306
Views
0
CrossRef citations to date
0
Altmetric
Review

Newborn screening for spinal muscular atrophy - what have we learned?

, &
Pages 1005-1012 | Received 30 Jun 2023, Accepted 22 Aug 2023, Published online: 30 Aug 2023

References

  • Zambon AA, Pini V, Bosco L, et al. Early onset hereditary neuronopathies: an update on non-5q motor neuron diseases. Brain. 2023;146(3):806–822. doi: 10.1093/brain/awac452
  • Aragon-Gawinska K, Mouraux C, Dangouloff T, et al. Spinal muscular atrophy treatment in patients identified by newborn screening-A Systematic review. Genes (Basel). 2023 Jun 29;14(7):1377. doi: 10.3390/genes14071377
  • Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin. 2015;33(4):831–846. doi: 10.1016/j.ncl.2015.07.004
  • Nicolau S, Waldrop MA, Connolly AM, et al. Spinal muscular atrophy. Semin Pediatr Neurol. 2021;37:100878. doi: 10.1016/j.spen.2021.100878
  • Kolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883–891. doi: 10.1002/ana.25101
  • Wijngaarde CA, Stam M, Otto LAM, et al. Population-based analysis of survival in spinal muscular atrophy. Neurology. 2020 14;94(15):e1634–e1644. doi: 10.1212/WNL.0000000000009248
  • Werdnig G. Zwei fruhinfantile hereditare Falle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage. Arch Psychiatr Nervenkr. 1891;22:437–480. doi: 10.1007/BF01776636
  • Hoffmann J. Uber chronische spinale Muskelatrophie im Kindersalter auf familiarer Basis. Deut Zeitsch Nervenheilkd. 1893;3(6):427–470. doi: 10.1007/BF01668496
  • Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995 13;80(1):155–165. doi: 10.1016/0092-8674(95)90460-3
  • Wirth B. Spinal muscular atrophy: in the challenge lies a solution. Trends Neurosci. 2021;44(4):306–322. doi: 10.1016/j.tins.2020.11.009
  • Faravelli I, Riboldi GM, Rinchetti P, et al. The SMN complex at the crossroad between RNA metabolism and neurodegeneration. Int J Mol Sci. 2023;24(3):2247. doi: 10.3390/ijms24032247
  • Zilio E, Piano V, Wirth B. Mitochondrial dysfunction in spinal muscular atrophy. Int J Mol Sci. 2022;23(18):10878. doi: 10.3390/ijms231810878
  • Ramos DM, d’Ydewalle C, Gabbeta V, et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Invest. 2019;129(11):4817–4831. doi: 10.1172/JCI124120
  • Cartegni L, Hastings ML, Calarco JÁ, et al. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. 2006;78(1):63–77. doi: 10.1086/498853
  • Alves CRR, Zhang R, Johnstone AJ, et al. Whole blood survival motor neuron protein levels correlate with severity of denervation in spinal muscular atrophy. Muscle Nerve. 2020;62(3):351–357. doi: 10.1002/mus.26995
  • Calucho M, Bernal S, Alías L, et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscular Disorders. 2018;28(3):208–215. doi: 10.1016/j.nmd.2018.01.003
  • Wu X, Wang SH, Sun J, et al. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet. 2017;26(14):2768–2780. doi: 10.1093/hmg/ddx166
  • Prior TW, Krainer AR, Hua Y, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85(3):408–413. doi: 10.1016/j.ajhg.2009.08.002
  • Cuscó I, Bernal S, Blasco-Pérez L, et al. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy. Neurol Genet. 2020;6(6):e530. doi: 10.1212/NXG.0000000000000530
  • Yener İH, Topaloglu H, Erdem-Özdamar S, et al. Transcript levels of plastin 3 and neuritin 1 modifier genes in spinal muscular atrophy siblings. Pediatr Int. 2017;59(1):53–56. doi: 10.1111/ped.13052
  • Wadman RI, Jansen MD, Curial CAD, et al. Analysis of FUS, PFN2, TDP-43, and PLS3 as potential disease severity modifiers in spinal muscular atrophy. Neurol Genet. 2019 Jan 3;6(1):e386. doi: 10.1212/NXG.0000000000000386
  • Dangouloff T, Boemer F, Dideberg V, et al. Reader response: discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology. 2020;95(3):144–145. doi: 10.1212/WNL.0000000000009907
  • Schorling DC, Becker J, Pechmann A, et al. Discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology. 2019;93(6):267–269. doi: 10.1212/WNL.0000000000007836
  • Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother. 2020;21(3):307–315. doi: 10.1080/14656566.2019.1704732
  • Servais L, Baranello G, Scoto M, et al. Therapeutic interventions for spinal muscular atrophy: preclinical and early clinical development opportunities. Expert Opin Investig Drugs. 2021;30(5):519–527. doi: 10.1080/13543784.2021.1904889
  • Drugs.com [Internet]. FDA approves spinraza. Ewing (NJ). [cited 2016 Dec]. Available from: https://www.drugs.com/newdrugs/fda-approves-spinraza-nusinersen-spinal-muscular-atrophy-4469.html
  • Drugs.com [Internet]. Evrysdi FDA approval history. Ewing (NJ). [cited 2022 May 31]. Available from: https://www.drugs.com/history/evrysdi.html
  • Drugs.com [Internet]. Zolgensma FDA approval history. Ewing (NJ). [cited 2019 Jul 1]. Available from: https://www.drugs.com/history/zolgensma.html
  • Crawford TO, Swoboda KJ, De Vivo DC, et al. NURTURE study group. Muscle Nerve. 2023 Aug;68(2):157–170. doi: 10.1002/mus.27853
  • Finkel R, Farrar M, Vlodavets D, et al. FP.24 RAINBOWFISH: preliminary efficacy and safety data in risdiplam-treated infants with presymptomatic spinal muscular atrophy (SMA). Poster session presented at: Muscular Dystrophy Association Clinical and Scientific Conference. 3–16 Mar 2022. Chicago, IL.
