160
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the treatment of human T-cell lymphotropic virus type-I associated myelopathy

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1233-1248 | Received 21 Aug 2023, Accepted 16 Oct 2023, Published online: 07 Nov 2023

References

  • Verdonck K, Gonzalez E, Van Dooren S, et al. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis. 2007;7(4):266–281. doi: 10.1016/S1473-3099(07)70081-6
  • de Thé G, Bomford R, DE THÉ G. An HTLV-I vaccine: why, how, for whom? AIDS Res Hum Retroviruses. 1993;9(5):381–386. doi: 10.1089/aid.1993.9.381
  • Willems L, Hasegawa H, Accolla R, et al. Reducing the global burden of HTLV-1 infection: an agenda for research and action. Antiviral Res. 2017;137:41–48. doi: 10.1016/j.antiviral.2016.10.015
  • Araujo AQ. Update on neurological manifestations of HTLV-1 infection. Curr Infect Dis Rep. 2015;17(2):459. doi: 10.1007/s11908-014-0459-0
  • Edlich RF, Arnette JA, Williams FM. Global epidemic of human T-cell lymphotropic virus type-I (HTLV-I). J Emerg Med. 2000;18(1):109–119. doi: 10.1016/S0736-4679(99)00173-0
  • Bangham CR, Araujo A, Yamano Y, et al. HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers. 2015;1(1):15012. doi: 10.1038/nrdp.2015.12
  • Soriano V. HTLV-1 infection still a neglected disease. AIDS Rev. 2018;20(3):175.
  • Boostani R, Lotfinejad N, Zemorshidi F, et al. Planning and management to control and eliminate HTLV-1 infection in Iran. Iran J Basic Med Sci. 2021;24(3):264–266. doi: 10.22038/ijbms.2021.50803.11562
  • Nishijima T, Shimada S, Noda H, et al. Towards the elimination of HTLV-1 infection in Japan. Lancet Infect Dis. 2019;19(1):15–16. doi: 10.1016/S1473-3099(18)30735-7
  • Gallo RC. Research and discovery of the first human cancer virus, HTLV-1. Best Pract Res Clin Haematol. 2011;24(4):559–565. doi: 10.1016/j.beha.2011.09.012
  • Coler-Reilly AL, Yagishita N, Suzuki H, et al. Nation-wide epidemiological study of Japanese patients with rare viral myelopathy using novel registration system (HAM-net). Orphanet J Rare Dis. 2016;11(1):69. doi: 10.1186/s13023-016-0451-x
  • Yamaguchi K. Human T-lymphotropic virus type I in Japan. Lancet. 1994;343(8891):213–216. doi: 10.1016/S0140-6736(94)90994-6
  • Cruickshank JK, Richardson JH, Morgan OS, et al. Screening for prolonged incubation of HTLV-I infection in British and Jamaican relatives of British patients with tropical spastic paraparesis. BMJ. 1990;300(6720):300–304. doi: 10.1136/bmj.300.6720.300
  • Gracia F, Reeves WC, Levine PH, et al. Human T-cell lymphotropic virus type I and neurologic disease in Panama, 1985 and 1986. Arch Neurol. 1990;47(6):634–639. doi: 10.1001/archneur.1990.00530060042014
  • Carneiro-Proietti AB, Catalan-Soares BC, Castro-Costa CM, et al. HTLV in the Americas: challenges and perspectives. Rev Panam Salud Publica. 2006;19(1):44–53. doi: 10.1590/S1020-49892006000100007
  • Mata EC, Bezerra RM, Proietti Junior AA, et al. HTLV-1/2 prevalence in two Amazonian communities. J Virus Erad. 2018;4(3):174–178. doi: 10.1016/S2055-6640(20)30261-2
  • Araujo Ade Q, Ali A, Newell A, et al. HTLV-I infection and neurological disease in Rio de Janeiro. J Neurol Neurosurg Psychiatry. 1992;55(2):153–155. doi: 10.1136/jnnp.55.2.153
  • Gessain A, Saal F, Gout O, et al. High human T-cell lymphotropic virus type I proviral DNA load with polyclonal integration in peripheral blood mononuclear cells of French West Indian, Guianese, and African patients with tropical spastic paraparesis. Blood. 1990;75(2):428–433. doi: 10.1182/blood.V75.2.428.428
  • Costa CM, Salgueiro MR, Carton H, et al. Tropical spastic paraparesis in Northeastern Brazil. Arq Neuropsiquiatr. 1989;47(2):134–138. doi: 10.1590/S0004-282X1989000200002
  • Roman GC, Roman LN. Tropical spastic paraparesis. A clinical study of 50 patients from Tumaco (Colombia) and review of the worldwide features of the syndrome. J Neurol Sci. 1988;87(1):121–138. doi: 10.1016/0022-510X(88)90059-7
  • Azarpazhooh MR, Hasanpour K, Ghanbari M, et al. Human T-lymphotropic virus type 1 prevalence in northeastern Iran, Sabzevar: an epidemiologic-based study and phylogenetic analysis. AIDS Res Hum Retroviruses. 2012;28(9):1095–1101. doi: 10.1089/aid.2011.0248
  • Kalavi K, Moradi A, Tabarraei A. Population-based seroprevalence of HTLV-I infection in Golestan province, South East of Caspian Sea, Iran. Iran J Basic Med Sci. 2013;16(3):225–228.
  • Boostani R, Mellat Ardakani A, Ashrafi H. Khorasan disease: prevalence of HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) in West Azarbaijan from 2004 to 2007. Iran Red Crescent Med J. 2011;13(6):428–430. doi: 10.1038/sj.onc.1208968
  • Nerurkar VR, Achiron A, Song KJ, et al. Human T-cell lymphotropic virus type I in Iranian-born Mashhadi Jews: genetic and phylogenetic evidence for common source of infection. J Med Virol. 1995;45(4):361–366. doi: 10.1002/jmv.1890450402
  • Abebe M, Haimanot RT, Gustafsson A, et al. Low HTLV-1 seroprevalence in endemic tropical spastic paraparesis in Ethiopia. Trans R Soc Trop Med Hyg. 1991;85(1):109–112. doi: 10.1016/0035-9203(91)90179-3
  • Kayembe K, Goubau P, Desmyter J, et al. A cluster of HTLV-1 associated tropical spastic paraparesis in Equateur (Zaire): ethnic and familial distribution. J Neurol Neurosurg Psychiatry. 1990;53(1):4–10. doi: 10.1136/jnnp.53.1.4
  • Gledhill RF, Dessein PH. Antibody to HTLV-I in a black South African with a neurological disorder resembling multiple sclerosis. S Afr Med J. 1989;75(3):147–148.
  • Dumas M, Grunitzky EK, Giordano C, et al. Role of retrovirus HTLV-1 in African spastic paraplegia. Southeast Asian J Trop Med Public Health. 1993;24(2):394–395.
  • Bhigjee AI, Vinsen C, Windsor IM, et al. Prevalence and transmission of HTLV-I infection in Natal/KwaZulu. S Afr Med J. 1993;83(9):665–667.
  • Harrington WJ Jr., Ucar A, Gill P, et al. Clinical spectrum of HTLV-I in south Florida. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8(5):466–473. doi: 10.1097/00042560-199504120-00006
  • Dixon PS, Bodner AJ, Okihiro M, et al. Human T-lymphotropic virus type I (HTLV-I) and tropical spastic paraparesis or HTLV-I-associated myelopathy in Hawaii. West J Med. 1990;152(3):261–267.
  • Tanase AD, Colita A, Craciun OG, et al. Allogeneic stem cell transplantation for adult T-Cell leukemia/Lymphoma—Romanian experience. J Clin Med. 2020;9(8):2417. doi: 10.3390/jcm9082417
  • Shtalrid M, Shvidel L, Korenfeld R, et al. HTLV-1 associated adult T-cell leukemia/lymphoma in Israel: report of two patients of Romanian origin. Haematologica. 2005;90(4): e36–e38.
