–2175. doi: 10.1002/mds.23875
  • Bloem BR, Marinus J, Almeida Q, et al. Measurement instruments to assess posture, gait, and balance in ParkInson’s disease: critique and recommendations: posture, gait, and balance instruments in PD. Mov Disord. 2016;31:1342–1355. doi: 10.1002/mds.26572
  • Regnault A, Boroojerdi B, Meunier J, et al. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson’s disease? Learnings from the Parkinson’s progression marker initiative cohort. J Neurol. 2019;266(8):1927–1936. doi: 10.1007/s00415-019-09348-3
  • Adams JL, Dinesh K, Snyder CW, et al. A real-world study of wearable sensors in Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):106. doi: 10.1038/s41531-021-00248-w
  • Espay AJ, Bonato P, Nahab FB, et al. Technology in Parkinson’s disease: challenges and opportunities: technology in PD. Mov Disord. 2016;31:1272–1282. doi: 10.1002/mds.26642
  • Espay AJ, Hausdorff JM, Sánchez‐Ferro Á, et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov Disord. 2019;34(5):657–663. doi: 10.1002/mds.27671
  • Landers M, Saria S, Espay AJ, et al. Will artificial intelligence replace the movement disorders specialist for diagnosing and managing Parkinson’s disease? J Park Dis. 2021;11(s1):S117–S122. doi: 10.3233/JPD-212545
  • Monje MHG, Foffani G, Obeso J, et al. New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease. Annu Rev Biomed Eng. 2019;21(1):111–143. doi: 10.1146/annurev-bioeng-062117-121036
  • Farzanehfar P, Woodrow H, Horne M. Sensor measurements can characterize fluctuations and wearing off in Parkinson’s disease and guide therapy to improve motor, non-motor and quality of life scores. Front Aging Neurosci. 2022;14:852992. doi: 10.3389/fnagi.2022.852992
  • Heldman DA, Giuffrida JP, Cubo E. Wearable sensors for advanced therapy referral in parkinson’s disease. J Park Dis. 2016;6(3):631–638. doi: 10.3233/JPD-160830
  • Heldman DA, Pulliam CL, Urrea Mendoza E, et al. Computer-guided deep brain stimulation programming for Parkinson’s disease. Neuromodulation: Technol Neural Interface. 2016;19(2):127–132. doi: 10.1111/ner.12372
  • Ossig C, Antonini A, Buhmann C, et al. Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J Neural Transm. 2016;123(1):57–64. doi: 10.1007/s00702-015-1439-8
  • Chandrabhatla AS, Pomeraniec IJ, Ksendzovsky A. Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms. NPJ Digit Med. 2022;5(1):32. doi: 10.1038/s41746-022-00568-y
  • Ferreira-Sánchez MDR, Moreno-Verdú M, Cano-de-la-Cuerda R. Quantitative measurement of rigidity in Parkinson’s disease: a systematic review. Sensors. 2020;20(3):880. doi: 10.3390/s20030880
  • Fujikawa J, Morigaki R, Yamamoto N, et al. Diagnosis and treatment of tremor in Parkinson’s disease using mechanical devices. Life. 2022;13(1):78. doi: 10.3390/life13010078
  • Garcia-Agundez A, Eickhoff C. Towards objective quantification of hand tremors and BradykInesia using contactless sensors: a systematic review. Front Aging Neurosci. 2021;13:716102. doi: 10.3389/fnagi.2021.716102
  • Morgan C, Craddock I, Tonkin EL, et al. Protocol for PD SENSORS: parkinson’s disease symptom evaluation in a naturalistic setting producing outcome measuRes using SPHERE technology. An observational feasibility study of multi-modal multi-sensor technology to measure symptoms and activities of daily living in Parkinson’s disease. BMJ Open. 2020;10:e041303.
