333
Views
1
CrossRef citations to date
0
Altmetric
Review

Acute and long-term cognitive impairment following sepsis: mechanism and prevention

, , , &
Pages 931-943 | Received 28 May 2023, Accepted 18 Aug 2023, Published online: 24 Aug 2023

References

  • van der Poll T, van Zoelen MAD, Wiersinga WJ. Regulation of pro-and anti-inflammatory host responses. Contrib Microbiol. 2011;17:125–136.
  • Fleischmann C, Scherag A, Adhikari NK, et al. International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016;193(3):259–272. doi: 10.1164/rccm.201504-0781OC
  • Xin Y, Tian M, Deng S, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis: microglia and neuroinflammation. Mol Neurobiol. 2023;60(3):1369–1390. doi: 10.1007/s12035-022-03148-z
  • Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–566. doi: 10.1038/nrneurol.2012.183
  • Barichello T, Giridharan VV, Catalão CHR, et al. Neurochemical effects of sepsis on the brain. Clinical Science. 2023;137(6):401–414. doi: 10.1042/CS20220549
  • Manabe T, Heneka MT. Cerebral dysfunctions caused by sepsis during ageing. Nat Rev Immunol. 2022;22(7):444–458. doi: 10.1038/s41577-021-00643-7.
  • Annane D, Sharshar T. Cognitive decline after sepsis. Lancet Respir Med. 2015;3(1):61–69. doi: 10.1016/S2213-2600(14)70246-2
  • Wang HE, Kabeto MM, Gray M, et al. Trajectory of cognitive decline after sepsis. Crit Care Med. 2021;49(7):1083–1094. doi: 10.1097/CCM.0000000000004897.
  • Iwashyna TJ, Ely EW, Smith DM, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–1794. doi: 10.1001/jama.2010.1553
  • Gracner T, Agarwal M, Murali KP, et al. Association of infection-related hospitalization with cognitive impairment among nursing home residents. JAMA Netw Open. 2021;4(4):e217528. doi: 10.1001/jamanetworkopen.2021.7528
  • Lei S, Li X, Zhao H, et al. Risk of dementia or cognitive impairment in sepsis survivals: a systematic review and meta-analysis. Front Aging Neurosci. 2022;14:839472. doi: 10.3389/fnagi.2022.839472
  • Muzambi R, Bhaskaran K, Smeeth L, et al. Assessment of common infections and incident dementia using UK primary and secondary care data: a historical cohort study. Lancet Healthy Longev. 2021;2(7):e426–e435. doi: 10.1016/S2666-7568(21)00118-5
  • Muzambi R, Bhaskaran K, Brayne C, et al. Common bacterial Infections and risk of dementia or cognitive decline: a systematic review. J Alzheimers Dis. 2020;76(4):1609–1626. doi: 10.3233/JAD-200303
  • Peters van Ton AM, Meijer-van Leijsen EMC, Bergkamp MI, et al. Risk of dementia and structural brain changes following nonneurological infections during 9-year follow-up. Crit Care Med. 2022;50(4):554–564. doi: 10.1097/CCM.0000000000005313.
  • Pang D, Wu YL, Alcamo AM, et al. Early axonal injury and delayed cytotoxic cerebral edema are associated with microglial activation in a mouse model of sepsis. Shock. 2020;54(2):256–264. doi: 10.1097/SHK.0000000000001446
  • Kealy J, Murray C, Griffin EW, et al. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. J Neurosci. 2020;40(29):5681–5696. doi: 10.1523/JNEUROSCI.2876-19.2020
  • Griton M, Dhaya I, Nicolas R, et al. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav Immun. 2020;83:200–213. doi: 10.1016/j.bbi.2019.10.012
  • Basak JM, Ferreiro A, Cohen LS, et al. Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;152:105292. doi: 10.1016/j.nbd.2021.105292
  • Kosilek RP, Schmidt K, Baumeister SE, et al. Frequency and risk factors of post-intensive care syndrome components in a multicenter randomized controlled trial of German sepsis survivors. J Crit Care. 2021;65:268–273. doi: 10.1016/j.jcrc.2021.07.006
  • Boede M, Gensichen JS, Jackson JC, et al. Trajectories of depression in sepsis survivors: an observational cohort study. Crit Care. 2021;25(1):161. doi: 10.1186/s13054-021-03577-7
  • Prescott HC, Angus DC. Enhancing recovery from sepsis: a review. JAMA. 2018;319(1):62–75. doi: 10.1001/jama.2017.17687.
  • Iacobone E, Bailly-Salin J, Polito A, et al. Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med. 2009;37(10 Suppl):S331–6. doi: 10.1097/CCM.0b013e3181b6ed58
  • Azabou E, Magalhaes E, Braconnier A, et al. Groupe d’Explorations Neurologiques en Réanimation (GENER). Early standard electroencephalogram abnormalities predict mortality in septic intensive care unit patients. PLoS One. 2015;10(10):e0139969. doi: 10.1371/journal.pone.0139969
  • Ferlini L, Maenhout C, Crippa IA, et al. The association between the presence and burden of periodic discharges and outcome in septic patients: an observational prospective study. Crit Care. 2023;27(1):179. doi: 10.1186/s13054-023-04475-w
  • Baby S, Reljic T, Villalba N, et al. Endothelial glycocalyx-associated molecules as potential serological markers for sepsis-associated encephalopathy: a systematic review and meta-analysis. PLoS One. 2023;18(2):e0281941. doi: 10.1371/journal.pone.0281941
  • Hu J, Xie S, Li W, et al. Diagnostic and prognostic value of serum S100B in sepsis-associated encephalopathy: a systematic review and meta-analysis. Front Immunol. 2023;14:1102126. doi: 10.3389/fimmu.2023.1102126
  • Ehler J, Petzold A, Wittstock M, et al. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy – a prospective, pilot observational study. PLoS One. 2019;14(1):e0211184. doi: 10.1371/journal.pone.0211184
  • Zhang Q, Fan W, Sun J, et al. Review of neurofilaments as biomarkers in sepsis-associated encephalopathy. J Inflamm Res. 2023;16:161–168. doi: 10.2147/JIR.S391325
  • Orhun G, Esen F, Yilmaz V, et al. Elevated sTREM2 and NFL levels in patients with sepsis associated encephalopathy. International Journal Of Neuroscience. 2023;133(3):327–333. doi: 10.1080/00207454.2021.1916489
  • Semmler A, Widmann CN, Okulla T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry. 2013;84(1):62–69. doi: 10.1136/jnnp-2012-302883
  • Gunther ML, Morandi A, Krauskopf E, et al. VISIONS investigation, VISualizing Icu SurvivOrs neuroradiological sequelae. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study. Critical Care Medicine. 2012;40(7):2022–2032. doi: 10.1097/CCM.0b013e318250acc0.