  • Li X, Chen Y, Wu Z, et al. Prevalence of human T-lymphotropic virus type 1 infection among blood donors in mainland China: a meta-analysis. Int J Infect Dis. 2014;25:94–99. doi: 10.1016/j.ijid.2014.02.021
  • Xie J, Ge S, Zhang Y, et al. The prevalence of human T-lymphotropic virus infection among blood donors in southeast China, 2004-2013. PLoS Negl Trop Dis. 2015;9(4):e0003685. doi: 10.1371/journal.pntd.0003685
  • Martin F, Fedina A, Youshya S, et al. A 15-year prospective longitudinal study of disease progression in patients with HTLV-1 associated myelopathy in the UK. J Neurol Neurosurg Psychiatry. 2010;81(12):1336–1340. doi: 10.1136/jnnp.2009.191239
  • Power C, Weinshenker BG, Dekaban GA, et al. HTLV-1 associated myelopathy in Canada. Can J Neurol Sci. 1989;16(3):330–335. doi: 10.1017/S0317167100029176
  • Oger J, Lai H Demyelination and ethnicity: experience at the University of British columbia multiple sclerosis clinic with special reference to HTLV-I-associated myelopathy in British Columbian natives. Ann Neurol, 36p. S22–24 (1994).
  • Einsiedel L, Woodman RJ, Flynn M, et al. Human T-Lymphotropic virus type 1 infection in an indigenous Australian population: epidemiological insights from a hospital-based cohort study. BMC Public Health. 2016;16(1):787. doi: 10.1186/s12889-016-3366-5
  • Cassar O, Einsiedel L, Afonso PV, et al. Human T-cell lymphotropic virus type 1 subtype C molecular variants among indigenous australians: new insights into the molecular epidemiology of HTLV-1 in Australo-Melanesia. PLoS Negl Trop Dis. 2013;7(9):e2418. doi: 10.1371/journal.pntd.0002418
  • Nerurkar VR, Song KJ, Melland RR, et al. Genetic and phylogenetic analyses of human T-cell lymphotropic virus type I variants from Melanesians with and without spastic myelopathy. Mol Neurobiol. 1994;8(2–3):155–173. doi: 10.1007/BF02780667
  • Yanagihara R, Ajdukiewicz AB, Garruto RM, et al. Human T-lymphotropic virus type I infection in the Solomon Islands. Am J Trop Med Hyg. 1991;44(2):122–130. doi: 10.4269/ajtmh.1991.44.122
  • Talukder MR, Woodman R, Pham H, et al. High human T-Cell leukemia virus type 1c proviral loads are associated with diabetes and chronic kidney disease: results of a cross-sectional community survey in Central Australia. Clin Infect Dis. 2023;76(3):e820–e826. doi: 10.1093/cid/ciac614
  • Martin F, Gilks CF, Gibb R, et al. Human T-cell leukaemia virus type 1 and adult T-cell leukaemia/lymphoma in Queensland, Australia: a retrospective cross-sectional study. Sex Transm Infect. 2023;99(1):50–52. doi: 10.1136/sextrans-2021-055241
  • Talukder MR, Pham H, Woodman R, et al. The Association between diabetes and human T-Cell leukaemia virus type-1 (HTLV-1) with strongyloides stercoralis: results of a community-based, cross-sectional survey in Central Australia. Int J Environ Res Public Health. 2022;19(4):2084. doi: 10.3390/ijerph19042084
  • Ramaswami AP, Pawar B, Pawar G, et al. Prevalence of blood-borne viruses and hepatitis B vaccination status among haemodialysis patients in Central Australia. IJID Reg. 2022;5:111–116. doi: 10.1016/j.ijregi.2022.09.010
  • Fowler F, Einsiedel L. A qualitative study exploring perceptions to the human T cell leukaemia virus type 1 in central Australia: barriers to preventing transmission in a remote aboriginal population. Front Med. 2022;9:845594. doi: 10.3389/fmed.2022.845594
  • Lairmore MD, Haines R, Anupam R. Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr Opin Virol. 2012;2(4):474–481. doi: 10.1016/j.coviro.2012.06.007
  • Itabashi K, Miyazawa T. Mother-to-child transmission of human T-Cell leukemia virus type 1: mechanisms and nutritional strategies for prevention. Cancers (Basel). 2021;13(16):4100. doi: 10.3390/cancers13164100
  • Nerome Y, Yamamoto N, Mizuno M, et al. A case of mother-to-child transmission of human T-cell leukemia virus type-1 from a polymerase chain reaction negative mother. Pediatr Int. 2021;63(11):1383–1384. doi: 10.1111/ped.14615
  • Oliveira Mde F, Brites C, Ferraz N, et al. Infective dermatitis associated with the human T cell lymphotropic virus type I in Salvador, Bahia, Brazil. Clin Infect Dis. 2005;40(11):e90–96. doi: 10.1086/430064
  • Percher F, Jeannin P, Martin-Latil S, et al. Mother-to-child transmission of HTLV-1 epidemiological aspects, mechanisms and determinants of mother-to-child transmission. Viruses. 2016;8(2):40. doi: 10.3390/v8020040
  • Itabashi K, Miyazawa T, Uchimaru K. How can we prevent mother-to-child transmission of HTLV-1? Int J Mol Sci. 2023;24(8):6961. doi: 10.3390/ijms24086961
  • Caswell RJ, Nall P, Boothby M, et al. Rapid onset and progression of myelopathy following an STI: a case for screening? Sex Transm Infect. 2019;95(4):244–245. doi: 10.1136/sextrans-2019-053978
  • Fretz C, Jaulmes D, Jordan G, et al. HTLV-I transmission and myelopathy induced by blood transfusion. Transfusion. 1991;31(4):379. doi: 10.1046/j.1537-2995.1991.31491213307.x
  • Namba Y, Oka S, Shimada K, et al. Post-mortem diagnosis of human T lymphotrophic virus type-1 (HTLV-1) associated myelopathy by detection of HTLV-1 DNA in the spinal cord of a patient with post-transfusional myelopathy. Mol Cell Probes. 1991;5(5):381–384. doi: 10.1016/S0890-8508(06)80010-1
  • Kurosawa M, Machii T, Kitani T, et al. HTLV-I associated myelopathy (HAM) after blood transfusion in a patient with CD2+ hairy cell leukemia. Am J Clin Pathol. 1991;95(1):72–76. doi: 10.1093/ajcp/95.1.72
  • Gout O, Baulac M, Gessain A, et al. Rapid development of myelopathy after HTLV-I infection acquired by transfusion during cardiac transplantation. N Engl J Med. 1990;322(6):383–388. doi: 10.1056/NEJM199002083220607
  • Govert F, Krumbholz A, Witt K, et al. HTLV-1 associated myelopathy after renal transplantation. J Clin Virol. 2015;72:102–105. doi: 10.1016/j.jcv.2015.09.010
  • Montesdeoca Andrade MJ, Correa Diaz EP, Buestan ME. HTLV-1-associated myelopathy in a solid organ transplant recipient. BMJ Case Rep. 2016;bcr2016215243. doi: 10.1136/bcr-2016-215243
  • Soyama A, Eguchi S, Takatsuki M, et al. Human T-cell leukemia virus type I-associated myelopathy following living-donor liver transplantation. Liver Transpl. 2008;14(5):647–650. doi: 10.1002/lt.21414
  • Toro C, Rodes B, Poveda E, et al. Rapid development of subacute myelopathy in three organ transplant recipients after transmission of human T-cell lymphotropic virus type I from a single donor. Transplantation. 2003;75(1):102–104. doi: 10.1097/00007890-200301150-00019