  • Strauss KA, Farrar MA, Muntoni F, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat Med. 2022;28(7):1381–1389. doi: 10.1038/s41591-022-01866-4
  • Strauss KA, Farrar MA, Muntoni F, et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the phase III SPR1NT trial. Nat Med. 2022;28(7):1390–1397. doi: 10.1038/s41591-022-01867-3
  • Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–635. doi: 10.1056/NEJMoa1710504
  • Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–1732. doi: 10.1056/NEJMoa1702752
  • Singh NN, Shishimorova M, Cao LC, et al. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol. 2009;6(3):341–350. doi: 10.4161/rna.6.3.8723
  • Singh NN, Howell MD, Androphy EJ, et al. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 2017;24(9):520–526. doi: 10.1038/gt.2017.34
  • Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017–3026. doi: 10.1016/S0140-6736(16)31408-8
  • Pechmann A, Behrens M, Dörnbrack K, et al. Effect of nusinersen on motor, respiratory and bulbar function in early-onset spinal muscular atrophy. Brain. 2023;146(2):668–677. doi: 10.1093/brain/awac252
  • Pane M, Coratti G, Pera MC, et al. Nusinersen efficacy data for 24-month in type 2 and 3 spinal muscular atrophy. Ann Clin Transl Neurol. 2022;9(3):404–409. doi: 10.1002/acn3.51514
  • Aragon-Gawinska K, Daron A, Ulinici A, et al. Sitting in patients with spinal muscular atrophy type 1 treated with nusinersen. Dev Med Child Neurol. 2020;62(3):310–314. doi: 10.1111/dmcn.14412
  • Finkel RS, Ryan MM, Pascual Pascual SI, et al. Scientific rationale for a higher dose of nusinersen. Ann Clin Transl Neurol. 2022;9(6):819–829. doi: 10.1002/acn3.51562
  • Meyer K, Ferraiuolo L, Schmelzer L, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther. 2015;23(3):477–487. doi: 10.1038/mt.2014.210
  • Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810–817. doi: 10.1212/WNL.0000000000000741
  • Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(10):832–841. doi: 10.1016/S1474-4422(21)00251-9
  • Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–293. doi: 10.1016/S1474-4422(21)00001-6
  • Chien YH, Chiang SC, Weng WC, et al. Presymptomatic diagnosis of spinal muscular atrophy through newborn screening. J Pediatr. 2017;190:124–129.e1.
  • Elkins K, Wittenauer A, Hagar AF, et al. Georgia state spinal muscular atrophy newborn screening experience: Screening assay performance and early clinical outcomes. Am J Med Genet C Semin Med Genet. 2022;190(2):187–196. doi: 10.1002/ajmg.c.32003
  • Sawada T, Kido J, Sugawara K, et al. Newborn screening for spinal muscular atrophy in Japan: one year of experience. Mol Genet Metab Rep. 2022;32:100908. doi: 10.1016/j.ymgmr.2022.100908
  • Boemer F, Caberg JH, Beckers P, et al. Three years pilot of spinal muscular atrophy newborn screening turned into official program in Southern Belgium. Sci Rep. 2021;11(1):19922. doi: 10.1038/s41598-021-99496-2
  • Vill K, Schwartz O, Blaschek A, et al. Newborn screening for spinal muscular atrophy in Germany: clinical results after 2 years. Orphanet J Rare Dis. 2021;16(1):153. doi: 10.1186/s13023-021-01783-8
  • Kariyawasam DST, Russell JS, Wiley V, et al. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet Med. 2020;22(3):557–565. doi: 10.1038/s41436-019-0673-0
  • Curesma [Internet]. Elk Grove Village (IL): Newborn screening for SMA. [cited 2023 Jun 1]. Available from: https://www.curesma.org/newborn-screening-for-sma/#for-sma
  • Dangouloff T, Vrščaj E, Servais L, et al. Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscular Disorders. 2021;31(6):574–582. doi: 10.1016/j.nmd.2021.03.007
  • Czibere L, Burggraf S, Fleige T, et al. High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur J Hum Genet. 2020;28(1):23–30. doi: 10.1038/s41431-019-0476-4
  • Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. 2019;15:1153–1161. doi: 10.2147/TCRM.S172291
  • Alías L, Bernal S, Barceló MJ, et al. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy. Genet Test Mol Biomarkers. 2011;15(9):587–594. doi: 10.1089/gtmb.2010.0253
