2,281
Views
0
CrossRef citations to date
0
Altmetric
Review

Long-term central nervous system (CNS) consequences of COVID-19 in children

, & ORCID Icon
Pages 703-720 | Received 23 May 2023, Accepted 18 Jul 2023, Published online: 07 Aug 2023

References

  • Zhu N, Zhang D, Wang W et al, 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382(8):727–733. doi: 10.1056/NEJMoa2001017
  • World Health Organization. WHO Coronavirus (COVID-19) dashboard. 2023.
  • Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) [Updated 2023 Jan 9]. In: StatPearls [Internet]. (Treasure Island (FL): StatPearls Publishing; 2020Jan. https://www.ncbi.nlm.nih.gov/books/NBK554776/
  • Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Inter J Infect Dis. 2020;94:154–155. doi: 10.1016/j.ijid.2020.03.020
  • Alimohamadi Y, Sepandi M, Taghdir M, et al. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J Prev Med Hyg. 2020. doi: 10.18502/ijph.v49i7.3574
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239. doi: 10.1001/jama.2020.2648
  • Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr Int J Paediatr. 2020.
  • Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. 2021;106(5):429–439. doi: 10.1136/archdischild-2020-320338
  • Pellegrino R, Chiappini E, Licari A, et al. Prevalence and clinical presentation of long COVID in children: a systematic review. Eur J Pediatr. 2022;181(12):3995–4009. doi: 10.1007/s00431-022-04600-x
  • Gottlieb M, Bridwell R, Ravera J, et al. Multisystem inflammatory syndrome in children with COVID-19. Am J Emerg Med. 2021;49:148–152. DOI:10.1016/j.ajem.2021.05.076
  • Hoste L, Van Paemel R, Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: a systematic review. Eur J Pediatr. 2021;180(7):2019–2034. doi: 10.1007/s00431-021-03993-5
  • Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021;17(6):315–332. doi: 10.1038/s41584-021-00608-z
  • Rytter MJH. Difficult questions about long COVID in children. Lancet Child Adolesc Health. 2022;6(9):595–597. doi: 10.1016/S2352-4642(22)00167-5
  • NICE. COVID19 rapid guideline: Managing the long term effects of COVID19. National Institute for Health and Care Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN) and Royal College of General Practitioners (RCGP). 2022.
  • Stephenson T, Allin B, Nugawela MD, et al. Long COVID (post-COVID-19 condition) in children: a modified Delphi process. Arch Dis Child. 2022;107(7):674–680. doi: 10.1136/archdischild-2021-323624
  • Fainardi V, Meoli A, Chiopris G, et al. Long COVID in children and adolescents. Life. 2022;12(2):285. doi: 10.3390/life12020285
  • Buonsenso D, Munblit D, De Rose C, et al. Preliminary evidence on long COVID in children. Acta Paediatrica, International Journal of Paediatrics. 2021; p. 110.
  • Stephenson T, Pinto Pereira SM, Shafran R, et al. Physical and mental health 3 months after SARS-CoV-2 infection (long COVID) among adolescents in England (CLoCk): a national matched cohort study. Lancet Child Adolesc Health. 2022;6(4):230–239. doi: 10.1016/S2352-4642(22)00022-0
  • Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle NC, et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep. 2022;12(1):12. doi: 10.1038/s41598-022-13495-5
  • Osmanov IM, Spiridonova E, Bobkova P, et al. Risk factors for post-COVID-19 condition in previously hospitalised children using the ISARIC global follow-up protocol: a prospective cohort study. Eur Respir J. 2022;59(2):2101341. doi: 10.1183/13993003.01341-2021
  • Pazukhina E, Andreeva M, Spiridonova E, et al. Prevalence and risk factors of post-COVID-19 condition in adults and children at 6 and 12 months after hospital discharge: a prospective, cohort study in Moscow (Stop COVID). SSRN Electron J. 2022. doi:10.2139/ssrn.4020142.