  • Osman HK. Human T-cell lymphotropic virus type 1: is it time to screen organ donors and recipients? Transplantation. 2003;75(1):1–2. doi: 10.1097/00007890-200301150-00001
  • Kauffman HM, Taranto SE. Human T-cell lymphotrophic virus type-1 and organ donors. Transplantation. 2003;76(4):745–746. doi: 10.1097/01.TP.0000071847.36786.C1
  • Nakatsuji Y, Sugai F, Watanabe S, et al. HTLV-I-associated myelopathy manifested after renal transplantation. J Neurol Sci. 2000;177(2):154–156. doi: 10.1016/S0022-510X(00)00332-4
  • Emmanouilides CE, Territo M. HTLV-I-associated myelopathy following allogeneic bone marrow transplantation. Bone Marrow Transplant. 1999;24(2):205–206. doi: 10.1038/sj.bmt.1701864
  • Ahmadi Ghezeldasht S, Blackbourn DJ, Mosavat A, et al. Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: adult T-cell leukemia/lymphoma (ATLL). Crit Rev Clin Lab Sci. 2023;60(3):189–211. doi: 10.1080/10408363.2022.2157791
  • Dalgleish A, Richardson J, Matutes E, et al. HTLV-1 infection in tropical spastic paraparesis: lymphocyte culture and serologic response. AIDS Res Hum Retroviruses. 1988;4(6):475–485. doi: 10.1089/aid.1988.4.475
  • Iannone R, Sherman MP, Rodgers-Johnson PE, et al. HTLV-I DNA sequences in CNS tissue of a patient with tropical spastic paraparesis and HTLV-I-associated myelopathy. J Acquir Immune Defic Syndr. 1988 1992;5(8):810–816. doi: 10.1097/00126334-199208000-00007
  • Araujo AQ, Silva MT. The HTLV-1 neurological complex. Lancet Neurol. 2006;5(12):1068–1076. doi: 10.1016/S1474-4422(06)70628-7
  • Cartier L, Araya F, Castillo JL, et al. Progressive spastic paraparesis associated with human T-cell leukemia virus type I (HTLV-I). Intern Med. 1992;31(11):1257–1261. doi: 10.2169/internalmedicine.31.1257
  • Saito M. Immunogenetics and the pathological mechanisms of human T-Cell leukemia VirusType 1- (HTLV-1-)associated myelopathy/tropical spastic paraparesis (HAM/TSP). Interdiscip Perspect Infect Dis. 2010;2010:1–8. doi: 10.1155/2010/478461
  • Villamil-Gomez W, Torres JR, Rojas-Hernandez J, et al. HTLV-1 uveitis in Colombia, an underrecognized complication of a hitherto neglected condition: a case series. Ther Adv Infect Dis. 2023;10:20499361231165864. doi: 10.1177/20499361231165864
  • Kamoi K, Mochizuki M. HTLV-1 uveitis. Front Microbiol. 2012;3:270. doi: 10.3389/fmicb.2012.00270
  • Sharata HH, Colvin JH, Fujiwara K, et al. Cutaneous and neurologic disease associated with HTLV-I infection. J Am Acad Dermatol. 1997;36(5 Pt 2):869–871. doi: 10.1016/S0190-9622(97)70044-6
  • Amano M, Setoyama M, Grant A, et al. Human T-lymphotropic virus 1 (HTLV-1) infection–dermatological implications. Int J Dermatol. 2011;50(8):915–920. doi: 10.1111/j.1365-4632.2011.04882.x
  • de Sa KS, Santana BB, de Souza Ferreira TC, et al. IL28B gene polymorphisms and Th1/Th2 cytokine levels might be associated with HTLV-associated arthropathy. Cytokine. 2016;77:79–87. doi: 10.1016/j.cyto.2015.11.004
  • Pinheiro SR, Lana-Peixoto MA, Proietti AB, et al. HTLV-I associated uveitis, myelopathy, rheumatoid arthritis and Sjogren’s syndrome. Arq Neuropsiquiatr. 1995;53(4):777–781. doi: 10.1590/S0004-282X1995000500011
  • Goncalves DU, Guedes AC, Carneiro-Proietti AB, et al. Simultaneous occurrence of HTLV-I associated myelopathy, uveitis and smouldering adult T cell leukaemia. GIPH (interdisciplinary HTLV-I/II Research group). Int J STD AIDS. 1999;10(5):336–337. doi: 10.1258/0956462991914078
  • Sato Y, Honda Y, Ohshima Y, et al. Acute myelopathy and cerebellar signs associated with uveitis with positive serum and cerebrospinal fluid antibodies to HTLV-I. Kurume Med J. 1994;41(4):193–197. doi: 10.2739/kurumemedj.41.193
  • Ozawa Y, Migita M, Watanabe T, et al. Development of graves’ ophthalmopathy and uveitis after radioiodine therapy for graves’ disease in a patient with HTLV-I associated myelopathy (HAM). Intern Med. 1994;33(9):564–568. doi: 10.2169/internalmedicine.33.564
  • Saito Y, Ando T, Kameyama T, et al. Myelopathy with uveitis in association with HTLV-I mimicking neuro-Behcet’s disease. Rinsho Shinkeigaku. 1993;33(8):912–914.
  • Nakao K, Ohba N, Matsumoto M. Noninfectious anterior uveitis in patients infected with human T-lymphotropic virus type I. Jpn J Ophthalmol. 1989;33(4):472–481. doi: 10.1097/00006982-199010000-00017
  • Sasaki K, Morooka I, Inomata H, et al. Retinal vasculitis in human T-lymphotropic virus type I associated myelopathy. Br J Ophthalmol. 1989;73(10):812–815. doi: 10.1136/bjo.73.10.812
  • Fukazawa T, Hamada T, Hamada K, et al. HTLV-1 associated myelopathy combined with chronic thyroiditis. J Intern Med. 1991;230(1):89–90. doi: 10.1111/j.1365-2796.1991.tb00412.x
  • Hajj HE, Nasr R, Kfoury Y, et al. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol. 2012;3:333. doi: 10.3389/fmicb.2012.00333
  • Furukawa Y, Yamashita M, Usuku K, et al. Phylogenetic subgroups of human T cell lymphotropic virus (HTLV) type I in the tax gene and their association with different risks for HTLV-I-associated myelopathy/tropical spastic paraparesis. J Infect Dis. 2000;182(5):1343–1349. doi: 10.1086/315897
  • Gonzalez-Dunia D, Komurian-Pradel F, Chirinian-Syan S, et al. Comparative analysis of HTLV-I promoter activities reveals no disease-linked pattern of expression. AIDS Res Hum Retroviruses. 1993;9(4):337–341. doi: 10.1089/aid.1993.9.337
  • Bangham CR, Daenke S, Phillips RE, et al. Enzymatic amplification of exogenous and endogenous retroviral sequences from DNA of patients with tropical spastic paraparesis. EMBO J. 1988;7(13):4179–4184. doi: 10.1002/j.1460-2075.1988.tb03314.x
  • Kannagi M, Hasegawa A, Nagano Y, et al. Impact of host immunity on HTLV-1 pathogenesis: potential of Tax-targeted immunotherapy against ATL. Retrovirology. 2019;16(1):23. doi: 10.1186/s12977-019-0484-z
  • Daenke S, Nightingale S, Cruickshank JK, et al. Sequence variants of human T-cell lymphotropic virus type I from patients with tropical spastic paraparesis and adult T-cell leukemia do not distinguish neurological from leukemic isolates. J Virol. 1990;64(3):1278–1282. doi: 10.1128/jvi.64.3.1278-1282.1990
  • Mirhosseini A, Mohareri M, Arab R, et al. Complete sequence of human T cell leukemia virus type 1 in ATLL patients from northeast Iran, Mashhad revealed a prematurely terminated protease and an elongated pX open reading frame III. Infect Genet Evol. 2019;73:460–469. doi: 10.1016/j.meegid.2019.05.012
  • Akbarin MM, Rahimi H, Hassannia T, et al. Comparison of HTLV-I proviral load in adult T cell leukemia/lymphoma (ATL), HTLV-I-Associated Myelopathy (HAM-TSP) and Healthy Carriers. Iran J Basic Med Sci. 2013;16(3):208–212.