  • Reichmann H, Klingelhoefer L, Bendig J. The use of wearables for the diagnosis and treatment of Parkinson’s disease. J Neural Transm. 2023;130(6):783–791. doi: 10.1007/s00702-022-02575-5
  • Merola A, Sturchio A, Hacker S, et al. Technology-based assessment of motor and nonmotor phenomena in Parkinson disease. Expert Rev Neurother. 2018;18(11):825–845. doi: 10.1080/14737175.2018.1530593
  • Bologna M, Paparella G, Fasano A, et al. Evolving concepts on bradykinesia. Brain. 2020;143(3):727–750. doi: 10.1093/brain/awz344
  • Bologna M, Suppa A, Di Stasio F, et al. Neurophysiological studies on atypical parkinsonian syndromes. Parkinsonism Relat Disord. 2017;42:12–21. doi: 10.1016/j.parkreldis.2017.06.017
  • Godwin A, Agnew M, Stevenson J. Accuracy of inertial motion sensors in static, quasistatic, and complex dynamic motion. J Biomech Eng. 2009;131(11):114501. doi: 10.1115/1.4000109
  • Topley M, Richards JG. A comparison of currently available optoelectronic motion capture systems. J Biomech. 2020;106:109820. doi: 10.1016/j.jbiomech.2020.109820
  • Alberto S, Cabral S, Proença J, et al. Validation of quantitative gait analysis systems for Parkinson’s disease for use in supervised and unsupervised environments. BMC neurol. 2021;21(1):331. doi: 10.1186/s12883-021-02354-x
  • Guo Y, Yang J, Liu Y, et al. Detection and assessment of Parkinson’s disease based on gait analysis: a survey. Front Aging Neurosci. 2022;14:916971. doi: 10.3389/fnagi.2022.916971
  • Williams S, Fang H, Relton SD, et al. Accuracy of smartphone video for contactless measurement of hand tremor frequency. Mov Disord Clin Pract. 2021;8(1):69–75. doi: 10.1002/mdc3.13119
  • Scott B, Seyres M, Philp F, et al. Healthcare applications of single camera markerless motion capture: a scoping review. PeerJ. 2022;10:e13517. doi: 10.7717/peerj.13517
  • Artusi CA, Imbalzano G, Sturchio A, et al. Implementation of mobile health technologies in clinical trials of movement disorders: underutilized potential. Neurotherapeutics. 2020;17(4):1736–1746. doi: 10.1007/s13311-020-00901-x
  • FitzGerald JJ, Lu Z, Jareonsettasin P, et al. Quantifying motor impairment in movement disorders. Front Neurosci. 2018;12:202. doi: 10.3389/fnins.2018.00202
  • Sica M, Tedesco S, Crowe C, et al. Continuous home monitoring of Parkinson’s disease using inertial sensors: a systematic review. PLoS One. 2021;16(2):e0246528. doi: 10.1371/journal.pone.0246528
  • Algarni M, Fasano A. The overlap between essential tremor and Parkinson disease. Parkinsonism Relat Disord. 2018;46:S101–S104. doi: 10.1016/j.parkreldis.2017.07.006
  • Bologna M, Leodori G, Stirpe P, et al. Bradykinesia in early and advanced Parkinson’s disease. J Neurol Sci. 2016;369:286–291. doi: 10.1016/j.jns.2016.08.028
  • di Biase L, Summa S, Tosi J, et al. Quantitative analysis of bradykinesia and rigidity in Parkinson’s disease. Front Neurol. 2018;9:121. doi: 10.3389/fneur.2018.00121
  • Gao C, Smith S, Lones M, et al. Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation. Transl Neurodegener. 2018;7(1):18. doi: 10.1186/s40035-018-0124-x
  • Bank PJM, Marinus J, Meskers CGM, et al. Optical hand tracking: a novel technique for the assessment of Bradykinesia in Parkinson’s disease. Mov Disord Clin Pract. 2017;4(6):875–883. doi: 10.1002/mdc3.12536
  • Djuric-Jovicic MD, Bobic VN, Jecmenica-Lukic M, et al. Implementation of continuous wavelet transformation in repetitive finger tapping analysis for patients with PD. 2014 22nd Telecommun Forum Telfor TELFOR. 2014;541–544.
  • Bologna M, Fabbrini G, Marsili L, et al. Facial bradykinesia. J Neurol Neurosurg Psychiatry. 2013;84(6):681–685. doi: 10.1136/jnnp-2012-303993
  • Bologna M, Berardelli I, Paparella G, et al. Altered kinematics of facial emotion expression and emotion recognition deficits are unrelated in Parkinson’s disease. Front Neurol. 2016;7. doi: 10.3389/fneur.2016.00230
  • Bandini A, Orlandi S, Escalante HJ, et al. Analysis of facial expressions in parkinson’s disease through video-based automatic methods. J Neurosci Methods. 2017;281:7–20. doi: 10.1016/j.jneumeth.2017.02.006
  • Pegolo E, Volpe D, Cucca A, et al. Quantitative evaluation of hypomimia in parkinson’s disease: a face tracking approach. Sensors. 2022;22(4):1358. doi: 10.3390/s22041358
  • Park BK, Kwon Y, Kim J-W, et al. AnalySis of viscoelastic properties of wrist joint for quantification of Parkinsonian rigidity. IEEE Trans Neural Syst Rehabil Eng. 2011;19(2):167–176. doi: 10.1109/TNSRE.2010.2091149
  • Caligiuri MP. Portable device for quantifying parkinsonian wrist rigidity. Mov Disord. 1994;9(1):57–63. doi: 10.1002/mds.870090109
  • Papadopoulos A, Iakovakis D, Klingelhoefer L, et al. Unobtrusive detection of Parkinson’s disease from multi-modal and in-the-wild sensor data using deep learning techniques. Sci Rep. 2020;10(1):21370. doi: 10.1038/s41598-020-78418-8
  • Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, et al. A smartphone-based tool for assessing Parkinsonian hand tremor. IEEE J Biomed Health Inform. 2015;19(6):1835–1842. doi: 10.1109/JBHI.2015.2471093
  • di Biase L, Di Santo A, Caminiti ML, et al. Gait analysis in Parkinson’s disease: an overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors. 2020;20(12):3529. doi: 10.3390/s20123529
  • Pistacchi M. Gait analysis and clinical correlations in early Parkinson?s disease. Funct Neurol. 2017;32(1):28. doi: 10.11138/FNeur/2017.32.1.028
  • Ťupa O, Procházka A, Vyšata O, et al. Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS kinect. Biomed Eng Online. 2015;14(1):97. doi: 10.1186/s12938-015-0092-7
  • Zhao Y, Li J, Wang X, et al. A lightweight pose sensing scheme for contactless abnormal gait behavior measurement. Sensors. 2022;22(11):4070. doi: 10.3390/s22114070
  • Mirelman A, Ben or Frank M, Melamed M, et al. Detecting sensitive mobility features for Parkinson’s disease stages via machine learning. Mov Disord. 2021;36(9):2144–2155. doi: 10.1002/mds.28631
  • Dewey DC, Miocinovic S, Bernstein I, et al. Automated gait and balance parameters diagnose and correlate with severity in Parkinson disease. J Neurol Sci. 2014;345(1–2):131–138. doi: 10.1016/j.jns.2014.07.026
  • Caramia C, Torricelli D, Schmid M, et al. IMU-BaSed classification of parkinson’s disease from gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Inform. 2018;22(6):1765–1774. doi: 10.1109/JBHI.2018.2865218
  • Rodríguez-Martín D, Cabestany J, Pérez-López C, et al. A new paradigm in parkinson’s disease evaluation with wearable medical devices: a review of STAT-ONTM. Front Neurol. 2022;13:912343. doi: 10.3389/fneur.2022.912343
  • Tien I, Glaser SD, Aminoff MJ Characterization of gait abnormalities in Parkinson’s disease using a wireless inertial sensor system. 2010 Annu Int Conf IEEE Eng Med Biol; Buenos Aires, Argentina. 2010. p. 3353–3356.