  • Rossaint J, Margraf A. Inflammation and perioperative organ dysfunction. Anaesthesist. 2021;70(1):83–92. doi: 10.1007/s00101-020-00886-4
  • Margraf A, Ludwig N, Zarbock A, et al. Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg. 2020;131(6):1693–1707. doi: 10.1213/ANE.0000000000005175
  • Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008. doi: 10.3390/ijms20236008
  • Maciel M, Benedet SR, Lunardelli EB, et al. Predicting long-term cognitive dysfunction in survivors of critical illness with plasma inflammatory markers: a retrospective cohort study. Mol Neurobiol. 2019;56(1):763–767. doi: 10.1007/s12035-018-1166-x
  • Bellaver B, Rocha AS, Souza DG, et al. Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity. Brain Behav Immun. 2019;80:879–888. doi: 10.1016/j.bbi.2019.05.041
  • Andonegui G, Zelinski EL, Schubert CL, et al. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight. 2018;3(9):e99364. doi: 10.1172/jci.insight.99364
  • Liu YX, Yu Y, Liu JP, et al. Neuroimmune regulation in sepsis-associated encephalopathy: the interaction between the brain and peripheral immunity. Front Neurol. 2022;13:892480. doi: 10.3389/fneur.2022.892480
  • Cunningham C, Hennessy E. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimers Res Ther. 2015;7(1):33. doi: 10.1186/s13195-015-0117-2
  • Michels M, Steckert AV, Quevedo J, et al. Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Med Exp. 2015;3(1):30. doi: 10.1186/s40635-015-0066-x
  • Alahmari A, Wu L-J. Blood-brain barrier overview: structural and functional correlation. Neural Plast. 2021;2021:1–10. doi: 10.1155/2021/6564585
  • Nwafor DC, Brichacek AL, Mohammad AS, et al. Targeting the blood-brain barrier to prevent sepsis-associated cognitive impairment. J Cent Nerv Syst Dis. 2019;11:1179573519840652. doi: 10.1177/1179573519840652
  • Towner RA, Saunders D, Smith N, et al. Assessing long-term neuroinflammatory responses to encephalopathy using MRI approaches in a rat endotoxemia model. Geroscience. 2018;40(1):49–60. doi: 10.1007/s11357-018-0009-z
  • Banks WA, Hansen KM, Erickson MA, et al. High-mobility group box 1 (HMGB1) crosses the BBB bidirectionally. Brain Behav Immun. 2023;111:386–394. doi: 10.1016/j.bbi.2023.04.018
  • Csipo T, Cassidy BR, Balasubramanian P, et al. Endothelial dysfunction and impaired neurovascular coupling responses precede cognitive impairment in a mouse model of geriatric sepsis. Front Aging Neurosci. 2021;13:644733. doi: 10.3389/fnagi.2021.644733
  • Barichello T, Generoso JS, Collodel A, et al. The blood-brain barrier dysfunction in sepsis. Tissue Barr. 2021;9(1):1840912. doi: 10.1080/21688370.2020.1840912
  • Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol. 2021;18(11):2489–2501. doi: 10.1038/s41423-021-00757-x
  • Hippensteel JA, Anderson BJ, Orfila JE, et al. Circulating heparan sulfate fragments mediate septic cognitive dysfunction. J Clin Invest. 2019;129(4):1779–1784. doi: 10.1172/JCI124485.