  • Glascock J, Sampson J, Connolly AM, et al. Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J Neuromuscul Dis. 2020;7(2):97–100. doi: 10.3233/JND-190468
  • Glascock J, Sampson J, Haidet-Phillips A, et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis. 2018;5(2):145–158. doi: 10.3233/JND-180304
  • Aharoni S, Nevo Y, Orenstein N, et al. Impact of a national population-based carrier-screening program on spinal muscular atrophy births. Neuromuscular Disorders. 2020;30(12):970–974. doi: 10.1016/j.nmd.2020.10.005
  • Robson SJ, Caramins M, Saad M, et al. Socio-economic status and uptake of reproductive carrier screening in Australia. Aust N Z J Obstet Gynaecol. 2020;60(6):976–979. doi: 10.1111/ajo.13206
  • Milligan JN, Blasco-Pérez L, Costa-Roger M, et al. Recommendations for interpreting and reporting silent carrier and disease-modifying variants in SMA testing workflows. Genes (Basel). 2022;13(9):1657. doi: 10.3390/genes13091657
  • Schwab ME, Shao S, Zhang L, et al. Investigating attitudes toward prenatal diagnosis and fetal therapy for spinal muscular atrophy. Prenat Diagn. 2022;42(11):1409–1419. doi: 10.1002/pd.6228
  • Finkel R, Hughes S, Parker J, et al. Selected oral presentation: fetal therapy for spinal muscular atrophy: a case report. Presented at: World Muscle Society; 2022 Oct 11-15; Halifax, NS.
  • Proud CM, Mercuri E, Finkel RS, et al. Combination disease-modifying treatment in spinal muscular atrophy: a proposed classification. Ann Clin Transl Neurol. 2023. In press.
  • Grotto S, Cuisset JM, Marret S, et al. Type 0 spinal muscular atrophy: further delineation of prenatal and postnatal features in 16 patients. J Neuromuscul Dis. 2016;3(4):487–495. doi: 10.3233/JND-160177
  • Matesanz SE, Curry C, Gross B, et al. Clinical course in a patient with spinal muscular atrophy type 0 treated with nusinersen and Onasemnogene abeparvovec. J Child Neurol. 2020;35(11):717–723. doi: 10.1177/0883073820928784
  • Ajjarapu A, Mathews DK, Ramachandra D The use of Onasemnogene-abeparvovec at 33 weeks’ gestation in spinal muscular atrophy with one copy of SMN2. Poster session presented at: 2023 Annual Meeting of the American Academy of Neurology; 2023 Apr 22-27: Boston, MA.
  • Blaschek A, Kölbel H, Schwartz O, et al. Newborn screening for SMA - Can a wait-and-see strategy be responsibly justified in patients with four SMN2 copies? J Neuromuscul Dis. 2022;9(5):597–605. doi: 10.3233/JND-221510
  • Dangouloff T, Botty C, Beaudart C, et al. Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments. Orphanet J Rare Dis. 2021;16(1):47. doi: 10.1186/s13023-021-01695-7
  • Dangouloff T, Hiligsmann M, Deconinck N, et al. Financial cost and quality of life of patients with spinal muscular atrophy identified by symptoms or newborn screening. Dev Med Child Neurol. 2023;65(1):67–77. doi: 10.1111/dmcn.15286
  • Weidlich D, Servais L, Kausar I, et al. Cost-effectiveness of newborn screening for spinal muscular atrophy in England. Neurol Ther. 2023;12(4):1205–1220. doi: 10.1007/s40120-023-00489-2
  • Shih STF, Keller E, Wiley V, et al. Modelling the cost-effectiveness and budget impact of a newborn screening program for spinal muscular atrophy and severe combined immunodeficiency. Int J Neonatal Screen. 2022;8(3):45. doi: 10.3390/ijns8030045
  • Velikanova R, van der Schans S, Bischof M, et al. Cost-effectiveness of newborn screening for spinal muscular atrophy in the Netherlands. Value Health. 2022;25(10):1696–1704. doi: 10.1016/j.jval.2022.06.010
  • Pane M, Berti B, Capasso A, et al. Onasemnogene abeparvovec in spinal muscular atrophy: predictors of efficacy and safety in naïve patients with spinal muscular atrophy and following switch from other therapies. EClinicalMedicine. 2023;59:101997. doi: 10.1016/j.eclinm.2023.101997
  • Olkhovych N, Gorovenko N, Servais L. Universal newborn screening for spinal muscular atrophy in Ukraine. Lancet. 2023 Jul 22;402(10398):288–289. doi: 10.1016/S0140-6736(23)01281-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.