  • Best I, Adaui V, Verdonck K, et al. Proviral load and immune markers associated with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Peru. Clin Exp Immunol. 2006;146(2):226–233. doi: 10.1111/j.1365-2249.2006.03208.x
  • Matsuzaki T, Nakagawa M, Nagai M, et al. HTLV-I proviral load correlates with progression of motor disability in HAM/TSP: analysis of 239 HAM/TSP patients including 64 patients followed up for 10 years. J Neurovirol. 2001;7(3):228–234. doi: 10.1080/13550280152403272
  • Nagai M, Usuku K, Matsumoto W, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998;4(6):586–593. doi: 10.3109/13550289809114225
  • Olindo S, Lézin A, Cabre P, et al. HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression. J Neurolog Sci. 2005;237(1–2):53–59. doi: 10.1016/j.jns.2005.05.010
  • Demontis MA, Hilburn S, Taylor GP. Human T cell lymphotropic virus type 1 viral load variability and long-term trends in asymptomatic carriers and in patients with human T cell lymphotropic virus type 1-related diseases. AIDS Res Hum Retroviruses. 2013;29(2):359–364. doi: 10.1089/aid.2012.0132
  • Jeffery KJ, Usuku K, Hall SE, et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci U S A. 1999;96(7):3848–3853. doi: 10.1073/pnas.96.7.3848
  • Trevino A, Vicario JL, Lopez M, et al. Association between HLA alleles and HAM/TSP in individuals infected with HTLV-1. J Neurol. 2013;260(10):2551–2555. doi: 10.1007/s00415-013-7014-z
  • Meekings KN, Leipzig J, Bushman FD, et al. HTLV-1 integration into transcriptionally active genomic regions is associated with proviral expression and with HAM/TSP. PLOS Pathog. 2008;4(3):e1000027. doi: 10.1371/journal.ppat.1000027
  • Niederer HA, Laydon DJ, Melamed A, et al. HTLV-1 proviral integration sites differ between asymptomatic carriers and patients with HAM/TSP. Virol J. 2014;11(1):172. doi: 10.1186/1743-422X-11-172
  • Ciliao Alves DC, Haddad R, Rocha-Junior MC, et al. HLA-G 3’-untranslated region polymorphisms are associated with HTLV-1 infection, proviral load and HTLV-associated myelopathy/tropical spastic paraparesis development. J Gen Virol. 2016;97(10):2742–2752. doi: 10.1099/jgv.0.000559
  • Osame M. The recent advances of HAM/TSP research. Rinsho Shinkeigaku. 1999;39(12):1200–1202.
  • Catalan-Soares BC, Carneiro-Proietti AB, Da Fonseca FG, et al. HLA class I alleles in HTLV-1-associated myelopathy and asymptomatic carriers from the Brazilian cohort GIPH. Med Microbiol Immunol. 2009;198(1):1–3. doi: 10.1007/s00430-008-0096-z
  • Haddad R, Ciliao Alves DC, Rocha-Junior MC, et al. HLA-G 14-bp insertion/deletion polymorphism is a risk factor for HTLV-1 infection. AIDS Res Hum Retroviruses. 2011;27(3):283–288. doi: 10.1089/aid.2010.0165
  • Schor D, Porto LC, Roma EH, et al. Putative role of HLA polymorphism among a Brazilian HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) population. Sci Rep. 2023;13(1):7659. doi: 10.1038/s41598-023-34757-w
  • Taghaddosi M, Rezaee SA, Rafatpanah H, et al. Association between HLA class I alleles and proviral load in HTLV-I associated myelopathy/tropical spastic paraperesis (HAM/TSP) patients in Iranian population. Iran J Basic Med Sci. 2013;16(3):264–267.
  • Sabouri AH, Saito M, Usuku K, et al. Differences in viral and host genetic risk factors for development of human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis between Iranian and Japanese HTLV-1-infected individuals. J Gen Virol. 2005;86(Pt 3):773–781. doi: 10.1099/vir.0.80509-0
  • Saffari M, Rahimzada M, Mirhosseini A, et al. Coevolution of HTLV-1-HBZ, tax, and proviral load with host IRF-1 and CCNA-2 in HAM/TSP patients. Infect Genet Evol. 2022;103:105337. doi: 10.1016/j.meegid.2022.105337
  • Mozhgani SH, Jahantigh HR, Rafatpanah H, et al. Interferon Lambda family along with HTLV-1 proviral load, tax, and HBZ implicated in the pathogenesis of myelopathy/tropical spastic paraparesis. Neurodegener Dis. 2018;18(2–3):150–155. doi: 10.1159/000490058
  • Martins ML, de Freitas Carneiro-Proietti AB, Nicolato R, et al. HTLV-1 proviral load in cerebrospinal fluid may not be a good marker to differentiate asymptomatic carriers with high proviral load in blood from HAM/TSP patients. J Neurovirol. 2018;24(4):432–438. doi: 10.1007/s13365-018-0632-6
  • Tarokhian H, Taghadosi M, Rafatpanah H, et al. The effect of HTLV-1 virulence factors (HBZ, tax, proviral load), HLA class I and plasma neopterin on manifestation of HTLV-1 associated myelopathy tropical spastic paraparesis. Virus Res. 2017;228:1–6. doi: 10.1016/j.virusres.2016.11.009
  • Assone T, Paiva A, Fonseca LA, et al. Genetic markers of the host in persons living with HTLV-1, HIV and HCV infections. Viruses. 2016;8(2):38. doi: 10.3390/v8020038
  • Talledo M, Lopez G, Huyghe JR, et al. Evaluation of host genetic and viral factors as surrogate markers for HTLV-1-associated myelopathy/tropical spastic paraparesis in Peruvian HTLV-1-infected patients. J Med Virol. 2010;82(3):460–466. doi: 10.1002/jmv.21675
  • Deschamps R, Bera O, Belrose G, et al. Absence of consistent association between human leukocyte antigen-I and -II alleles and human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis risk in an HTLV-1 French Afro-Caribbean population. Int J Infect Dis. 2010;14(11):e986–990. doi: 10.1016/j.ijid.2010.05.020
  • Nose H, Kubota R, Seth NP, et al. Ex vivo analysis of human T lymphotropic virus type 1-specific CD4+ cells by use of a major histocompatibility complex class II tetramer composed of a neurological disease-susceptibility allele and its immunodominant peptide. J Infect Dis. 2007;196(12):1761–1772. doi: 10.1086/522966
  • Benencio P, Fraile Gonzalez SA, Ducasa N, et al. HLA-B*35 as a new marker for susceptibility to human T-cell lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP) in patients living in Argentina. Retrovirology. 2020;17(1):29. doi: 10.1186/s12977-020-00536-y
  • Penova M, Kawaguchi S, Yasunaga JI, et al. Genome wide association study of HTLV-1-associated myelopathy/tropical spastic paraparesis in the Japanese population. Proc Natl Acad Sci U S A. 2021;118(11). doi: 10.1073/pnas.2004199118
  • Rafatpanah H, Pravica V, Faridhosseini R, et al. Association between HLA-DRB1*01 and HLA-Cw*08 and outcome following HTLV-I infection. Iran J Immunol. 2007;4(2):94–100.