  • Zhang X, Han X, Xia K, et al. Circulating heparin oligosaccharides rapidly target the hippocampus in sepsis, potentially impacting cognitive functions. Proc Natl Acad Sci U S A. 2019;116(19):9208–9213. doi: 10.1073/pnas.1902227116
  • Qin W, Li J, Zhu R, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging. 2019;11(23):11391–11415. doi: 10.18632/aging.102537
  • Jiang C, Caskurlu A, Ganesh T, et al. Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation. Brain Behav Immun Health. 2020;8:100132. doi: 10.1016/j.bbih.2020.100132
  • Bonfante S, Joaquim L, Fileti ME, et al. Stanniocalcin 1 inhibits the inflammatory response in microglia and protects against sepsis-associated encephalopathy. Neurotox Res. 2021;39(2):119–132. doi: 10.1007/s12640-020-00293-y
  • Yan X, Yang K, Xiao Q, et al. Central role of microglia in sepsis-associated encephalopathy: from mechanism to therapy. Front Immunol. 2022;13:929316. doi: 10.3389/fimmu.2022.929316
  • da Costa LHA, Santos-Junior NN, Catalão CHR, et al. Microglial activation modulates neuroendocrine secretion during experimental sepsis. Mol Neurobiol. 2022;58(5):2133–2144. doi: 10.1007/s12035-020-02241-5
  • Arutyunov A, Klein RS. Microglia at the scene of the crime: what their transcriptomics reveal about brain health. Curr Opin Neurol. 2023;36(3):207–213. doi: 10.1097/WCO.0000000000001151
  • Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun. 2015;43:54–59. doi: 10.1016/j.bbi.2014.07.002
  • Westhoff D, Engelen-Lee JY, Hoogland ICM, et al. Systemic infection and microglia activation: a prospective postmortem study in sepsis patients. Immun Ageing. 2019;16:18. doi: 10.1186/s12979-019-0158-7
  • Mina F, Comim CM, Dominguini D, et al. Il1-β involvement in cognitive impairment after sepsis. Mol Neurobiol. 2014;49(2):1069–1076. doi: 10.1007/s12035-013-8581-9
  • Imamura Y, Wang H, Matsumoto N, et al. Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience. 2011;187:63–69. doi: 10.1016/j.neuroscience.2011.04.063
  • Moraes CA, Santos G, Spohr TDSE, et al. Activated microglia-induced deficits in excitatory synapses through IL-1β: Implications for cognitive impairment in sepsis. Mol Neurobiol. 2015;52(1):653–663. doi: 10.1007/s12035-014-8868-5
  • Hoshino K, Uchinami Y, Uchida Y, et al. Interleukin-1β modulates synaptic transmission and synaptic plasticity during the acute phase of sepsis in the senescence-accelerated mouse hippocampus. Front Aging Neurosci. 2021;13:637703. doi: 10.3389/fnagi.2021.637703
  • Terrando N, Rei Fidalgo A, Vizcaychipi M, et al. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care. 2010;14(3):R88. doi: 10.1186/cc9019
  • Ye B, Tao T, Zhao A, et al. Blockade of IL-17A/IL-17R pathway protected mice from sepsis-associated encephalopathy by inhibition of microglia activation. Mediators Inflamm. 2019;2019:8461725. doi: 10.1155/2019/8461725
  • Jiang S, Shi D, Bai L, et al. Inhibition of interleukin-6 trans-signaling improves survival and prevents cognitive impairment in a mouse model of sepsis. Int Immunopharmacol. 2023;119:110169. doi: 10.1016/j.intimp.2023.110169
  • Chavan SS, Huerta PT, Robbiati S, et al. HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med. 2012;18(1):930–937. doi: 10.2119/molmed.2012.00195
  • Yin XY, Tang XH, Wang SX, et al. HMGB1 mediates synaptic loss and cognitive impairment in an animal model of sepsis-associated encephalopathy. J Neuroinflammation. 2023;20(1):69. doi: 10.1186/s12974-023-02756-3
  • Shi J, Xu H, Cavagnaro MJ, et al. Blocking HMGB1/RAGE signaling by berberine alleviates A1 astrocyte and attenuates sepsis-associated encephalopathy. Front Pharmacol. 2021;12:760186. doi: 10.3389/fphar.2021.760186
  • Michels M, Abatti M, Vieira A, et al. Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clin Sci. 2020;134(7):765–776. doi: 10.1042/CS20191322
  • Xu B, Li M, Cheng T, et al. Resolvin D1 protects against sepsis-associated encephalopathy in mice by inhibiting neuro-inflammation induced by microglia. Am J Transl Res. 2022;14(9):6737–6750.
  • Castro LVG, Gonçalves-de-Albuquerque CF, Silva AR. Polarization of microglia and its therapeutic potential in sepsis. Int J Mol Sci. 2022;23(9):4925. doi: 10.3390/ijms23094925
  • Zhu DD, Huang YL, Guo SY, et al. AQP4 aggravates cognitive impairment in sepsis-associated encephalopathy through inhibiting nav 1.6-mediated astrocyte autophagy. Adv Sci. 2023;10(14):e2205862. doi: 10.1002/advs.202205862
  • Bellaver B, Dos Santos JP, Leffa DT, et al. Systemic inflammation as a driver of brain injury: the astrocyte as an emerging player. Mol Neurobiol. 2018;55(3):2685–2695. doi: 10.1007/s12035-017-0526-2
  • Huang WY, Liu KH, Lin S, et al. NADPH oxidase 2 as a potential therapeutic target for protection against cognitive deficits following systemic inflammation in mice. Brain Behav Immun. 2020;84:242–252. doi: 10.1016/j.bbi.2019.12.006
  • Bhusal A, Afridi R, Lee WH, et al. Bidirectional communication between microglia and astrocytes in neuroinflammation. Curr Neuropharmacol. 2022 Nov 29. doi:10.2174/1570159X21666221129121715
  • Bian Y, Zhao X, Li M, et al. Various roles of astrocytes during recovery from repeated exposure to different doses of lipopolysaccharide. Behav Brain Res. 2013;253:253–261. doi: 10.1016/j.bbr.2013.07.028
  • Yue J, Tan Y, Huan R, et al. Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway. Front Immunol. 2023;14:1090288.
  • Chiarini A, Gui L, Viviani C, et al. NLRP3 inflammasome’s activation in acute and Chronic brain diseases-an update on pathogenetic mechanisms and therapeutic perspectives with respect to other inflammasomes. Biomedicines. 2023;11(4):999. doi: 10.3390/biomedicines11040999
  • Danielski LG, Giustina AD, Bonfante S, et al. NLRP3 activation contributes to acute brain damage leading to memory impairment in sepsis-surviving rats. Mol Neurobiol. 2020;57(12):5247–5262. doi: 10.1007/s12035-020-02089-9.