  • de Sousa Moreira JL, Barbosa SMB, Vieira JG, et al. The psychiatric and neuropsychiatric repercussions associated with severe infections of COVID-19 and other coronaviruses. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110159. doi: 10.1016/j.pnpbp.2020.110159
  • Xu J, Lazartigues E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 Virus. Cell Mol Neurobiol. 2022;42(1):305–309. doi: 10.1007/s10571-020-00915-1
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052
  • Hingorani KS, Bhadola S, Cervantes-Arslanian AM. COVID-19 and the brain. Trends Cardiovasc Med. 2022;32(6):323–330. doi: 10.1016/j.tcm.2022.04.004
  • Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422. doi: 10.1186/s13054-020-03120-0
  • Soltani S, Tabibzadeh A, Zakeri A, et al. COVID-19 associated central nervous system manifestations, mental and neurological symptoms: a systematic review and meta-analysis. Rev Neurosci. 2021;32(3):351–361. doi: 10.1515/revneuro-2020-0108
  • Yachou Y, El Idrissi A, Belapasov V, et al. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41(10):2657–2669. doi: 10.1007/s10072-020-04575-3
  • MORI I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59(4):338–349. doi: 10.4149/av_2015_04_338
  • Tse H, KKW T, Wen X, et al. Clinical and virological factors associated with Viremia in pandemic influenza A/H1N1/2009 virus infection. Plos One. 2011;6:e22534. doi: 10.1371/journal.pone.0022534
  • Lau K-K, Yu W-C, Chu C-M, et al. Possible central nervous system infection by SARS Coronavirus. Emerg Infect Dis. 2004;10(2):342–344. doi: 10.3201/eid1002.030638
  • Hung ECW, Chim SSC, Chan PKS, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–2109. doi: 10.1373/clinchem.2003.025437
  • Yu F, Du L, Ojcius DM, et al. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect. 2020;22(2):74–79. doi: 10.1016/j.micinf.2020.01.003
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8
  • Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):6. doi: 10.1126/sciadv.abc5801
  • Song W-J, Hui CKM, Hull JH, et al. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir Med. 2021;9(5):533–544. doi: 10.1016/S2213-2600(21)00125-9
  • Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175. doi: 10.1038/s41593-020-00758-5
  • Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Inter J Infect Dis. 2020;94:55–58. DOI:10.1016/j.ijid.2020.03.062
  • Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol. 2021;268(9):3059–3071. doi: 10.1007/s00415-021-10406-y
  • Benameur K, Agarwal A, Auld SC, et al. Encephalopathy and Encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerg Infect Dis. 2020;26(9):2016–2021. doi: 10.3201/eid2609.202122
  • Bernard‐Valnet R, Pizzarotti B, Anichini A, et al. Two patients with acute meningoencephalitis concomitant with SARS‐CoV‐2 infection. Eur J Neurol. 2020;27(9):27. doi: 10.1111/ene.14298
  • Wong RSY. Inflammation in COVID-19: from pathogenesis to treatment. Int J Clin Exp Pathol. 2021;14(7):831–844.