  • Lipsmeier F, Taylor KI, Kilchenmann T, et al. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial: remote PD testing with smartphones. Mov Disord. 2018;33:1287–1297.
  • Di Lazzaro G, Ricci M, Al-Wardat M, et al. Technology-based objective measures detect subclinical axial signs in untreated, de novo Parkinson’s disease. J Park Dis. 2020;10(1):113–122. doi: 10.3233/JPD-191758
  • Marcante A, Di Marco R, Gentile G, et al. Foot pressure wearable sensors for freezing of gait detection in Parkinson’s disease. Sensors. 2020;21(1):128. doi: 10.3390/s21010128
  • Iakovakis D, Mastoras RE, Hadjidimitriou S, et al. Smartwatch-based activity analysis during sleep for early Parkinson’s disease detection. 2020 42nd Annu Int Conf IEEE Eng Med Biol Soc EMBC; Montreal, QC, Canada. 2020. p. 4326–4329.
  • Louter M, Maetzler W, Prinzen J, et al. Accelerometer-based quantitative analysis of axial nocturnal movements differentiates patients with Parkinson’s disease, but not high-risk individuals, from controls. J Neurol Neurosurg Psychiatry. 2015;86(1):32–37. doi: 10.1136/jnnp-2013-306851
  • McGregor S, Churchward P, Soja K, et al. The use of accelerometry as a tool to measure disturbed nocturnal sleep in Parkinson’s disease. Npj Park Dis. 2018;4(1):1. doi: 10.1038/s41531-017-0038-9
  • Bologna M, Espay AJ, Fasano A, et al. Redefining Bradykinesia. Mov Disord. 2023;38(4):551–557. doi: 10.1002/mds.29362
  • Gaßner H, Raccagni C, Eskofier BM, et al. The diagnostic scope of sensor-based gait analysis in atypical Parkinsonism: further observations. Front Neurol. 2019;10:5. doi: 10.3389/fneur.2019.00005
  • Thenganatt MA, Louis ED. Distinguishing essential tremor from Parkinson’s disease: bedside tests and laboratory evaluations. Expert Rev Neurother. 2012;12(6):687–696. doi: 10.1586/ern.12.49
  • Isaias IU, Marotta G, Hirano S, et al. Imaging essential tremor. Mov Disord. 2010;25(6):679–686. doi: 10.1002/mds.22870
  • di Biase L, Brittain J-S, Shah SA, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain. 2017;140:1977–1986. doi: 10.1093/brain/awx104
  • Surangsrirat D, Thanawattano C, Pongthornseri R, et al. Support vector machine classification of Parkinson’s disease and essential tremor subjects based on temporal fluctuation. 2016 38th. Annu Int Conf IEEE Eng Med Biol Soc EMBC; Orlando, FL, USA. 2016. p. 6389–6392.