  • Beyer MMS, Lonnemann N, Remus A, et al. Enduring changes in neuronal function upon systemic inflammation are NLRP3 inflammasome dependent. J Neurosci. 2020;40(28):5480–5494. doi: 10.1523/JNEUROSCI.0200-20.2020
  • Fu Q, Wu J, Zhou XY, et al. NLRP3/Caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation. 2019;42(1):306–318. doi: 10.1007/s10753-018-0894-4
  • Xiao T, Ji H, Shangguan X, et al. NLRP3 inflammasome of microglia promotes A1 astrocyte transformation, neo-neuron decline and cognition impairment in endotoxemia. Biochem Biophys Res Commun. 2022;602:1–7. doi: 10.1016/j.bbrc.2022.02.092
  • Moraes CA, Hottz ED, Dos Santos Ornellas D, et al. Microglial NLRP3 inflammasome induces excitatory synaptic loss through IL-1β-enriched microvesicle release: Implications for sepsis-associated encephalopathy. Mol Neurobiol. 2023;60(2):481–494. doi: 10.1007/s12035-022-03067-z
  • Zhong X, Xie L, Yang X, et al. Ethyl pyruvate protects against sepsis-associated encephalopathy through inhibiting the NLRP3 inflammasome. Mol Med. 2020;26(1):55. doi: 10.1186/s10020-020-00181-3
  • Zhong L, Ren X, Ai Y, et al. SS-31 improves cognitive function in sepsis-associated encephalopathy by inhibiting the Drp1-NLRP3 inflammasome activation. NeuroMol Med. 2022 Nov 4;25(2):230–241. doi: 10.1007/s12017-022-08730-1
  • Chen L, Qing W, Yi Z, et al. NU9056, a KAT 5 inhibitor, treatment alleviates brain dysfunction by inhibiting NLRP3 inflammasome activation, affecting gut microbiota, and derived metabolites in LPS-Treated mice. Front Nutr. 2021;8:701760. doi: 10.3389/fnut.2021.701760
  • Hernandes MS, D’Avila JC, Trevelin SC, et al. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation. 2014;11(1):36. doi: 10.1186/1742-2094-11-36
  • Petronilho F, Périco SR, Vuolo F, et al. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun. 2012;26(6):904–910. doi: 10.1016/j.bbi.2012.03.007
  • Schwalm MT, Pasquali M, Miguel SP, et al. Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol. 2014;49(1):380–385. doi: 10.1007/s12035-013-8526-3
  • Zarbato GF, de Souza Goldim MP, Giustina AD, et al. Dimethyl fumarate limits neuroinflammation and oxidative stress and improves cognitive impairment after polymicrobial sepsis. Neurotox Res. 2018;34(3):418–430. doi: 10.1007/s12640-018-9900-8
  • Novochadlo M, Goldim MP, Bonfante S, et al. Folic acid alleviates the blood brain barrier permeability and oxidative stress and prevents cognitive decline in sepsis-surviving rats. Microvasc Res. 2021;137:104193. doi: 10.1016/j.mvr.2021.104193
  • Manfredini A, Constantino L, Pinto MC, et al. Mitochondrial dysfunction is associated with long-term cognitive impairment in an animal sepsis model. Clin Sci. 2019;133(18):1993–2004. doi: 10.1042/CS20190351
  • Wu J, Zhang M, Hao S, et al. Mitochondria-targeted peptide reverses mitochondrial dysfunction and cognitive deficits in sepsis-associated encephalopathy. Mol Neurobiol. 2015;52(1):783–791. doi: 10.1007/s12035-014-8918-z
  • Xie K, Wang Y, Yin L, et al. Hydrogen gas alleviates sepsis-induced brain injury by improving mitochondrial biogenesis through the activation of PGC-α in mice. Shock. 2021;55(1):100–109. doi: 10.1097/SHK.0000000000001594
  • Yan C, Ma Z, Ma H, et al. Mitochondrial transplantation attenuates brain dysfunction in sepsis by driving microglial M2 polarization. Mol Neurobiol. 2020;57(9):3875–3890. doi: 10.1007/s12035-020-01994-3
  • Zrzavy T, Hoftberger R, Berger T, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45(3):278–290. doi: 10.1111/nan.12502
  • Comim CM, Barichello T, Grandgirard D, et al. Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol Neurobiol. 2013;47(1):394–398. doi: 10.1007/s12035-012-8354-x
  • Yang Y, Liang S, Li Y, et al. Effects of early administration of insulin-like growth factor-1 on cognitive function in septic encephalopathy. Neuropsychiatr Dis Treat 2019;15: 323–337. 10.2147/NDT.S190845.
  • Sun X, Zhou R, Lei Y, et al. The ligand-gated ion channel P2X7 receptor mediates NLRP3/caspase-1-mediated pyroptosis in cerebral cortical neurons of juvenile rats with sepsis. Brain Res. 2020;1748:147109. doi: 10.1016/j.brainres.2020.147109
  • Xu XE, Liu L, Wang YC, et al. Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain Behav Immun. 2019;80:859–870. doi: 10.1016/j.bbi.2019.05.038
  • Jing G, Zuo J, Fang Q, et al. Erbin protects against sepsis-associated encephalopathy by attenuating microglia pyroptosis via IRE1α/Xbp1s-Ca2+ axis. J Neuroinflammation. 2022;19(1):237. doi: 10.1186/s12974-022-02598-5
  • Wang K, Sun M, Juan Z, et al. The improvement of sepsis-associated encephalopathy by P2X7R inhibitor through inhibiting the Omi/HtrA2 apoptotic signaling pathway. Behav Neurol. 2022;2022:1–12. doi: 10.1155/2022/3777351
  • Xiaofeng G, You W, Qi J, et al. PERK-STING-RIPK3 pathway facilitates cognitive impairment by inducing neuronal necroptosis in sepsis-associated encephalopathy. CNS Neurosci Ther. 2023;29(4):1178–1191. doi: 10.1111/cns.14095
  • Zhao L, Song Y, Zhang Y, et al. HIF-1α/BNIP3L induced cognitive deficits in a mouse model of sepsis-associated encephalopathy. Front Immunol. 2022;13:1095427. doi: 10.3389/fimmu.2022.1095427
  • Wang J, Yang S, Jing G, et al. Inhibition of ferroptosis protects sepsis-associated encephalopathy. Cytokine. 2023;161:156078. doi: 10.1016/j.cyto.2022.156078
  • Wang J, Zhu Q, Wang Y, et al. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis. Free Radic Biol Med. 2022;187:171–184. doi: 10.1016/j.freeradbiomed.2022.05.023
  • Shavit-Stein E, Dori A, Shimon MB, et al. Prolonged systemic inflammation alters muscarinic long-term potentiation (mLTP) in the hippocampus. Neural Plast. 2021;2021:1–6. doi: 10.1155/2021/8813734
  • Field RH, Gossen A, Cunningham C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J Neurosci. 2012;32(18):6288–6294. doi: 10.1523/JNEUROSCI.4673-11.2012
  • Zaghloul N, Addorisio ME, Silverman HA, et al. Forebrain cholinergic dysfunction and systemic and brain inflammation in murine sepsis survivors. Front Immunol. 2017;8:1673. doi: 10.3389/fimmu.2017.01673
  • Yin L, Zhang J, Ma H, et al. Selective activation of cholinergic neurotransmission from the medial septal nucleus to hippocampal pyramidal neurones improves sepsis-induced cognitive deficits in mice. Br J Anaesth. 2023;130(5):573–584. doi: 10.1016/j.bja.2023.01.019.