  • Fang P, Fang L, Zhang H, et al. Functions of coronavirus accessory proteins: Overview of the state of the art. Viruses. 2021;13(6):1139. doi: 10.3390/v13061139
  • Zandi M, Shafaati M, Kalantar-Neyestanaki D, et al. The role of SARS-CoV-2 accessory proteins in immune evasion. Biomed Pharmacother. 2022;156:113889. doi: 10.1016/j.biopha.2022.113889
  • Zandi M. Orf9c and ORF10 as accessory proteins of SARS-CoV-2 in immune evasion. Nat Rev Immunol. 2022;22(5):331–331. doi: 10.1038/s41577-022-00715-2
  • Stefanou M-I, Palaiodimou L, Bakola E, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis. 2022;13:204062232210768. doi: 10.1177/20406223221076890
  • Guedj E, Campion JY, Dudouet P, et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823–2833. doi: 10.1007/s00259-021-05215-4
  • Papadopoulou M, Bakola E, Papapostolou A, et al. Autonomic dysfunction in long-COVID syndrome: a neurophysiological and neurosonology study. J Neurol. 2022;269(9):4611–4612. doi: 10.1007/s00415-022-11172-1
  • Stam H, Stucki G, Bickenbach J. COVID-19 and post intensive care syndrome: A call for action. J Rehabil Med. 2020;52(4):jrm00044. doi: 10.2340/16501977-2677
  • Parker AJ, Humbir A, Tiwary P, et al. Recovery after critical illness in COVID-19 ICU survivors. Br J Anaesth. 2021;126(6):e217–e219. doi: 10.1016/j.bja.2021.03.005
  • Bartley CM, Johns C, Ngo TT, et al. Anti–SARS-CoV-2 and autoantibody profiles in the cerebrospinal fluid of 3 teenaged patients with COVID-19 and subacute neuropsychiatric symptoms. JAMA Neurol. 2021;78(12):1503. doi: 10.1001/jamaneurol.2021.3821
  • Blankenburg J, Wekenborg MK, Reichert J, et al. Comparison of mental health outcomes in seropositive and seronegative adolescents during the COVID-19 pandemic. Sci Rep. 2022;12(1):2246. doi: 10.1038/s41598-022-06166-y
  • Buonsenso D, Pujol FE, Munblit D, et al. Clinical characteristics, activity levels and mental health problems in children with long coronavirus disease: a survey of 510 children. Future Microbiol. 2022;17(8):577–588. doi: 10.2217/fmb-2021-0285
  • Elvan-Tuz A, Karadag-Oncel E, Kiran S, et al. Prevalence of Anosmia in 10.157 pediatric COVID-19 cases. Pediatric Infectious Disease Journal. 2022;41:p. 473–477.
  • LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol. 2021;78(5):536. doi: 10.1001/jamaneurol.2021.0504
  • Meeder R, Adhikari S, Sierra-Cintron K, et al. New-onset mania and psychosis in adolescents in the context of COVID-19 infection. Cureus. 2022. doi:10.7759/cureus.24322.
  • Molteni E, Sudre CH, Canas LS, et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc Health. 2021;5:708–718.
  • Ngo B, Lapp SA, Siegel B, et al. Cerebrospinal fluid cytokine, chemokine, and SARS-CoV-2 antibody profiles in children with neuropsychiatric symptoms associated with COVID-19. Mult Scler Relat Disord. 2021;55:55. doi: 10.1016/j.msard.2021.103169
  • Parisi GF, Brindisi G, Indolfi C, et al. COVID-19, anosmia, and ageusia in atopic children. Pediatr Allergy Immunol. 2022;33(S27):99–101. doi: 10.1111/pai.13644
  • Pavone P, Ceccarelli M, Marino S, et al. SARS-CoV-2 related paediatric acute-onset neuropsychiatric syndrome. Lancet Child Adolesc Health. 2021;5(6):e19–e21. doi: 10.1016/S2352-4642(21)00135-8
  • Radtke T, Ulyte A, Puhan MA, et al. Long-term symptoms After SARS-CoV-2 Infection in children and adolescents. JAMA. 2021;326(9):869. doi: 10.1001/jama.2021.11880
  • Roge I, Smane L, Kivite-Urtane A, et al. Comparison of persistent symptoms after COVID-19 and other non-SARS-CoV-2 infections in children. Front Pediatr. 2021;9. doi: 10.3389/fped.2021.752385
  • Savino R, Polito AN, Arcidiacono G, et al. Neuropsychiatric disorders in pediatric long COVID-19: A case series. Brain Sci. 2022;12(5):514. doi: 10.3390/brainsci12050514