  • Silva DC, Amoras E, Moura TCF, et al. TREX1 531C>T polymorphism is associated with high proviral load levels in HTLV-1-Infected persons. Viruses. 2019;12(1):7. doi: 10.3390/v12010007
  • Gadelha SR, Junior Alcântara LC, Costa GC, et al. Correlation between polymorphisms at interleukin-6 but not at interleukin-10 promoter and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis in Brazilian individuals. J Med Virol. 2008;80(12):2141–2146. doi: 10.1002/jmv.21341
  • Nishimura M, Matsuoka M, Maeda M, et al. Association between interleukin-6 gene polymorphism and human T-cell leukemia virus type I associated myelopathy. Hum Immunol. 2002;63(8):696–700. doi: 10.1016/S0198-8859(02)00419-6
  • Sabouri AH, Saito M, Lloyd AL, et al. Polymorphism in the interleukin-10 promoter affects both provirus load and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J Infect Dis. 2004;190(7):1279–1285. doi: 10.1086/423942
  • Vine AM, Witkover AD, Lloyd AL, et al. Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Infect Dis. 2002;186(7):932–939. doi: 10.1086/342953
  • Queiroz MAF, Azevedo VN, Amoras E, et al. IFNG +874A/T polymorphism among asymptomatic HTLV-1-Infected individuals is Potentially related to a worse prognosis. Front Microbiol. 2018;9:795. doi: 10.3389/fmicb.2018.00795
  • Assone T, de Souza FV, Gaester KO, et al. IL28B gene polymorphism SNP rs8099917 genotype GG is associated with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-1 carriers. PLoS Negl Trop Dis. 2014;8(9):e3199. doi: 10.1371/journal.pntd.0003199
  • Schor D, Porto LC, Roma EH, et al. Lack of association between single-nucleotide polymorphisms of pro- and anti-inflammatory cytokines and HTLV-1-associated myelopathy/tropical spastic paraparesis development in patients from Rio de Janeiro, Brazil. BMC Infect Dis. 2018;18(1):593. doi: 10.1186/s12879-018-3510-1
  • Queiroz MAF, Amoras E, Moura TCF, et al. The SAMHD1 rs6029941 (A/G) polymorphism seems to Influence the HTLV-1 proviral load and IFN-Alpha levels. Front Cell Infect Microbiol. 2020;10:246. doi: 10.3389/fcimb.2020.00246
  • da Silva-Malta MCF, Sales CC, Guimaraes JC, et al. The Duffy null genotype is associated with a lower level of CCL2, leukocytes and neutrophil count but not with the clinical outcome of HTLV-1 infection. J Med Microbiol. 2017;66(8):1207–1216. doi: 10.1099/jmm.0.000539
  • Vallinoto AC, Santana BB, Sa KS, et al. HTLV-1-Associated myelopathy/tropical spastic paraparesis is not associated with SNP rs12979860 of the IL-28B gene. Mediators Inflamm. 2015;2015:1–7. doi: 10.1155/2015/804167
  • Rafatpanah H, Pravica V, Farid R, et al. Association of a novel single nucleotide polymorphism in the human perforin gene with the outcome of HTLV-I infection in patients from northeast Iran (Mash-had). Hum Immunol. 2004;65(8):839–846. doi: 10.1016/j.humimm.2004.05.006
  • Rosado J, Morales S, Lopez G, et al. The FAS-670 AA genotype is associated with high proviral load in peruvian HAM/TSP patients. J Med Virol. 2017;89(4):726–731. doi: 10.1002/jmv.24681
  • Freitas FB, Lima SS, Feitosa RN, et al. Polymorphisms in the IFNγ, IL-10, and TGFβ genes may be associated with HIV-1 infection. Dis Markers. 2015:1–9. doi: 10.1155/2015/248571
  • Vallinoto AC, Santana BB, dos Santos EL, et al. FAS −670A/G single nucleotide polymorphism may be associated with human T lymphotropic virus-1 infection and clinical evolution to TSP/HAM. Virus Res. 2012;163(1):178–182. doi: 10.1016/j.virusres.2011.09.015
  • Vallinoto ACR, Santana BB, Queiroz MAF, et al. Family Aggregation of HTLV-1 infection associated with FAS -670A/G polymorphism: a case report. Front Microbiol. 2017;8:2685. doi: 10.3389/fmicb.2017.02685
  • Madureira MWS, Queiroz MAF, Lima SS, et al. The FOXP3-924 A/G single nucleotide polymorphism may be associated with predictive factors for human T lymphotropic virus 1 associated Myelopathy. Viral Immunol. 2023;36(2):136–143. doi: 10.1089/vim.2022.0149
  • Pontes GS, Tamegão-Lopes B, Machado LF, et al. Characterization of mannose-binding lectin gene polymorphism among human T-cell lymphotropic virus 1 and 2-infected asymptomatic subjects. Hum Immunol. 2005;66(8):892–896. doi: 10.1016/j.humimm.2005.06.006
  • Saito M, Usuku K, Nobuhara Y, et al. Serum concentration and genetic polymorphism in the 5’-untraslated region of VEGF is not associated with susceptibility to HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-I infected individuals. J Neurol Sci. 2004;219(1–2):157–161. doi: 10.1016/j.jns.2004.01.009
  • Queiroz MAF, Lopes FT, Botelho BJS, et al. Association of the p75(NTR) Ser205Leu polymorphism with asymptomatic HTLV-1 infection. Viruses. 2022;14(6):1175. doi: 10.3390/v14061175
  • Assone T, Malta FM, Bakkour S, et al. Polymorphisms in HLA-C and KIR alleles are not associated with HAM/TSP risk in HTLV-1-infected subjects. Virus Res. 2018;244:71–74. doi: 10.1016/j.virusres.2017.11.010
  • Costa GC, Azevedo R, Gadelha SR, et al. Polymorphisms at GLUT1 gene are not associated with the development of TSP/HAM in Brazilian HTLV-1 infected individuals and the discovery of a new polymorphism at GLUT1 gene. J Med Virol. 2009;81(3):552–557. doi: 10.1002/jmv.21421
  • Neco H, Teixeira VGS, Trindade ACL, et al. IL17A polymorphism is not associated with human T-Lymphotropic virus 1-associated myelopathy/tropical spastic paraparesis. Viral Immunol. 2017;30(4):298–301. doi: 10.1089/vim.2016.0152
  • Shirdel A, Azarpazhooh MR, Sahebari M, et al. Association of IL-10 gene polymorphisms and human T lymphotropic virus type I-Associated myelopathy/tropical spastic paraparesis in north-east of Iran (Mashhad). Iran J Basic Med Sci. 2013;16(3):258–263.
  • Rafatpanah H, Farid Hosseini R, Pourseyed SH. The impact of immune response on HTLV-I in HTLV-I-Associated myelopathy/tropical spastic paraparesis (HAM/TSP). Iran J Basic Med Sci. 2013;16(3):235–241.
  • Bangham CRM, Osame M. Cellular immune response to HTLV-1. Oncogene. 2005;24(39):6035–6046. doi: 10.1038/sj.onc.1208970
  • Vallinoto ACR, Cayres-Vallinoto I, Freitas Queiroz MA, et al. Influence of immunogenetic biomarkers in the clinical outcome of HTLV-1 infected persons. Viruses. 2019;11(11):974. doi: 10.3390/v11110974
  • Manns A, Wilks RJ, Hanchard B, et al. Viral-specific humoral immune responses following transfusion-related transmission of human T cell lymphotropic virus type-I infection. Viral Immunol. 1994;7(3):113–120. doi: 10.1089/vim.1994.7.113
  • Enose-Akahata Y, Abrams A, Massoud R, et al. Humoral immune response to HTLV-1 basic leucine zipper factor (HBZ) in HTLV-1-infected individuals. Retrovirology. 2013;10(1):19. doi: 10.1186/1742-4690-10-19
  • Lee SM, Morcos Y, Jang H, et al. HTLV-1 induced molecular mimicry in neurological disease. Curr Top Microbiol Immunol. 2005;296:125–136.