  • Terrando N, Yang T, Ryu JK, et al. Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol Med. 2015;20(1):667–675. doi: 10.2119/molmed.2014.00143
  • Inan M, Petros TJ, Anderson SA. Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia. Neurobiol Dis. 2013;53:36–48. doi: 10.1016/j.nbd.2012.11.013
  • Ji MH, Qiu LL, Tang H, et al. Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. J Neuroinflammation. 2015;12(1):182. doi: 10.1186/s12974-015-0401-x.
  • Ji M, Li S, Zhang L, et al. Sepsis induced cognitive impairments by disrupting hippocampal parvalbumin interneuron-mediated inhibitory network via a D4-receptor mechanism. Aging. 2020;12(3):2471–2484. doi: 10.18632/aging.102755
  • Gao R, Ji MH, Gao DP, et al. Neuroinflammation-induced downregulation of hippocampacal neuregulin 1-ErbB4 signaling in the parvalbumin interneurons might contribute to cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation. 2017;40(2):387–400. doi: 10.1007/s10753-016-0484-2
  • Gao YZ, Wu XM, Zhou ZQ, et al. Dysfunction of NRG1/ErbB4 signaling in the hippocampus might mediate long-term memory decline after systemic inflammation. Mol Neurobiol. 2023;60(6):3210–3226. doi: 10.1007/s12035-023-03278-y
  • Zhang L, Gao YZ, Zhao CJ, et al. Reduced inhibitory and excitatory input onto parvalbumin interneurons mediated by perineuronal net might contribute to cognitive impairments in a mouse model of sepsis-associated encephalopathy. Neuropharmacology. 2023;225:109382. doi: 10.1016/j.neuropharm.2022.109382
  • Ji MH, Zhang L, Mao MJ, et al. Overinhibition mediated by parvalbumin interneurons might contribute to depression-like behavior and working memory impairment induced by lipopolysaccharide challenge. Behav Brain Res. 2020;383:112509. doi: 10.1016/j.bbr.2020.112509
  • Ji M, Yuan H, Yuan S, et al. The p75 neurotrophin receptor might mediate sepsis-induced synaptic and cognitive impairments. Behav Brain Res. 2018;347:339–349. doi: 10.1016/j.bbr.2018.03.042
  • Luo RY, Luo C, Zhong F, et al. ProBDNF promotes sepsis-associated encephalopathy in mice by dampening the immune activity of meningeal CD4+ T cells. J Neuroinflammation. 2020;17(1):169. doi: 10.1186/s12974-020-01850-0
  • Cui YH, Zhou SF, Liu Y, et al. Injection of anti-proBDNF attenuates hippocampal-dependent learning and memory dysfunction in mice with sepsis-associated encephalopathy. Front Neurosci. 2021;15:665757. doi: 10.3389/fnins.2021.665757
  • Shen Y, Jing L, Zhang Y, et al. CXCR5 knockdown attenuates hippocampal neurogenesis deficits and cognitive impairment in a mouse model of sepsis-associated encephalopathy. Neuroscience. 2020;433:212–220. doi: 10.1016/j.neuroscience.2020.03.013
  • Lu Y, Yang Y, Peng Z, et al. Silencing IFNγ inhibits A1 astrocytes and attenuates neurogenesis decline and cognitive impairment in endotoxemia. Biochem Biophys Res Commun. 2020;533(4):1519–1526. doi: 10.1016/j.bbrc.2020.10.084
  • Yin J, Shen Y, Si Y, et al. Knockdown of long non-coding RNA SOX2OT downregulates SOX2 to improve hippocampal neurogenesis and cognitive function in a mouse model of sepsis-associated encephalopathy. J Neuroinflammation. 2020;17(1):320. doi: 10.1186/s12974-020-01970-7
  • Gasparotto J, Girardi CS, Somensi N, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293(1):226–244. doi: 10.1074/jbc.M117.786756
  • Kirk RA, Kesner RP, Wang LM, et al. Lipopolysaccharide exposure in a rat sepsis model results in hippocampal amyloid-β plaque and phosphorylated tau deposition and corresponding behavioral deficits. Geroscience. 2019;41(4):467–481. doi: 10.1007/s11357-019-00089-9
  • Laversenne V, Nazeeruddin S, Källstig EC, et al. Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology. Acta Neuropathol Commun. 2020;8(1):198. doi: 10.1186/s40478-020-01069-3
  • Priemer DS, Rhodes CH, Karlovich E, et al. Aβ deposits in the neocortex of adult and infant hypoxic brains, including in cases of COVID-19. J Neuropathol Exp Neurol. 2022;81(12):988–995. doi: 10.1093/jnen/nlac095
  • Rogne AG, Muller EG, Udnaes E, et al. Beta-amyloid may accumulate in the human brain after focal bacterial infection: an (18) F-flutemetamol positron emission tomography study. Eur J Neurol. 2021;28(3):877–883. doi: 10.1111/ene.14622
  • Dominguini D, Steckert AV, Abatti MR, et al. The protective effect of PK-11195 on cognitive impairment in rats survived of polymicrobial sepsis. Mol Neurobiol. 2021;58(6):2724–2733. doi: 10.1007/s12035-021-02294-0
  • Xu XE, Li MZ, Yao ES, et al. Morin exerts protective effects on encephalopathy and sepsis-associated cognitive functions in a murine sepsis model. Brain Res Bull. 2020;159:53–60. doi: 10.1016/j.brainresbull.2020.03.019
  • Yang L, Li Z, Xu Z, et al. Protective effects of cannabinoid type 2 receptor activation against microglia overactivation and neuronal pyroptosis in sepsis-associated encephalopathy. Neuroscience. 2022;493:99–108. doi: 10.1016/j.neuroscience.2022.04.011
  • Lin SP, Wei JX, Hu JS, et al. Artemisinin improves neurocognitive deficits associated with sepsis by activating the AMPK axis in microglia. Acta Pharmacol Sin. 2021;42(7):1069–1079. doi: 10.1038/s41401-021-00634-3