  • Horne MK, McGregor S, Bergquist F. An objective fluctuation score for Parkinson’s disease. PLoS One. 2015;10:e0124522. doi: 10.1371/journal.pone.0124522
  • Barrantes S, Sánchez Egea AJ, González Rojas HA, et al. Differential diagnosis between Parkinson’s disease and essential tremor using the smartphone’s accelerometer. PLoS One. 2017;12:e0183843. doi: 10.1371/journal.pone.0183843
  • Wile DJ, Ranawaya R, Kiss ZHT. Smart watch accelerometry for analysis and diagnosis of tremor. J Neurosci Methods. 2014;230:1–4. doi: 10.1016/j.jneumeth.2014.04.021
  • Locatelli P, Alimonti D, Traversi G, et al. Classification of essential tremor and Parkinson’s tremor based on a low-power wearable device. Electronics. 2020;9(10):1695. doi: 10.3390/electronics9101695
  • Xing X, Luo N, Li S, et al. Identification and classification of Parkinsonian and essential tremors for diagnosis using machine learning algorithms. Front Neurosci. 2022;16:701632. doi: 10.3389/fnins.2022.701632
  • Zhang B, Huang F, Liu J, et al. A novel posture for better differentiation between parkinson’s tremor and essential tremor. Front Neurosci. 2018;12:317. doi: 10.3389/fnins.2018.00317
  • Hossen A, Muthuraman M, Raethjen J, et al. Discrimination of Parkinsonian tremor from essential tremor by implementation of a wavelet-based soft-decision technique on EMG and accelerometer signals. Biomedical Signal Processing And Control. 2010;5(3):181–188. doi: 10.1016/j.bspc.2010.02.005
  • Rovini E, Maremmani C, Cavallo F. How wearable sensors can support Parkinson’s disease diagnosis and treatment: a systematic review. Front Neurosci. 2017;11:555. doi: 10.3389/fnins.2017.00555
  • Balachandar A, Algarni M, Oliveira L, et al. Are smartphones and machine learning enough to diagnose tremor? J Neurol. 2022;269(11):6104–6115. doi: 10.1007/s00415-022-11293-7
  • Fernandez KM, Roemmich RT, Stegemöller EL, et al. Gait initiation impairments in both essential tremor and Parkinson’s disease. Gait Posture. 2013;38(4):956–961. doi: 10.1016/j.gaitpost.2013.05.001
  • Lin S, Gao C, Li H, et al. Wearable sensor-based gait analysis to discriminate early Parkinson’s disease from essential tremor. J Neurol. 2023;270(4):2283–2301. doi: 10.1007/s00415-023-11577-6
  • Vescio B, Quattrone A, Nisticò R, et al. Wearable devices for assessment of tremor. Front Neurol. 2021;12:680011. doi: 10.3389/fneur.2021.680011
  • Chen L, Cai G, Weng H, et al. More sensitive identification for bradykinesia compared to tremors in Parkinson’s disease based on Parkinson’s KinetiGraph (PKG). Front Aging Neurosci. 2020;12:594701. doi: 10.3389/fnagi.2020.594701
  • Heldman DA, Giuffrida JP, Chen R, et al. The modified bradykinesia rating scale for Parkinson’s disease: reliability and comparison with kinematic measures. Mov Disord. 2011;26(10):1859–1863. doi: 10.1002/mds.23740
  • Espay AJ, Giuffrida JP, Chen R, et al. Differential response of speed, amplitude, and rhythm to dopaminergic medications in Parkinson’s disease. Mov Disord. 2011;26(14):2504–2508. doi: 10.1002/mds.23893
  • Pulliam CL, Heldman DA, Brokaw EB, et al. Continuous assessment of Levodopa response in Parkinson’s disease using wearable motion sensors. IEEE Trans Biomed Eng. 2018;65(1):159–164. doi: 10.1109/TBME.2017.2697764
  • Williams S, Relton SD, Fang H, et al. Supervised classification of bradykinesia in Parkinson’s disease from smartphone videos. Artif Intell Med. 2020;110:101966. doi: 10.1016/j.artmed.2020.101966
  • Vignoud G, Desjardins C, Salardaine Q, et al. Video-based automated assessment of movement parameters consistent with MDS-UPDRS III in Parkinson’s disease. J Park Dis. 2022;12(7):2211–2222. doi: 10.3233/JPD-223445
  • Zampogna A, Manoni A, Asci F, et al. Shedding light on nocturnal movements in parkinson’s disease: evidence from wearable technologies. Sensors. 2020;20(18):5171. doi: 10.3390/s20185171
  • Bhidayasiri R, Trenkwalder C. Getting a good night sleep? The importance of recognizing and treating nocturnal hypokinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2018;50:10–18. doi: 10.1016/j.parkreldis.2018.01.008
  • Bhidayasiri R, Sringean J, Anan C, et al. Quantitative demonstration of the efficacy of night-time apomorphine infusion to treat nocturnal hypokinesia in Parkinson’s disease using wearable sensors. Parkinsonism Relat Disord. 2016;33:S36–S41. doi: 10.1016/j.parkreldis.2016.11.016
  • Sringean J, Taechalertpaisarn P, Thanawattano C, et al. How well do Parkinson’s disease patients turn in bed? Quantitative analysis of nocturnal hypokinesia using multisite wearable inertial sensors. Parkinsonism Relat Disord. 2016;23:10–16. doi: 10.1016/j.parkreldis.2015.11.003
  • Sringean J, Anan C, Thanawattano C, et al. Time for a strategy in night-time dopaminergic therapy? An objective sensor-based analysis of nocturnal hypokinesia and sleeping positions in Parkinson’s disease. J Neurol Sci. 2017;373:244–248. doi: 10.1016/j.jns.2016.12.045
  • Mirelman A, Hillel I, Rochester L, et al. Tossing and turning in bed: nocturnal movements in Parkinson’s disease. Mov Disord. 2020;35(6):959–968. doi: 10.1002/mds.28006
  • Kwon Y, Park S-H, Kim J-W, et al. Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation. Biomed Mater Eng. 2014;24(6):2273–2281. doi: 10.3233/BME-141040
  • Costa P, Rosas MJ, Vaz R, et al. Wrist rigidity assessment during deep brain stimulation surgery. 2015 37th. Annu Int Conf IEEE Eng Med Biol Soc EMBC; Milan, Italy. 2015. p. 3423–3426.