  • Smane L, Stars I, Pucuka Z, et al. Persistent clinical features in paediatric patients after SARS-CoV-2 virological recovery: a retrospective population-based cohort study from a single centre in Latvia. BMJ Paediatr Open. 2020;4(1):e000905. doi: 10.1136/bmjpo-2020-000905
  • Sterky E, Olsson‐Åkefeldt S, Hertting O, et al. Persistent symptoms in Swedish children after hospitalisation due to COVID‐19. Acta Paediatr. 2021;110(9):2578–2580. doi: 10.1111/apa.15999
  • Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–827. doi: 10.1016/S2215-0366(22)00260-7
  • Taskesen B, Kardas O, Yılmaz K. Evaluation of depression, anxiety and posttraumatic stress response levels of children and adolescents treated with COVID-19. Eur J Pediatr. 2022;182(2):567–574. doi: 10.1007/s00431-022-04713-3
  • Westman G, Zelano J. Epilepsy diagnosis after COVID-19: A population-wide study. Seizure. 2022;101:11–14. doi:10.1016/j.seizure.2022.07.005
  • Antoon JW, Hall M, Howard LM, et al. COVID-19 and acute neurologic complications in children. Pediatrics. 2022;150(5):150. doi: 10.1542/peds.2022-058167
  • Fink EL, Robertson CL, Wainwright MS, et al. Prevalence and risk factors of neurologic manifestations in hospitalized children diagnosed with acute SARS-CoV-2 or MIS-C. Pediatr Neurol. 2022;128:33–44. doi: 10.1016/j.pediatrneurol.2021.12.010
  • Siow I, Lee KS, Zhang JJY, et al. Encephalitis as a neurological complication of COVID‐19: A systematic review and meta‐analysis of incidence, outcomes, and predictors. Eur J Neurol. 2021;28(10):3491–3502. doi: 10.1111/ene.14913
  • Singer TG, Evankovich KD, Fisher K, et al. Coronavirus infections in the nervous system of children: A scoping review making the case for long-term neurodevelopmental surveillance. Pediatr Neurol. 2021;117:47–63. DOI:10.1016/j.pediatrneurol.2021.01.007
  • Ashkenazi-Hoffnung L, Shmueli E, Ehrlich S, et al. Long COVID in children: Observations from a designated pediatric clinic. Pediatr Infect Dis J. 2021;40(12):e509–e511. doi: 10.1097/INF.0000000000003285
  • Brackel CLH, Lap CR, Buddingh EP, et al. Pediatric long-COVID: An overlooked phenomenon? Pediatr Pulmonol. 2021;56(8):2495–2502. doi: 10.1002/ppul.25521
  • Brasseler M, Schönecker A, Steindor M, et al. Development of restrictive eating disorders in children and adolescents with long-COVID-associated smell and taste dysfunction. Front Pediatr. 2022;10:10. doi: 10.3389/fped.2022.1022669
  • Guido CA, Lucidi F, Midulla F, et al. Neurological and psychological effects of long COVID in a young population: A cross-sectional study. Front Neurol. 2022;13. doi: 10.3389/fneur.2022.925144.
  • Javed S, Shad MU. COVID-Related psychosis in adolescents: A case-based review. Prim Care Companion CNS Disord. 2021;23(6). doi: 10.4088/PCC.21nr03107
  • Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr Int J Paediatr. 2020;109(6):1088–1095. doi: 10.1111/apa.15270
  • Werner S, Doerfel C, Biedermann R, et al. The CSHQ-DE questionnaire uncovers relevant sleep disorders in children and adolescents with long COVID. Children. 2022;9(9):1419. doi: 10.3390/children9091419
  • Shimohata T. Neuro‐COVID‐19. Clin Exp Neuroimmunol. 2022;13(1):17–23. doi: 10.1111/cen3.12676
  • Izquierdo-Pujol J, Moron-Lopez S, Dalmau J, et al. Post COVID-19 condition in children and adolescents: An emerging problem. Front Pediatr. 2022;10:10. doi: 10.3389/fped.2022.894204
  • Mutlu C, Taşpolat ER. Persistent neurocognitive problems related to COVID-19 in children and adolescents. Cam And Sakura Medical Journal. 2022;2(2):38–48. doi: 10.4274/csmedj.galenos.2022.2022-7-1
  • Borch L, Holm M, Knudsen M, et al. Long COVID symptoms and duration in SARS-CoV-2 positive children — a nationwide cohort study. Eur J Pediatr. 2022;181.
  • Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders 3rd edition. Cephalalgia. 2018;38:1–211.
  • Tana C, Bentivegna E, Cho S-J, et al. Long COVID headache. J Headache Pain. 2022;23(1):93. doi: 10.1186/s10194-022-01450-8
  • Behnood SA, Shafran R, Bennett SD, et al. Persistent symptoms following SARS-CoV-2 infection amongst children and young people: A meta-analysis of controlled and uncontrolled studies. J Infect. 2022;84(2):158–170. doi: 10.1016/j.jinf.2021.11.011
  • Dufort EM, Koumans EH, Chow EJ, et al. Multisystem inflammatory syndrome in children in New York State. N Engl J Med. 2020;383(4):347–358. doi: 10.1056/NEJMoa2021756
  • Fernández-de-Las-Peñas C, Gómez-Mayordomo V, Cuadrado ML, et al. The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: A case-control study. Cephalalgia. 2021;41(13):1332–1341. doi: 10.1177/03331024211020404
  • Buonsenso D, Martino L, Morello R, et al. Chronic olfactory dysfunction in children with long COVID: A retrospective study. Children (Basel). 2022;9(8):1251. doi: 10.3390/children9081251
  • Altundag A, Saatci O, Sanli DET, et al. The temporal course of COVID-19 anosmia and relation to other clinical symptoms. Eur Arch Oto-Rhino-Laryngology. 2021;278(6):1891–1897. doi: 10.1007/s00405-020-06496-5
  • Pousa PA, Mendonça TSC, Oliveira EA, et al. Extrapulmonary manifestations of COVID-19 in children: a comprehensive review and pathophysiological considerations. J Pediatr (Rio J). 2021;97(2):116–139. doi: 10.1016/j.jped.2020.08.007
  • Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist. 2021;27(6):582–603. doi: 10.1177/1073858420956905
  • Bryche B, St Albin A, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020 Mar 89:579–586.
  • Tsivgoulis G, Fragkou PC, Lachanis S, et al. Olfactory bulb and mucosa abnormalities in persistent COVID‐19‐induced anosmia: a magnetic resonance imaging study. Eur J Neurol. 2021;28(1):28. doi: 10.1111/ene.14537
  • Kandemirli SG, Altundag A, Yildirim D, et al. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol. 2021;28(1):28–35. doi: 10.1016/j.acra.2020.10.006
  • Milanetti E, Miotto M, Di Rienzo L, et al. In-silico evidence for two receptors-based strategy of SARS-CoV-2. Front Mol Biosci. 2021 June;9(8): 690655 .
  • Park SY, Yun SG, Shin JW, et al. Persistent severe acute respiratory syndrome coronavirus 2 detection after resolution of coronavirus disease 2019-associated symptoms/signs. Korean J Internal Medi. 2020;35(4):793–796. doi: 10.3904/kjim.2020.203
  • Yang JR, Deng DT, Wu N, et al. Persistent viral RNA positivity during the recovery period of a patient with SARS-CoV-2 infection. J Med Virol. 2020;92(9):1681–1683. doi: 10.1002/jmv.25940
  • Sandler CX, Wyller VBB, Moss-Morris R, et al. Long COVID and post-infective fatigue syndrome: A review. Open Forum Infect Dis. 2021;8(10):ofab440. doi: 10.1093/ofid/ofab440
  • De Nardi L, Lanzetta MA, Ghirigato E, et al. Approach to the child with fatigue: A focus for the general pediatrician. Front Pediatr. 2022;10:10. doi: 10.3389/fped.2022.1044170
  • Mackay A. A paradigm for post-COVID-19 fatigue syndrome analogous to ME/CFS. Front Neurol. 2021;12:12. doi:10.3389/fneur.2021.701419
  • Korres G, Kitsos DK, Kaski D, et al. The Prevalence of Dizziness and Vertigo in COVID-19 patients: A systematic review. Brain Sci. 2022;12(7):948. doi: 10.3390/brainsci12070948