  • Xue W, Li Y, Zhang M. Pristimerin inhibits neuronal inflammation and protects cognitive function in mice with sepsis-induced brain injuries by regulating PI3K/Akt signalling. Pharm Biol. 2021;59(1):1351–1358. doi: 10.1080/13880209.2021.1981399
  • Della Giustina A, Goldim MP, Danielski LG, et al. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition. 2020;70:110417. doi: 10.1016/j.nut.2018.12.003
  • Giustina AD, de Souza Goldim MP, Danielski LG, et al. Lipoic acid and fish oil combination potentiates neuroinflammation and oxidative stress regulation and prevents cognitive decline of rats after sepsis. Mol Neurobiol. 2020;57(11):4451–4466. doi: 10.1007/s12035-020-02032-y
  • Zhang Q, Lu C, Fan W, et al. Application background and mechanism of short-chain fatty acids in sepsis-associated encephalopathy. Front Cell Infect Microbiol. 2023;13:1137161. doi: 10.3389/fcimb.2023.1137161
  • Wang X, Song Y, Chen J, et al. Subcutaneous administration of β-hydroxybutyrate improves learning and memory of sepsis surviving mice. Neurotherapeutics. 2020;17(2):616–626. doi: 10.1007/s13311-019-00806-4
  • Liao H, Li H, Bao H, et al. Short chain fatty acids protect the cognitive function of sepsis associated encephalopathy mice via GPR43. Front Neurol. 2022;13:909436. doi: 10.3389/fneur.2022.909436
  • Giridharan VV, Generoso JS, Lence L, et al. A crosstalk between gut and brain in sepsis-induced cognitive decline. J Neuroinflammation. 2022;19(1):114. doi: 10.1186/s12974-022-02472-4
  • Liu J, Jin Y, Ye Y, et al. The neuroprotective effect of short chain fatty acids against sepsis-associated encephalopathy in mice. Front Immunol. 2021;12:626894. doi: 10.3389/fimmu.2021.626894
  • Liu J, Jin Y, Li H, et al. Probiotics exert protective effect against sepsis-induced cognitive impairment by reversing gut microbiota abnormalities. J Agric Food Chem. 2020;68(50):14874–14883. doi: 10.1021/acs.jafc.0c06332
  • Yang R, Chen W, Lu Y, et al. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism. Sci Rep. 2017;7(1):40035. doi: 10.1038/srep40035
  • Li Y, Wang F, Luo Y. Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1-independent autophagy in mice. J Surg Res. 2017;207:181–189. doi: 10.1016/j.jss.2016.08.080
  • Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005;365(9453):63–78. doi: 10.1016/S0140-6736(04)17667-8
  • Zhu L, Yuan Q, Zeng Z, et al. Rifampicin suppresses amyloid-β accumulation through enhancing autophagy in the hippocampus of a lipopolysaccharide- induced mouse model of cognitive decline. J Alzheimers Dis. 2021;79(3):1171–1184. doi: 10.3233/JAD-200690
  • Bi W, Cheng X, Zeng Z, et al. Rifampicin ameliorates lipopolysaccharide-induced cognitive and motor impairments via inhibition of the TLR4/MyD88/NF-κB signaling pathway in mice. Neurol Res. 2021;43(5):358–371. doi: 10.1080/01616412.2020.1866353
  • Comim CM, Freiberger V, Ventura L, et al. Inhibition of indoleamine 2,3-dioxygenase 1/2 prevented cognitive impairment and energetic metabolism changes in the hippocampus of adult rats subjected to polymicrobial sepsis. J Neuroimmunol. 2017;305:167–171. doi: 10.1016/j.jneuroim.2017.02.001
  • Gao R, Kan MQ, Wang SG, et al. Disrupted tryptophan metabolism induced cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation. 2016;39(2):550–560. doi: 10.1007/s10753-015-0279-x
  • Zhang N, Zhao W, Hu ZJ, et al. Protective effects and mechanisms of high-dose vitamin C on sepsis-associated cognitive impairment in rats. Sci Rep. 2021;11(1):14511. doi: 10.1038/s41598-021-93861-x
  • Danielski LG, Giustina AD, Goldim MP, et al. Vitamin B6 reduces neurochemical and long-term cognitive alterations after polymicrobial sepsis: involvement of the kynurenine pathway modulation. Mol Neurobiol. 2018;55(6):5255–5268. doi: 10.1007/s12035-017-0706-0
  • Williams Roberson S, Nwosu S, Collar EM, et al. VICTAS Investigators. Association of vitamin C, thiamine, and hydrocortisone infusion with long-term cognitive, psychological, and functional outcomes in sepsis survivors: a secondary analysis of the vitamin C, thiamine, and steroids in sepsis Randomized clinical trial. JAMA Netw Open. 2023;6(2):e230380. doi: 10.1001/jamanetworkopen.2023.0380
  • Hashem MD, Hopkins RO, Colantuoni E, et al. Six-month and 12-month patient outcomes based on inflammatory subphenotypes in sepsis-associated ARDS: secondary analysis of SAILS-ALTOS trial. Thorax. 2022;77(1):22–30. doi: 10.1136/thoraxjnl-2020-216613
  • Vizcaychipi MP, Watts HR, O’Dea KP, et al. Ma D.D.D.D.D.D.D.D.The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann Surg. 2014;259(6):1235–1244. doi: 10.1097/SLA.0000000000000257
  • Catalão CHR, Santos-Júnior NN, da Costa LHA, et al. Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration. Mol Neurobiol. 2017;54(9):7008–7018. doi: 10.1007/s12035-016-0218-3
  • Reis PA, Alexandre PCB, D’Avila JC, et al. Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. Brain Behav Immun. 2017;60:293–303. doi: 10.1016/j.bbi.2016.11.006