  • Giuffrida JP, Riley DE, Maddux BN, et al. Clinically deployable KinesiaTM technology for automated tremor assessment. Mov Disord. 2009;24:723–730. doi: 10.1002/mds.22445
  • Battista L, Romaniello A. A wearable tool for selective and continuous monitoring of tremor and dyskinesia in Parkinsonian patients. Parkinsonism Relat Disord. 2020;77:43–47. doi: 10.1016/j.parkreldis.2020.06.020
  • Rigas G, Tzallas AT, Tsipouras MG, et al. Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed. 2012;16(3):478–487. doi: 10.1109/TITB.2011.2182616
  • Hill EJ, Mangleburg CG, Alfradique-Dunham I, et al. Quantitative mobility measures complement the MDS-UPDRS for characterization of Parkinson’s disease heterogeneity. Parkinsonism Relat Disord. 2021;84:105–111. doi: 10.1016/j.parkreldis.2021.02.006
  • Mirelman A, Bonato P, Camicioli R, et al. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019;18(7):697–708. doi: 10.1016/S1474-4422(19)30044-4
  • Schlachetzki JCM, Barth J, Marxreiter F, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One. 2017;12(10):e0183989. doi: 10.1371/journal.pone.0183989
  • Micó-Amigo ME, Kingma I, Heinzel S, et al. Potential markers of progression in idiopathic Parkinson’s disease derived from assessment of circular gait with a single body-fixed-sensor: a 5 year longitudinal study. Front Hum Neurosci. 2019;13:59. doi: 10.3389/fnhum.2019.00059
  • Moore ST, Yungher DA, Morris TR, et al. Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry. J Neuroeng Rehabil. 2013;10(1):19. doi: 10.1186/1743-0003-10-19
  • Arami A, Poulakakis-Daktylidis A, Tai YF, et al. Prediction of gait freezing in parkinsonian patients: a binary classification augmented with time series Prediction. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1909–1919. doi: 10.1109/TNSRE.2019.2933626
  • Borzì L, Mazzetta I, Zampogna A, et al. PredIction of freezing of gait in parkinson’s disease using wearables and machine learning. Sensors. 2021;21(2):614. doi: 10.3390/s21020614
  • Palmerini L, Rocchi L, Mazilu S, et al. Identification of characteristic motor patterns preceding freezing of gait in Parkinson’s disease using wearable sensors. Front Neurol. 2017;8:394. doi: 10.3389/fneur.2017.00394
  • Sigcha L, Borzì L, Pavón I, et al. Improvement of performance in freezing of gait detection in Parkinson’s disease using transformer networks and a single waist-worn triaxial accelerometer. Eng Appl Artif Intell. 2022;116:105482. doi: 10.1016/j.engappai.2022.105482
  • Pardoel S, Shalin G, Lemaire ED, et al. Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease. PLoS One. 2021;16(10):e0258544. doi: 10.1371/journal.pone.0258544
  • Samà A, Rodríguez-Martín D, Pérez-López C, et al. Determining the optimal features in freezing of gait detection through a single waist accelerometer in home environments. Pattern Recognit Lett. 2018;105:135–143. doi: 10.1016/j.patrec.2017.05.009
  • Rodríguez-Martín D, Samà A, Pérez-López C, et al. Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer. PLoS One. 2017;12(2):e0171764. doi: 10.1371/journal.pone.0171764
  • Ahmadi A, Destelle F, Unzueta L, et al. 3D human gait reconstruction and monitoring using body-worn inertial sensors and kinematic modeling. IEEE Sensors J. 2016;16(24):8823–8831. doi: 10.1109/JSEN.2016.2593011
  • Soltaninejad S, Cheng I, Basu AK-F. Kin-FOG: Automatic Simulated Freezing of Gait (FOG) assessment system for Parkinson’s disease. Sensors. 2019;19(10):2416. doi: 10.3390/s19102416
  • Bjornestad A, Forsaa EB, Pedersen KF, et al. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat Disord. 2016;22:48–53. doi: 10.1016/j.parkreldis.2015.11.007
  • Rodríguez-Molinero A, Pérez-López C, Samà A, et al. A kinematic sensor and algorithm to detect motor fluctuations in Parkinson disease: validation study under real conditions of use. JMIR Rehabil Assist Technol. 2018;5(1):e8. doi: 10.2196/rehab.8335
  • Pérez-López C, Samà A, Rodríguez-Martín D, et al. Dopaminergic-induced dyskinesia assessment based on a single belt-worn accelerometer. Artif Intell Med. 2016;67:47–56. doi: 10.1016/j.artmed.2016.01.001
  • Rodríguez-Molinero A, Samà A, Pérez-López C, et al. Analysis of correlation between an accelerometer-based algorithm for detecting Parkinsonian Gait and UPDRS subscales. Front Neurol. 2017;8:431. doi: 10.3389/fneur.2017.00431
  • Ghoraani B, Hssayeni MD, Bruack MM, et al. Multilevel features for sensor-based assessment of motor fluctuation in Parkinson’s disease subjects. IEEE J Biomed Health Inform. 2020;24(5):1284–1295. doi: 10.1109/JBHI.2019.2943866
  • Barrachina-Fernández M, Maitín AM, Sánchez-Ávila C, et al. Wearable technology to detect motor fluctuations in Parkinson’s disease patients: current state and challenges. Sensors. 2021;21(12):4188. doi: 10.3390/s21124188