  • Ludvigsson JF. Case report and systematic review suggest that children may experience similar long‐term effects to adults after clinical COVID‐19. Acta Paediatr. 2021;110(3):914–921. doi: 10.1111/apa.15673
  • Saniasiaya J, Kulasegarah J. Dizziness and COVID-19. Ear Nose Throat J. 2021;100(1):29–30. doi: 10.1177/0145561320959573
  • Thongsing A, Eizadkhah D, Fields C, et al. Provoked seizures and status epilepticus in a pediatric population with COVID‐19 disease. Epilepsia. 2022;63(8):63. doi: 10.1111/epi.17293
  • Cadet K, Boegner J, Ceneviva GD, et al. Evaluation of Febrile Seizure diagnoses associated with COVID-19. J Child Neurol. 2022;37(5):410–415. doi: 10.1177/08830738221086863
  • Kurd M, Hashavya S, Benenson S, et al. Seizures as the main presenting manifestation of acute SARS-CoV-2 infection in children. Seizure. 2021;92:89–93. doi: 10.1016/j.seizure.2021.08.017
  • Nikbakht F, Mohammadkhanizadeh A, Mohammadi E. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Disord. 2020;46:102535. doi:10.1016/j.msard.2020.102535
  • Panda PK, Sharawat IK, Panda P, et al. Neurological complications of SARS-CoV-2 infection in children: A systematic review and meta-analysis. J Trop Pediatr. 2021;67(3). doi: 10.1093/tropej/fmaa070
  • Valderas C, Méndez G, Echeverría A, et al. COVID-19 and neurologic manifestations: a synthesis from the child neurologist’s corner. World J Pediatr. 2022;18(6):373–382. doi: 10.1007/s12519-022-00550-4
  • Umapathi T, Quek WMJ, Yen JM, et al. Encephalopathy in COVID-19 patients; viral, parainfectious, or both? eNeurologicalsci. 2020;21:100275. DOI:10.1016/j.ensci.2020.100275
  • Sonneville R, Klein I, de Broucker T, et al. Post-infectious encephalitis in adults: Diagnosis and management. J Infect. 2009;58(5):321–328. doi: 10.1016/j.jinf.2009.02.011
  • Pilotto A, Masciocchi S, Volonghi I, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Encephalitis is a cytokine release syndrome: Evidences from cerebrospinal fluid analyses. Clinl Infect Dis. 2021;73(9):e3019–e3026. doi: 10.1093/cid/ciaa1933
  • Parlatini V, Frangou L, Zhang S, et al. Emotional and behavioral outcomes among youths with mental disorders during the first COVID lockdown and school closures in England: a large clinical population study using health care record integrated surveys. Soc Psychiatry Psychiatr Epidemiol. 2023. doi:10.1007/s00127-023-02517-w.
  • Viner R, Russell S, Saulle R, et al. School closures during social lockdown and mental health, health behaviors, and well-being among children and adolescents during the first COVID-19 wave. JAMA Pediatr. 2022;176(4):400. doi: 10.1001/jamapediatrics.2021.5840
  • Theberath M, Bauer D, Chen W, et al. Effects of COVID-19 pandemic on mental health of children and adolescents: A systematic review of survey studies. SAGE Open Med. 2022;10:205031212210867. DOI:10.1177/20503121221086712
  • Lee CH, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol. 2019;10: doi: 10.3389/fimmu.2019.01696
  • Terry PC, Parsons-Smith RL, Terry VR. Mood responses associated with COVID-19 restrictions. Front Psychol. 2020;11:11. doi:10.3389/fpsyg.2020.589598
  • Mensi MM, Capone L, Rogantini C, et al. COVID‐19‐related psychiatric impact on Italian adolescent population: A cross‐sectional cohort study. J Community Psychol. 2021;49(5):1457–1469. doi: 10.1002/jcop.22563
  • Alkhamees AA. Obsessive–compulsive disorder post-COVID-19: a case presentation. Egypt J Neurol Psychiatr Neurosurg. 2021;57(1):150. doi: 10.1186/s41983-021-00405-1