  • Santos SB, Porto AF, Muniz AL, et al. Exacerbated inflammatory cellular immune response characteristics of HAM/TSP is observed in a large proportion of HTLV-I asymptomatic carriers. BMC Infect Dis. 2004;4(7). doi: 10.1186/1471-2334-4-7
  • Cavrois M, Gessain A, Gout O, et al. Common human T cell leukemia virus type 1 (HTLV-1) integration sites in cerebrospinal fluid and blood lymphocytes of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis indicate that HTLV-1 crosses the blood-brain barrier via clonal HTLV-1-infected cells. J Infect Dis. 2000;182(4):1044–1050. doi: 10.1086/315844
  • Sugata K, Yasunaga J, Kinosada H, et al. HTLV-1 viral factor HBZ induces CCR4 to promote T-cell migration and proliferation. Cancer Res. 2016;76(17):5068–5079. doi: 10.1158/0008-5472.CAN-16-0361
  • Baratella M, Forlani G, Accolla RS. HTLV-1 HBZ viral protein: a key player in HTLV-1 mediated diseases. Front Microbiol. 2017;8:2615. doi: 10.3389/fmicb.2017.02615
  • Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635–1636. doi: 10.1126/science.1071553
  • Menezes SM, Leal FE, Dierckx T, et al. A Fas(hi) lymphoproliferative phenotype reveals non-apoptotic Fas signaling in HTLV-1-Associated Neuroinflammation. Front Immunol. 2017;8:97. doi: 10.3389/fimmu.2017.00097
  • Nishiura Y, Furuya T, Nakamura T, et al. Increased fas-mediated cytotoxicity of CD4-positive T cells in patients with human T-lymphotropic virus type I-associated myelopathy. J Neuroimmunol. 1998;86(2):198–201. doi: 10.1016/S0165-5728(98)00054-X
  • Saito M, Nakamura N, Nagai M, et al. Increased levels of soluble fas ligand in CSF of rapidly progressive HTLV-1-associated myelopathy/tropical spastic paraparesis patients. J Neuroimmunol. 1999;98(2):221–226. doi: 10.1016/S0165-5728(99)00095-8
  • Umehara F, Itoh K, Michizono K, et al. Involvement of Fas/Fas ligand system in the spinal cords of HTLV-I-associated myelopathy. Acta Neuropathol. 2002;103(4):384–390. doi: 10.1007/s00401-001-0478-4
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi: 10.1038/sigtrans.2017.23
  • Rochfort KD, Cummins PM. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc Res. 2015;100:48–53. doi: 10.1016/j.mvr.2015.04.010
  • Moghadam-Ahmadi A, Boostani R, Tafakhori Z, et al. P001 - MS-like presentations of HTLV-1 infection: case-series and review of literature. Multi Sclerosis Relat Disord. 2014;3(6):738. doi: 10.1016/j.msard.2014.09.150
  • Zorzi G, Mancuso R, Nardocci N, et al. Childhood-onset HAM/TSP with progressive cognitive impairment. Neurol Sci. 2010;31(2):209–212. doi: 10.1007/s10072-009-0204-x
  • Araujo A, Bangham CRM, Casseb J, et al. Management of HAM/TSP: systematic review and consensus-based recommendations 2019. Neurol Clin Pract. 2021;11(1):49–56. doi: 10.1212/CPJ.0000000000000832
  • Costa DT, Santos AL, Castro NM, et al. Neurological symptoms and signs in HTLV-1 patients with overactive bladder syndrome. Arq Neuropsiquiatr. 2012;70(4):252–256. doi: 10.1590/S0004-282X2012000400005
  • Matsuura E, Nozuma S, Dozono M, et al. Iliopsoas muscle weakness as a key diagnostic marker in HTLV-1-Associated myelopathy/tropical spastic paraparesis (HAM/TSP). Pathogens. 2023;12(4):592. doi: 10.3390/pathogens12040592
  • Caiafa RC, Orsini M, Felicio LR, et al. Muscular weakness represents the main limiting factor of walk, functional independence and quality of life of myelopathy patients associated to HTLV-1. Arq Neuropsiquiatr. 2016;74(4):280–286. doi: 10.1590/0004-282X20160019
  • Sato T, Yagishita N, Tamaki K, et al. Proposal of classification criteria for HTLV-1-Associated myelopathy/tropical spastic paraparesis disease activity. Front Microbiol. 2018;9:1651. doi: 10.3389/fmicb.2018.01651
  • Shublaq M, Orsini M, Puccioni-Sohler M. Implications of HAM/TSP functional incapacity in the quality of life. Arq Neuropsiquiatr. 2011;69(2A):208–211. doi: 10.1590/S0004-282X2011000200013
  • Hashimoto T, Uozumi T, Tsuji S. Paraspinal motor evoked potentials by magnetic stimulation of the motor cortex. Neurology. 2000;55(6):885–888. doi: 10.1212/WNL.55.6.885
  • Suga R, Tobimatsu S, Kira J, et al. Motor and somatosensory evoked potential findings in HTLV-I associated myelopathy. J Neurol Sci. 1999;167(2):102–106. doi: 10.1016/S0022-510X(99)00148-3
  • Castillo JL, Cea JG, Verdugo RJ, et al. Sensory dysfunction in HTLV-I-associated myelopathy/tropical spastic paraparesis. A comprehensive neurophysiological study. Eur Neurol. 1999;42(1):17–22. doi: 10.1159/000008063
  • Moritoyo H, Arimura K, Arimura Y, et al. Study of lower limb somatosensory evoked potentials in 96 cases of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurol Sci. 1996;138(1–2):78–81. doi: 10.1016/0022-510X(95)00351-2
  • Gallego S, Frutos MC, Blanco S, et al. First description of seronegative HTLV-1 carriers in Argentina. Am J Trop Med Hyg. 2020;102(4):889–895. doi: 10.4269/ajtmh.19-0647
  • Kitze B, Usuku K, Izumo S, et al. Diversity of intrathecal antibody synthesis against HTLV-I and its relation to HTLV-I associated myelopathy. J Neurol. 1996;243(5):393–400. doi: 10.1007/BF00868998
  • Nakamura M, Kuroki M, J-I K, et al. Elevated antibodies to synthetic peptides of HTLV-1 envelope transmembrane glycoproteins in patients with HAM/TSP. J Neuroimmunol. 1991;35(1–3):167–177. doi: 10.1016/0165-5728(91)90171-3
  • Fujimori J, Nakashima I, Fujihara K, et al. Epitope analysis of the cerebrospinal fluid IgG in HTLV-I associated myelopathy patients using phage display method. J Neuroimmunol. 2004;152(1–2):140–146. doi: 10.1016/j.jneuroim.2004.03.006
  • Enose-Akahata Y, Azodi S, Smith BR, et al. Immunophenotypic characterization of CSF B cells in virus-associated neuroinflammatory diseases. PLOS Pathogens. 2018;14(4):e1007042. doi: 10.1371/journal.ppat.1007042
  • Enose-Akahata Y, Abrams A, Massoud R, et al. Humoral immune response to HTLV-1 basic leucine zipper factor (HBZ) in HTLV-1-infected individuals. Retrovirology. 2013;10(1):1–13. doi: 10.1186/1742-4690-10-19
  • Kitze B, Turner RW, Burchhardt M, et al. Differential diagnosis of HTLV-I-associated myelopathy and multiple sclerosis in Iranian patients. Clin Investig. 1992;70(11):1013–1018. doi: 10.1007/BF00180311
  • Santana BB, Queiroz MAF, Cerveira RA, et al. Low Annexin A1 level in HTLV-1 infected patients is a potential biomarker for the clinical progression and diagnosis of HAM/TSP. BMC Infect Dis. 2021;21(1):219. doi: 10.1186/s12879-021-05917-y
  • da Silva Dias GA, Sousa RCM, Gomes LF, et al. Correlation between clinical symptoms and peripheral immune response in HAM/TSP. Microb Pathog. 2016;92:72–75. doi: 10.1016/j.micpath.2015.11.018
  • Nagai M, Tsujii T, Iwaki H, et al. Cerebrospinal fluid neopterin, but not osteopontin, is a valuable biomarker for the treatment response in patients with HTLV-I-associated myelopathy. Intern Med. 2013;52(19):2203–2208. doi: 10.2169/internalmedicine.52.0869
  • Primo J, Siqueira I, Nascimento M, et al. High HTLV-1 proviral load, a marker for HTLV-1 associated myelopathy/tropical spastic paraparesis, is also detected in patients with infective dermatitis associated with HTLV-1. Braz J Med Biol Res. 2009;42(8):761–764. doi: 10.1590/S0100-879X2009005000008
  • Nagai M, Usuku K, Matsumoto W, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998;4(6):586–593. doi: 10.3109/13550289809114225