  • Bayés À, Samá A, Prats A, et al. A “HOLTER” for Parkinson’s disease: validation of the ability to detect on-off states using the REMPARK system. Gait Posture. 2018;59:1–6. doi: 10.1016/j.gaitpost.2017.09.031
  • Ossig C, Gandor F, Fauser M, et al. Correlation of quantitative motor state assessment using a kinetograph and patient diaries in advanced PD: data from an observational study. PLoS One. 2016;11(8):e0161559. doi: 10.1371/journal.pone.0161559
  • Griffiths RI, Kotschet K, Arfon S, et al. Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Park Dis. 2012;2(1):47–55. doi: 10.3233/JPD-2012-11071
  • Keijsers NLW, Horstink MWIM, Gielen SCAM. Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov Disord. 2003;18(1):70–80. doi: 10.1002/mds.10310
  • Lopane G, Mellone S, Chiari L, et al. Dyskinesia detection and monitoring by a single sensor in patients with Parkinson’s disease: single sensor and dyskinesias in PD. Mov Disord. 2015;30:1267–1271. doi: 10.1002/mds.26313
  • Tsipouras MG, Tzallas AT, Rigas G, et al. An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med. 2012;55(2):127–135. doi: 10.1016/j.artmed.2012.03.003
  • Pulliam CL, Burack MA, Heldman DA, et al. Motion sensor Dyskinesia assessment during activities of daily living. J Park Dis. 2014;4(4):609–615. doi: 10.3233/JPD-140348
  • Rodríguez-Molinero A, Pérez-López C, Samà A, et al. Estimating dyskinesia severity in Parkinson’s disease by using a waist-worn sensor: concurrent validity study. Sci Rep. 2019;9(1):13434. doi: 10.1038/s41598-019-49798-3
  • Li MH, Mestre TA, Fox SH, et al. Automated assessment of levodopa-induced dyskinesia: evaluating the responsiveness of video-based features. Parkinsonism Relat Disord. 2018;53:42–45.
  • Antonini A, Stoessl AJ, Kleinman LS, et al. Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson’s disease: a multi-country Delphi-panel approach. Curr Med Res Opin. 2018;34(12):2063–2073. doi: 10.1080/03007995.2018.1502165
  • Bogetofte H, Alamyar A, Blaabjerg M, et al. Levodopa therapy for Parkinson’s disease: history, current status and perspectives. CNS Neurol Disord Drug Targets. 2020;19(8):572–583. doi: 10.2174/1871527319666200722153156
  • Khodakarami H, Shokouhi N, Horne M. A method for measuring time spent in bradykinesia and dyskinesia in people with Parkinson’s disease using an ambulatory monitor. J Neuroeng Rehabil. 2021;18(1):116. doi: 10.1186/s12984-021-00905-4
  • Güney G, Jansen TS, Dill S, et al. Video-based hand movement analysis of ParkinsOn patients before and after medication using high-frame-rate videos and mediapipe. Sensors. 2022;22(20):7992. doi: 10.3390/s22207992
  • Guerra A, Colella D, Giangrosso M, et al. Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease. Brain. 2022;145(1):224–236. doi: 10.1093/brain/awab257
  • Bologna M, Guerra A, Paparella G, et al. Neurophysiological correlates of bradykinesia in Parkinson’s disease. Brain J Neurol. 2018;141(8):2432–2444. doi: 10.1093/brain/awy155
  • van den Noort JC, Verhagen R, van Dijk KJ, et al. Quantification of hand motor symptoms in Parkinson’s disease: a proof-of-principle study using inertial and force sensors. Ann Biomed Eng. 2017;45(10):2423–2436. doi: 10.1007/s10439-017-1881-x
  • Suppa A, Kita A, Leodori G, et al. L-DOPA and freezing of gait in Parkinson’s disease: objective assessment through a wearable wireless system. Front Neurol. 2017;8:406. doi: 10.3389/fneur.2017.00406
  • Isaacson SH, Boroojerdi B, Waln O, et al. Effect of using a wearable device on clinical decision-making and motor symptoms in patients with Parkinson’s disease starting transdermal rotigotine patch: a pilot study. Parkinsonism Relat Disord. 2019;64:132–137. doi: 10.1016/j.parkreldis.2019.01.025
  • Bhidayasiri R, Sringean J, Chaiwong S, et al. Rotigotine for nocturnal hypokinesia in Parkinson’s disease: quantitative analysis of efficacy from a randomized, placebo-controlled trial using an axial inertial sensor. Parkinsonism Relat Disord. 2017;44:124–128. doi: 10.1016/j.parkreldis.2017.08.010
  • Farzanehfar P, Woodrow H, Braybrook M, et al. Objective measurement in routine care of people with Parkinson’s disease improves outcomes. Npj Park Dis. 2018;4(1):10. doi: 10.1038/s41531-018-0046-4
  • Woodrow H, Horne MK, Fernando CV, et al. A blinded, controlled trial of objective measurement in Parkinson’s disease. NPJ Parkinsons Dis. 2020;6(1):35. doi: 10.1038/s41531-020-00136-9
  • Marxreiter F, Gaßner H, Borozdina O, et al. Sensor-based gait analysis of individualized improvement during apomorphine titration in Parkinson’s disease. J Neurol. 2018;265(11):2656–2665. doi: 10.1007/s00415-018-9012-7
  • Múrias Lopes E, Vilas-Boas MDC, Dias D, et al. iHandu: a novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery. Sensors. 2020;20(2):331. doi: 10.3390/s20020331
  • Wu J, Yu N, Yu Y, et al. Intraoperative quantitative measurements for Bradykinesia evaluation during deep brain stimulation surgery using leap motion controller: a pilot study. Park Dis. 2021;2021:1–7. doi: 10.1155/2021/6639762