  • Sejdiu A, Basith SA, Ayala V, et al. The emergence of new-onset obsessive and compulsive disorder in an adolescent during COVID-19 pandemic. Cureus. 2021. doi: 10.7759/cureus.17907
  • Nazeer S, Reddy A. Initial presentation of OCD and psychosis in an adolescent during the COVID-19 pandemic. Case Rep Psychiatry. 2022;2022:1–5. doi:10.1155/2022/2501926
  • Glaus J, von Känel R, Lasserre AM, et al. The bidirectional relationship between anxiety disorders and circulating levels of inflammatory markers: Results from a large longitudinal population-based study. Depress Anxiety. 2018;35(4):360–371. doi: 10.1002/da.22710
  • Vogel L. Growing consensus on link between strep and obsessive–compulsive disorder. Can Med Assoc J. 2018;190(3):E86–E87. doi: 10.1503/cmaj.109-5545
  • Singer HS. Tourette’s syndrome: From behaviour to biology. The Lancet Neurology. 2005;4(3):149–159. doi: 10.1016/S1474-4422(05)70018-1
  • Attademo L, Bernardini F. Are dopamine and serotonin involved in COVID-19 pathophysiology? Eur J Psych. 2021;35(1):62–63. doi: 10.1016/j.ejpsy.2020.10.004
  • Heyman I, Liang H, Hedderly T. COVID-19 related increase in childhood tics and tic-like attacks. Arch Dis Child. 2021;106(5):420–421. doi: 10.1136/archdischild-2021-321748
  • Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944–955.e8. doi: 10.1053/j.gastro.2020.05.048
  • Forsythe P, Sudo N, Dinan T, et al. Brain, behavior, and immunity mood and gut feelings. Brain Behav Immun. 2010;24(1):9–16. doi: 10.1016/j.bbi.2009.05.058
  • Lin JA, Hartman-Munick SM, Kells MR, et al. The impact of the COVID-19 Pandemic on the number of adolescents/young adults seeking eating disorder-related care. J Adolesc Health. 2021;69(4):660–663. doi: 10.1016/j.jadohealth.2021.05.019
  • Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New onset of autoimmune diseases following COVID-19 diagnosis. Cells. 2021;10(12):3592. doi: 10.3390/cells10123592
  • Taquet M, Geddes JR, Luciano S, et al. Incidence and outcomes of eating disorders during the COVID-19 pandemic. Br J Psychiatry. 2022;220(5):262–264. doi: 10.1192/bjp.2021.105
  • Hutchison L, Plichta AM, Lerea Y, et al. Neuropsychiatric symptoms in an adolescent boy with multisystem inflammatory syndrome in children. Psychosomatics. 2020;61(6):739–744. doi: 10.1016/j.psym.2020.06.015
  • Thomas R, Hernandez MJ, Thomas R. Psychosis After Infection with SARS-CoV-2 in an adolescent: A case report. J Am Acad Child Adolesc Psychiatry. 2022;61(7):844–847. doi: 10.1016/j.jaac.2022.03.004
  • Smith CM, Gilbert EB, Riordan PA, et al. COVID-19-associated psychosis: A systematic review of case reports. Gen Hosp Psychiatry. 2021;73:84–100. doi: 10.1016/j.genhosppsych.2021.10.003
  • Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020;87:34–39. doi: 10.1016/j.bbi.2020.04.027
  • Fan FC, Zhang SY, Cheng Y. Incidence of psychological illness after coronavirus outbreak: a meta-analysis study. J Epidemiol Community Health (1978). 2021;75(9):836–842. doi: 10.1136/jech-2020-215927
  • Sahebi A, Yousefi A, Abdi K, et al. The prevalence of post-traumatic stress disorder among health care workers during the COVID-19 pandemic: An Umbrella review and meta-analysis. Front Psychiatry. 2021;12:12. doi: 10.3389/fpsyt.2021.764738
  • Zeng N, Zhao Y-M, Yan W, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol Psychiatry. 2023;28(1):423–433. doi: 10.1038/s41380-022-01614-7