  • Tian J, Tai Y, Shi M, et al. Atorvastatin relieves cognitive disorder after sepsis through Reverting inflammatory cytokines, oxidative stress, and neuronal apoptosis in hippocampus. Cell Mol Neurobiol. 2020;40(4):521–530. doi: 10.1007/s10571-019-00750-z
  • Catalão CHR, de Oliveira Souza A, Santos-Junior NN, et al. Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats. Mol Cell Biochem. 2022;477(11):2657–2667. doi: 10.1007/s11010-022-04463-8
  • Catalão CHR, Santos-Junior NN, da Costa LHA, et al. Simvastatin prevents long-term cognitive deficits in sepsis survivor rats by reducing neuroinflammation and neurodegeneration. Neurotox Res. 2020;38(4):871–886. doi: 10.1007/s12640-020-00222-z
  • Needham DM, Colantuoni E, Dinglas VD, et al. Rosuvastatin versus placebo for delirium in intensive care and subsequent cognitive impairment in patients with sepsis-associated acute respiratory distress syndrome: an ancillary study to a randomised controlled trial. Lancet Respir Med. 2016;4(3):203–212. doi: 10.1016/S2213-2600(16)00005-9
  • Jesus AA, Passaglia P, Santos BM, et al. Chronic molecular hydrogen inhalation mitigates short and long-term memory loss in polymicrobial sepsis. Brain Res. 2020;1739:146857. doi: 10.1016/j.brainres.2020.146857
  • Chen H, Dong B, Shi Y, et al. Hydrogen alleviates neuronal injury and neuroinflammation induced by microglial activation via the nuclear factor Erythroid 2-related factor 2 pathway in sepsis-associated encephalopathy. Neuroscience. 2021;466:87–100. doi: 10.1016/j.neuroscience.2021.05.003
  • Liu L, Xie K, Chen H, et al. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 2014;1589:78–92. doi: 10.1016/j.brainres.2014.09.030
  • Yu M, Qin C, Li P, et al. Hydrogen gas alleviates sepsis-induced neuroinflammation and cognitive impairment through regulation of DNMT1 and DNMT3a-mediated BDNF promoter IV methylation in mice. Int Immunopharmacol. 2021;95:107583. doi: 10.1016/j.intimp.2021.107583
  • Bai Y, Han Q, Dong B, et al. PPARα contributes to the therapeutic effect of hydrogen gas against sepsis-associated encephalopathy with the regulation to the CREB-BDNF signaling pathway and hippocampal neuron plasticity-related gene expression. Brain Res Bull. 2022;184:56–67. doi: 10.1016/j.brainresbull.2022.03.015
  • Qi B, Song Y, Chen C, et al. Molecular hydrogen attenuates sepsis-induced cognitive dysfunction through regulation of tau phosphorylation. Int Immunopharmacol. 2023;114:109603. doi: 10.1016/j.intimp.2022.109603
  • Liao Z, Ou X, Zhou C, et al. Xenon attenuated neonatal lipopolysaccharide exposure induced neuronal necroptosis and subsequently improved cognition in juvenile rats. Front Pharmacol. 2022;13:1002920. doi: 10.3389/fphar.2022.1002920
  • Wang Y, Wang C, Zhang D, et al. Methane-rich saline protects against sepsis-associated cognitive deficits in mice. Brain Res. 2022;1791:148000. doi: 10.1016/j.brainres.2022.148000
  • Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. New perspectives for mesenchymal stromal cells as an adjuvant therapy for infectious disease-associated encephalopathies. Neural Regen Res. 2022;17(1):48–52. doi: 10.4103/1673-5374.314292
  • Abe Y, Ochiai D, Sato Y, et al. Prophylactic therapy with human amniotic fluid stem cells improves long-term cognitive impairment in rat neonatal sepsis survivors. Int J Mol Sci. 2020;21(24):9590. doi: 10.3390/ijms21249590
  • Silva AYO, Amorim ÉA, Barbosa-Silva MC, et al. Mesenchymal stromal cells protect the blood-brain barrier, reduce astrogliosis, and prevent cognitive and behavioral alterations in surviving septic mice. Crit Care Med. 2020;48(4):e290–e298. doi: 10.1097/CCM.0000000000004219
  • Tan L, Cheng Y, Wang H, et al. Peripheral transplantation of mesenchymal stem cells at sepsis convalescence improves cognitive function of sepsis surviving mice. Oxid Med Cell Longev. 2022;2022:1–11. doi: 10.1155/2022/6897765
  • Zhang Z, Wang L, Li F, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell on sepsis-associated encephalopathy in mice by regulating PI3K/AKT pathway. J Integr Neurosci. 2022;21(1):38. doi: 10.31083/j.jin2101038
  • Jin Z, Hu J, Ma D. Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth. 2020;125(4):492–504. doi: 10.1016/j.bja.2020.06.063
  • Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav Immun. 2021;91:296–314. doi: 10.1016/j.bbi.2020.10.008
  • Zhang X, Yan F, Feng J, et al. Dexmedetomidine inhibits inflammatory reaction in the hippocampus of septic rats by suppressing NF-κB pathway. PLoS One. 2018;13(5):e0196897. doi: 10.1371/journal.pone.0196897
  • Sun YB, Zhao H, Mu DL, et al. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 2019;10(3):167. doi: 10.1038/s41419-019-1416-5
  • Tian M, Wang W, Wang K, et al. Dexmedetomidine alleviates cognitive impairment by reducing blood-brain barrier interruption and neuroinflammation via regulating Th1/Th2/Th17 polarization in an experimental sepsis model of mice. Int Immunopharmacol. 2021;101(Pt B):108332. doi: 10.1016/j.intimp.2021.108332
  • Su X, Meng ZT, Wu XH, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016;388(10054):1893–1902. doi: 10.1016/S0140-6736(16)30580-3.