  • Yu N, Yu Y, Lin J, et al. A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery. Comput Methods Programs Biomed. 2022;225:107005. doi: 10.1016/j.cmpb.2022.107005
  • Sasaki F, Oyama G, Sekimoto S, et al. Closed-loop programming using external responses for deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2021;84:47–51. doi: 10.1016/j.parkreldis.2021.01.023
  • Wenzel GR, Roediger J, Brücke C, et al. CLOVER-DBS: algorithm-guided deep brain stimulation-programming based on external sensor feedback evaluated in a prospective, randomized, crossover, double-blind, two-center study. J Park Dis. 2021;11(4):1887–1899. doi: 10.3233/JPD-202480
  • Heldman DA, Espay AJ, LeWitt PA, et al. Clinician versus machine: reliability and responsiveness of motor endpoints in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(6):590–595. doi: 10.1016/j.parkreldis.2014.02.022
  • Pulliam CL, Heldman DA, Orcutt TH, et al. Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(4):378–382. doi: 10.1016/j.parkreldis.2015.01.018
  • Lim I, van Wegen E, de Goede C, et al. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil. 2005;19(7):695–713. doi: 10.1191/0269215505cr906oa
  • Sweeney D, Quinlan L, Browne P, et al. A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease. Sensors. 2019;19(6):1277. doi: 10.3390/s19061277
  • Dvorani A, Waldheim V, Jochner MCE, et al. Real-time detection of freezing motions in Parkinson’s patients for adaptive gait phase synchronous cueing. Front Neurol. 2021;12:720516. doi: 10.3389/fneur.2021.720516
  • Mazilu S, Calatroni A, Gazit E, et al. Prediction of freezing of gait in parkinson’s from physiological wearables: an exploratory study. IEEE J Biomed Health Inform. 2015;19(6):1843–1854. doi: 10.1109/JBHI.2015.2465134
  • Pablo MM, Carmen RB, Maria JF, et al. Guide to Assessment Scales in Parkinson’s Disease. Springer International Publishing AG; 2014. doi: 10.1007/978-1-907673-88-7
  • Tarakad A. Clinical rating scales and quantitative assessments of movement disorders. Neurol Clin. 2020;38(2):231–254. doi: 10.1016/j.ncl.2019.12.001
  • Post B, Merkus MP, de Bie RMA, et al. Unified Parkinson’s disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov Disord. 2005;20(12):1577–1584. doi: 10.1002/mds.20640
  • Willis AW, Schootman M, Evanoff BA, et al. Neurologist care in Parkinson disease: a utilization, outcomes, and survival study. Neurology. 2011;77(9):851–857. doi: 10.1212/WNL.0b013e31822c9123
  • Evers LJW, Krijthe JH, Meinders MJ, et al. Measuring Parkinson’s disease over time: the real-world within-subject reliability of the MDS-UPDRS. Mov Disord. 2019;34(10):1480–1487. doi: 10.1002/mds.27790
  • Paradis E, Sutkin G. Beyond a good story: from Hawthorne effect to reactivity in health professions education research. Med Educ. 2017;51(1):31–39. doi: 10.1111/medu.13122
  • Warmerdam E, Hausdorff JM, Atrsaei A, et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020;19(5):462–470. doi: 10.1016/S1474-4422(19)30397-7
  • Holden SK, Finseth T, Sillau SH, et al. Progression of MDS-UPDRS scores over five years in De Novo Parkinson disease from the Parkinson’s progression markers initiative cohort. Mov Disord Clin Pract. 2018;5(1):47–53. doi: 10.1002/mdc3.12553
  • Richards M, Marder K, Cote L, et al. Reliability of symptom onset assessment in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 1994;9:340–342. doi: 10.1002/mds.870090313
  • Odin P, Chaudhuri KR, Volkmann J, et al. Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson’s disease. Npj Park Dis. 2018;4(1):14. doi: 10.1038/s41531-018-0051-7
  • Hulzinga F, Nieuwboer A, Dijkstra BW, et al. The new freezing of gait questionnaire: unsuitable as an outcome in clinical trials? Mov Disord Clin Pract. 2020;7(2):199–205. doi: 10.1002/mdc3.12893
  • Shine JM, Matar E, Bolitho SJ, et al. Modeling freezing of gait in Parkinson’s disease with a virtual reality paradigm. Gait Posture. 2013;38(1):104–108. doi: 10.1016/j.gaitpost.2012.10.026
  • Biundo R, Weis L, Fiorenzato E, et al. CognItive rehabilitation in Parkinson’s disease: is it feasible? Arch Clin Neuropsychol. 2017;32(7):840–860. doi: 10.1093/arclin/acx092
  • Goetz CG, Stebbins GT, Blasucci LM, et al. Efficacy of a patient-training videotape on motor fluctuations for on-off diaries in parkinson’s disease. Mov Disord. 1997;12(6):1039–1041. doi: 10.1002/mds.870120631
  • Jenkinson PM, Edelstyn NMJ, Stephens R, et al. Why are some parkinson disease patients unaware of their Dyskinesias? Cogn Behav Neurol. 2009;22(2):117–121. doi: 10.1097/WNN.0b013e3181a722b0
  • Papapetropoulos S. Patient diaries as a clinical endpoint in Parkinson’s disease clinical trials. CNS Neurosci Ther. 2012;18(5):380–387. doi: 10.1111/j.1755-5949.2011.00253.x (Spyros).