  • Liu D, Liu W, Rodriguez M, et al. The mental health impacts of COVID-19 on pediatric patients following recovery. Front Psychol. 2021;12:12. doi: 10.3389/fpsyg.2021.628707
  • Mak IWC, Chu CM, Pan PC, et al. Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry. 2009;31(4):318–326. doi: 10.1016/j.genhosppsych.2009.03.001
  • Shachar-Lavie I, Shorer M, Segal H, et al. Mental health among children with long COVID during the COVID-19 pandemic. Eur J Pediatr. 2023;182(4):1793–1801. doi: 10.1007/s00431-023-04854-z
  • Cortese S, Solmi M, CU C, et al. Commentary: The impact of COVID-19 on psychopathology in children and young people worldwide – reflections on Newlove-Delgado et al. (2023). J Child Psychol Psychiatry. 2023;64(4):641–644. doi: 10.1111/jcpp.13765
  • Newlove‐Delgado T, Russell AE, Mathews F, et al. AnnuAl research review: The impact of COVID‐19 on psychopathology in children and young people worldwide: systematic review of studies with pre‐ and within‐pandemic data. J Child Psychol Psychiatry. 2022;64(4):611–640. doi: 10.1111/jcpp.13716
  • Salanti G, Peter N, Tonia T, et al. The impact of the COVID-19 Pandemic and associated control measures on the mental health of the general population. Ann Intern Med. 2022;175(11):1560–1571. doi: 10.7326/M22-1507
  • Guzick AG, Candelari A, Wiese AD, et al. Obsessive–compulsive disorder during the COVID-19 Pandemic: a systematic review. Curr Psychiatry Rep. 2021;23(11). doi: 10.1007/s11920-021-01284-2
  • Azzolino D, Cesari M. Fatigue in the COVID-19 pandemic. Lancet Healthy Longev. 2022;3(3):e128–e129. doi: 10.1016/S2666-7568(22)00029-0
  • Blankenburg J, Wekenborg MK, Reichert J, et al. Comparison of mental health outcomes in seropositive and seronegative adolescents during the COVID-19 pandemic. Sci Rep. 2022;12(1):12. doi: 10.1038/s41598-022-06166-y
  • Solmi M, Estradé A, Thompson T, et al. Physical and mental health impact of COVID-19 on children, adolescents, and their families: The Collaborative Outcomes study on Health and Functioning during Infection Times - Children and Adolescents (COH-FIT-C&A). J Affect Disord. 2022;299:367–376. doi: 10.1016/j.jad.2021.09.090
  • Jones EAK, Mitra AK, Bhuiyan AR. Impact of COVID-19 on mental health in adolescents: A systematic review. Int J Environ Res Public Health. 2021;18(5):2470. doi: 10.3390/ijerph18052470
  • Zingaropoli MA, Iannetta M, Piermatteo L, et al. Neuro-axonal damage and alteration of blood–brain barrier integrity in COVID-19 patients. Cells. 2022;11(16):2480. doi: 10.3390/cells11162480
  • Mandal S, Barnett J, Brill SE, et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021;76(4):396–398. doi: 10.1136/thoraxjnl-2020-215818
  • Esposito S, Principi N, Azzari C, et al. Italian intersociety consensus on management of long COVID in children. Ital J Pediatr. 2022;48(1):42. doi: 10.1186/s13052-022-01233-6
  • British Thoracic Society. British thoracic society guidance on respiratory follow up of patients with a clinico-radiological diagnosis of COVID-19 pneumonia. British Thoracic Society (BTS). 2021. https://www.brit-thoracic.org.uk/COVID-19/COVID-19-information-for-the-respiratory-community/
  • Hawke LD, Nguyen ATP, Ski CF, et al. Interventions for mental health, cognition, and psychological wellbeing in long COVID: a systematic review of registered trials. Psychol Med. 2022;52(13):2426–2440. doi: 10.1017/S0033291722002203