  • Silva MTT, Harab RC, Leite AC, et al. Human T lymphotropic virus type 1 (HTLV-1) proviral load in asymptomatic carriers, HTLV-1–associated myelopathy/tropical spastic paraparesis, and other neurological abnormalities associated with HTLV-1 infection. Clinl Infect Dis. 2007;44(5):689–692. doi: 10.1086/510679
  • Yakova M, Lézin A, Dantin F, et al. Increased proviral load in HTLV-1-infected patients with rheumatoid arthritis or connective tissue disease. Retrovirology. 2005;2(1):1–9. doi: 10.1186/1742-4690-2-4
  • Grassi MF, Olavarria VN, Kruschewsky Rde A, et al. Human T cell lymphotropic virus type 1 (HTLV-1) proviral load of HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients according to new diagnostic criteria of HAM/TSP. J Med Virol. 2011;83(7):1269–1274. doi: 10.1002/jmv.22087
  • Goncalves DU, Proietti FA, Barbosa-Stancioli EF, et al. HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) inflammatory network. ISSN. 2008;7(2):98–107. doi: 10.2174/187152808785107642
  • Grassi MFR, Olavarria VN, RdA K, et al. Human T cell lymphotropic virus type 1 (HTLV‐1) proviral load of HTLV‐associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients according to new diagnostic criteria of HAM/TSP. J med virol. 2011;83(7):1269–1274. doi: 10.1002/jmv.22087
  • Kuramitsu M, Okuma K, Nakashima M, et al. Development of reference material with assigned value for human T-cell leukemia virus type 1 quantitative PCR in Japan. Microbiol Immunol. 2018;62(10):673–676. doi: 10.1111/1348-0421.12644
  • Ji H, Chang L, Yan Y, et al. Development and validation of a duplex real-time PCR for the rapid detection and quantitation of HTLV-1. Virol J. 2023;20(1): 9. doi: 10.1186/s12985-023-01970-y
  • Lee TH, Chafets DM, Busch MP, et al. Quantitation of HTLV-I and II proviral load using real-time quantitative PCR with SYBR green chemistry. J Clin Virol. 2004;31(4):275–282. doi: 10.1016/j.jcv.2004.05.016
  • Castro GM, Balangero MC, Maturano E, et al. Development and validation of a real-time PCR assay for a novel HTLV-1 tax sequence detection and proviral load quantitation. J Virol Methods. 2013;189(2):383–387. doi: 10.1016/j.jviromet.2013.02.018
  • Rodrigues ES, Salustiano S, Santos EV, et al. Monitoring of HTLV-1-associated diseases by proviral load quantification using multiplex real-time PCR. J Neurovirol. 2022;28(1):27–34. doi: 10.1007/s13365-020-00924-2
  • Legrand N, McGregor S, Bull R, et al. Clinical and public Health implications of human T-Lymphotropic virus type 1 infection. Clin Microbiol Rev. 2022;35(2):e0007821. doi: 10.1128/cmr.00078-21
  • Rizza P, Moretti F, Belardelli F. Recent advances on the immunomodulatory effects of IFN-α: implications for cancer immunotherapy and autoimmunity. Autoimmunity. 2010;43(3):204–209. doi: 10.3109/08916930903510880
  • Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunol Rev. 1982;65(1):133–155. doi: 10.1111/j.1600-065X.1982.tb00431.x
  • Osame M, Matsumoto M, Usuku K, et al. Chronic progressive myelopathy associated with elevated antibodies to human T‐lymphotropic virus type I and adult T‐cell leukemialike cells. Ann Neurol. 1987;21(2):117–122. doi: 10.1002/ana.410210203
  • Coler-Reilly AL, Sato T, Matsuzaki T, et al. Effectiveness of daily prednisolone to slow progression of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis: a multicenter retrospective cohort study. Neurotherapeutics. 2017;14(4):1084–1094. doi: 10.1007/s13311-017-0533-z
  • Osame M. HTLV-I-associated myelopathy (HAM), treatment trials, retrospective survey and clinical laboratory findings. Hematol Rev. 1990;3:271–284.
  • Croda MG, de Oliveira ACP, Vergara MPP, et al. Corticosteroid therapy in TSP/HAM patients: the results from a 10 years open cohort. J Neurolog Sci. 2008;269(1–2):133–137. doi: 10.1016/j.jns.2008.01.004
  • Nakagawa M, Nakahara K, Maruyama Y, et al. Therapeutic trials in 200 patients with HTLV-Iassociated myelopathy/tropical spastic paraparesis. J Neurovirol. 1996;2(5):345–355. doi: 10.3109/13550289609146899
  • Gessain A, Gout O. Chronic myelopathy associated with human T-lymphotropic virus type I (HTLV-I). Ann internal med. 1992;117(11):933–946. doi: 10.7326/0003-4819-117-11-933
  • J-I K, Fujihara K, Itoyama Y, et al. Leukoencephalopathy in HTLV-I-associated myelopathy/tropical spastic paraparesis: MRI analysis and a two year follow-up study after corticosteroid therapy. J Neurolog Sci. 1991;106(1):41–49. doi: 10.1016/0022-510X(91)90192-A
  • Yamauchi J, Tanabe K, Sato T, et al. Efficacy of corticosteroid therapy for HTLV-1-Associated myelopathy: a randomized controlled trial (HAMLET-P). Viruses. 2022;14(1). doi: 10.3390/v14010136
  • Assone T, Menezes SM, de Toledo Goncalves F, et al. Systemic cytokines and GlycA discriminate disease status and predict corticosteroid response in HTLV-1-associated neuroinflammation. J Neuroinflammation. 2022;19(1):293. doi: 10.1186/s12974-022-02658-w
  • NAKAMURA T, SHIBAYAMA K, NAGASATO K, et al. The efficacy of interferon-alpha treatment in human T-lymphotropic virus type-I-associated myelopathy. Jpn J Med. 1990;29(4):362–367. doi: 10.2169/internalmedicine1962.29.362
  • Shibayama K, Nakamura T, Nagasato K, et al. Interferon-alpha treatment in HTLV-I-associated myelopathy: studies of clinical and immunological aspects. J Neurolog Sci. 1991;106(2):186–192. doi: 10.1016/0022-510X(91)90256-7
  • Kinpara S, Kijiyama M, Takamori A, et al. Interferon-α (IFN-α) suppresses HTLV-1 gene expression and cell cycling, while IFN-α combined with zidovudine induces p53 signaling and apoptosis in HTLV-1-infected cells. Retrovirology. 2013;10(52). doi: 10.1186/1742-4690-10-52
  • Izumo S, Goto I, Itoyama Y, et al. Interferon-alpha is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology. 1996;46(4):1016–1021. doi: 10.1212/WNL.46.4.1016
  • Rafatpanah H, Rezaee A, Etemadi MM, et al. The impact of interferon-alpha treatment on clinical and immunovirological aspects of HTLV-1-associated myelopathy in northeast of Iran. J Neuroimmunol. 2012;250(1–2):87–93. doi: 10.1016/j.jneuroim.2012.05.004
  • Saito M, Nakagawa M, Kaseda S, et al. Decreased human T lymphotropic virus type I (HTLV-I) provirus load and alteration in T cell phenotype after interferon-α therapy for HTLV-I–associated myelopathy/tropical spastic paraparesis. J Infect Dis. 2004;189(1):29–40. doi: 10.1086/380101
  • Arimura K, Nakagawa M, Izumo S, et al. Safety and efficacy of interferon-α in 167 patients with human T-cell lymphotropic virus type 1-associated myelopathy. J Neurovirol. 2007;13(4):364–372. doi: 10.1080/13550280701397627
  • Yamasaki K, J-I K, Koyanagi Y, et al. Long term, high dose interferon-alpha treatment in HTLV-I-associated myelopathy/tropical spastic paraparesis: a combined clinical, virological and immunological study. J Neurolog Sci. 1997;147(2):135–144. doi: 10.1016/S0022-510X(96)05319-1
  • Feng J, Misu T, Fujihara K, et al. Th1/Th2 balance and HTLV-I proviral load in HAM/TSP patients treated with interferon-α. J Neuroimmunol. 2004;151(1–2):189–194. doi: 10.1016/j.jneuroim.2004.02.007
  • Feng J, Misu T, Fujihara K, et al. Interferon-α significantly reduces cerebrospinal fluid CD4 cell subsets in HAM/TSP. J Neuroimmunol. 2003;141(1–2):170–173. doi: 10.1016/S0165-5728(03)00219-4
  • Kuroda Y, Takashima H, Endo C, et al. Treatment of HTLV-I-associated myelopathy with alpha-interferon and high-dose of gamma-globulin. Rinsho Shinkeigaku. 1990;30(6):594–598.