  • Stone R. Coincidence or Connection? Science. 2002;296(5567):451–452. doi: 10.1126/science.296.5567.451
  • Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration — an update. Nat Rev Neurol. 2018;14(1):40–55. doi: 10.1038/nrneurol.2017.157
  • Antonini A, Bravi D, Sandre M, et al. Immunization therapies for Parkinson’s disease: state of the art and considerations for future clinical trials. Expert Opin Investig Drugs. 2020;29(7):685–695. doi: 10.1080/13543784.2020.1771693
  • Jensen PH, Schlossmacher MG, Stefanis L. Who ever said it would be easy? Reflecting on two clinical trials targeting α‐synuclein. Mov Disord. 2023;38(3):378–384. doi: 10.1002/mds.29318
  • Lang AE, Siderowf AD, Macklin EA, et al. TriAl of cinpanemab in early Parkinson’s disease. N Engl J Med. 2022;387(5):408–420. doi: 10.1056/NEJMoa2203395
  • Pagano G, Taylor KI, Anzures-Cabrera J, et al. TriAl of prasinezumab in early-stage parkinson’s disease. N Engl J Med. 2022;387(5):421–432. doi: 10.1056/NEJMoa2202867
  • Ancona S, Faraci FD, Khatab E, et al. Wearables in the home-based assessment of abnormal movements in Parkinson’s disease: a systematic review of the literature. J Neurol. 2022;269(1):100–110. doi: 10.1007/s00415-020-10350-3
  • Antonini A, Reichmann H, Gentile G, et al. Toward objective monitoring of Parkinson’s disease motor symptoms using a wearable device: wearability and performance evaluation of PDMonitor®. Front Neurol. 2023;14:1080752.
  • Antonini A, Odin P, Schmidt P, et al. Validation and clinical value of the MANAGE-PD tool: a clinician-reported tool to identify Parkinson’s disease patients inadequately controlled on oral medications. Parkinsonism Relat Disord. 2021;92:59–66. doi: 10.1016/j.parkreldis.2021.10.009
  • Luquin M-R, Kulisevsky J, Martinez-Martin P, et al. Consensus on the definition of advanced parkinson’s disease: a neurologists-based delphi study (CEPA Study). Park Dis. 2017;2017:1–8. doi: 10.1155/2017/4047392
  • Cosentino C, Baccini M, Putzolu M, et al. Effectiveness of physiotherapy on freezing of gait in parkinson’s disease: a systematic review and meta-analyses. Mov Disord. 2020;35(4):523–536. doi: 10.1002/mds.27936
  • Gao C, Liu J, Tan Y, et al. Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl Neurodegener. 2020;9(1):12. doi: 10.1186/s40035-020-00191-5
  • Kwok JYY, Smith R, Chan LML, et al. Managing freezing of gait in Parkinson’s disease: a systematic review and network meta-analysis. J Neurol. 2022;269(6):3310–3324. doi: 10.1007/s00415-022-11031-z
  • Antonini A, Nitu B. Apomorphine and levodopa infusion for motor fluctuations and dyskinesia in advanced Parkinson disease. J Neural Transm. 2018;125(8):1131–1135. doi: 10.1007/s00702-018-1906-0
  • Virbel-Fleischman C, Mousin F, Liu S, et al. Symptoms assessment and decision to treat patients with advanced Parkinson’s disease based on wearables data. NPJ Parkinsons Dis. 2023;9(1):45. doi: 10.1038/s41531-023-00489-x
  • Artusi CA, Mishra M, Latimer P, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Disord. 2018;46:S53–S56.
  • Del Din S, Godfrey A, Mazzà C, et al. Free-living monitoring of parkinson’s disease: lessons from the field: wearable technology for parkinson’s disease. Mov Disord. 2016;31:1293–1313. doi: 10.1002/mds.26718
  • Soh EML, Neo S, Saffari SE, et al. Longitudinal healthcare utilization and costs in Parkinson’s disease: pre-diagnosis to 9 years after. J Park Dis. 2022;12(3):957–966. doi: 10.3233/JPD-212982
  • Fasano A, Antonini A, Katzenschlager R, et al. Management of advanced therapies in parkinson’s disease patients in times of humanitarian crisis: the COVID-19 experience. Mov Disord Clin Pract. 2020;7(4):361–372. doi: 10.1002/mdc3.12965

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.