  • Li CJ, Wang BJ, Mu DL, et al. Randomized clinical trial of intraoperative dexmedetomidine to prevent delirium in the elderly undergoing major non-cardiac surgery. Br J Surg. 2020;107(2):e123–e132. doi: 10.1002/bjs.11354
  • Hughes CG, Mailloux PT, Devlin JW, et al. MENDS2 study investigators.Dexmedetomidine or propofol for sedation in mechanically ventilated adults with sepsis. N Engl J Med. 2021;384(15):1424–1436. doi: 10.1056/NEJMoa2024922
  • Zhang L, Peng X, Ai Y, et al. Amitriptyline reduces sepsis-induced brain damage through TrkA signaling pathway. J Mol Neurosci. 2020;70(12):2049–2057. doi: 10.1007/s12031-020-01611-x
  • Anderson ST, Commins S, Moynagh P, et al. Chronic fluoxetine treatment attenuates post-septic affective changes in the mouse. Behav Brain Res. 2016;297:112–115. doi: 10.1016/j.bbr.2015.10.011
  • Xin Y, Wang J, Chu T, et al. Electroacupuncture alleviates neuroinflammation by inhibiting the HMGB1 signaling pathway in rats with sepsis-associated encephalopathy. Brain Sci. 2022;12(12):1732. doi: 10.3390/brainsci12121732
  • Chen Y, Lei Y, Mo LQ, et al. Electroacupuncture pretreatment with different waveforms prevents brain injury in rats subjected to cecal ligation and puncture via inhibiting microglial activation, and attenuating inflammation, oxidative stress and apoptosis. Brain Res Bull. 2016;127:248–259. doi: 10.1016/j.brainresbull.2016.10.009
  • Han YG, Qin X, Zhang T, et al. Electroacupuncture prevents cognitive impairment induced by lipopolysaccharide via inhibition of oxidative stress and neuroinflammation. Neurosci Lett. 2018;683:190–195. doi: 10.1016/j.neulet.2018.06.003
  • Li C, Yu TY, Zhang Y, et al. Electroacupuncture improves cognition in rats with sepsis-associated encephalopathy. J Surg Res. 2020;256:258–266. doi: 10.1016/j.jss.2020.06.056
  • Li Y, Li Z, He F, et al. Electroacupuncture alleviates cognitive dysfunction and neuronal pyroptosis in septic mice. Acupunct Med. 2022;41(4):246–256. doi: 10.1177/09645284221117847
  • Jun G, Yong Y, Lu L, et al. Electroacupuncture treatment ameliorated the long-term cognitive impairment via activating eNOS/NO pathway and related Aβ downregulation in sepsis-survivor mice. Physiol Behav. 2022 Jan 1;243:113646. doi: 10.1016/j.physbeh.2021.113646
  • Huffman WJ, Subramaniyan S, Rodriguiz RM, et al. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 2019;12(1):19–29. doi: 10.1016/j.brs.2018.10.005
  • Eack SM, Mesholam-Gately RI, Greenwald DP, et al. Negative symptom improvement during cognitive rehabilitation: results from a 2-year trial of cognitive enhancement therapy. Psychiatry Res. 2013;209(1):21–26. doi: 10.1016/j.psychres.2013.03.020
  • JJ M 3rd, Hanlon CA, Marshalek PJ, et al. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci. 2020;418:117149. doi: 10.1016/j.jns.2020.117149
  • Meeusen R. Exercise, nutrition and the brain. Sports Med. 2014;44(Suppl 1):S47–S56. doi: 10.1007/s40279-014-0150-5
  • Simpson RJ, Kunz H, Agha N, et al. Exercise and the regulation of immune functions. Prog Mol Biol Transl Sci. 2015;135:355–380.
  • Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise inhibits inflammation and microglial activation. Cells. 2019;8(7):691. doi: 10.3390/cells8070691
  • Dalton A, Mermier C, Zuhl M. Exercise influence on the microbiome-gut-brain axis. Gut Microbes. 2019;10(5):555–568. doi: 10.1080/19490976.2018.1562268
  • Gu M, Mei XL, Zhao YN. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic Approaches. Neurotox Res. 2021;39(2):489–503. doi: 10.1007/s12640-020-00270-5
  • Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation. 2022;19(1):101. doi: 10.1186/s12974-022-02464-4
  • Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive care Med. 2015;41(5):865–874. doi: 10.1007/s00134-015-3763-8
  • Fuke R, Hifumi T, Kondo Y, et al. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open. 2018 5;8(5):e019998. doi: 10.1136/bmjopen-2017-019998
  • Haddad DN, Mart MF, Wang L, et al. Socioeconomic factors and intensive Care unit-related cognitive impairment. Ann Surg. 2020;272(4):596–602. doi: 10.1097/SLA.0000000000004377

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.