  • Menéndez-Arias L, Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol Sci. 2022;43(1):16–29. doi: 10.1016/j.tips.2021.10.004
  • Soltani A, Hashemy SI, Zahedi Avval F, et al. Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother. 2019;109:770–778. doi: 10.1016/j.biopha.2018.10.139
  • Bazarbachi A, Hermine O. Treatment with a combination of zidovudine and alpha-interferon in naive and pretreated adult T-cell leukemia/lymphoma patients. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;13 Suppl 1:S186–190. doi: 10.1097/00042560-199600001-00028
  • Macchi B, Balestrieri E, Frezza C, et al. Quantification of HTLV-1 reverse transcriptase activity in ATL patients treated with zidovudine and interferon-α. Blood Adv. 2017;1(12):748–752. doi: 10.1182/bloodadvances.2016001370
  • Pasquier A, Alais S, Roux L, et al. How to control HTLV-1-Associated diseases: preventing de novo cellular infection using antiviral therapy. Front Microbiol. 2018;9:278. doi: 10.3389/fmicb.2018.00278
  • Marino-Merlo F, Balestrieri E, Matteucci C, et al. Antiretroviral therapy in HTLV-1 infection: an updated overview. Pathogens. 2020;9(5):342. doi: 10.3390/pathogens9050342
  • Sheremata W, Benedict D, Squilacote D, et al. High‐dose zidovudine induction in HTLV‐I‐associated myelopathy: safety and possible efficacy. Neurology. 1993;43(10):2125–2125. doi: 10.1212/WNL.43.10.2125
  • Gout O, Gessain A, Iba-Zizen M, et al. The effect of zidovudine on chronic myelopathy associated with HTLV-1. J Neurol. 1991;238(2):108–109. doi: 10.1007/BF00315691
  • Machuca A, Rodés B, Soriano V. The effect of antiretroviral therapy on HTLV infection. Virus res. 2001;78(1–2):93–100. doi: 10.1016/S0168-1702(01)00287-8
  • Balestrieri E, Forte G, Matteucci C, et al. Effect of lamivudine on transmission of human T-cell lymphotropic virus type 1 to adult peripheral blood mononuclear cells in vitro. Antimicrob Agents Chemother. 2002;46(9):3080–3083. doi: 10.1128/AAC.46.9.3080-3083.2002
  • Toro C, Rodés B, de Mendoza C, et al. Lamivudine resistance in human T-Cell leukemia virus type 1 May be due to a polymorphism at Codon 118 (V→ I) of the reverse transcriptase. Antimicrob Agents Chemother. 2003;47(5):1774. doi: 10.1128/AAC.47.5.1774-1775.2003
  • Taylor GP, Hall SE, Navarrete S, et al. Effect of lamivudine on human T-cell leukemia virus type 1 (HTLV-1) DNA copy number, T-cell phenotype, and anti-tax cytotoxic T-cell frequency in patients with HTLV-1-associated myelopathy. J Virol. 1999;73(12):10289–10295. doi: 10.1128/JVI.73.12.10289-10295.1999
  • Taylor GP, Goon P, Furukawa Y, et al. Zidovudine plus lamivudine in human T-lymphotropic virus type-I-associated myelopathy: a randomised trial. Retrovirology. 2006;3(1):1–9. doi: 10.1186/1742-4690-3-63
  • Trevino A, Parra P, Bar-Magen T, et al. Antiviral effect of raltegravir on HTLV-1 carriers. J Antimicrob Chemother. 2012;67(1):218–221. doi: 10.1093/jac/dkr404
  • Enose‐Akahata Y, Billioux BJ, Azodi S, et al. Clinical trial of raltegravir, an integrase inhibitor, in HAM/TSP. Ann Clin Transl Neurol. 2021;8(10):1970–1985. doi: 10.1002/acn3.51437
  • Sato T, Coler-Reilly AL, Yagishita N, et al. Mogamulizumab (anti-CCR4) in HTLV-1–associated myelopathy. N Engl J Med. 2018;378(6):529–538. doi: 10.1056/NEJMoa1704827
  • Yamauchi J, Coler-Reilly A, Sato T, et al. Mogamulizumab, an anti-CCR4 antibody, targets human T-Lymphotropic virus type 1–infected CD8+ and CD4+ T cells to treat associated Myelopathy. J Infect Dis. 2015;211(2):238–248. doi: 10.1093/infdis/jiu438
  • Iwao C, Umekita K, Miyauchi S, et al. Effective treatment with Tocilizumab in a rheumatoid arthritis patient complicated with human T-cell leukemia virus type 1-associated myelopathy. Intern Med. 2020;59(15):1891–1897. doi: 10.2169/internalmedicine.4455-20
  • Belrose G, Gross A, Olindo S, et al. Effects of valproate on tax and HBZ expression in HTLV-1 and HAM/TSP T lymphocytes. Blood J Am Soc Hematology. 2011;118(9):2483–2491. doi: 10.1182/blood-2010-11-321364
  • Schnell AP, Kohrt S, Thoma-Kress AK. Latency reversing agents: kick and kill of HTLV-1? Int J Mol Sci. 2021;22(11):5545. doi: 10.3390/ijms22115545
  • Olindo S, Belrose G, Gillet N, et al. Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood J Am Soc Hematology. 2011;118(24):6306–6309. doi: 10.1182/blood-2011-04-349910
  • Atabati H, Ghaffarian D, Hosseini RF, et al. Study of the effects of combined therapy with sodium valproate, peg-interferon and corticosteroid on proviral load of HTLV-1 and the expression of Rel-A, creb and IL-1 genes in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis. Ann Med Health Sci Res. 2018;8(5):340–345.
  • Sato T, Maeta T, Ito S. Dimethyl fumarate suppresses the proliferation of HTLV-1-infected T cells by inhibiting CBM complex-triggered NF-B signaling. Anticancer Res. 2023;43(5):1901–1908. doi: 10.21873/anticanres.16349
  • Martin F, Castro H, Gabriel C, et al. Ciclosporin a proof of concept study in patients with active, progressive HTLV-1 associated myelopathy/tropical spastic paraparesis. PLoS Negl Trop Dis. 2012;6(6):e1675. doi: 10.1371/journal.pntd.0001675
  • Sanchez-Montalva A, Salvador F, Caballero E, et al. Cyclosporine for the treatment of HLTV-1-induced HAM/TSP: an experience from a case report. Medicine (Baltimore). 2015;94(1):e382. doi: 10.1097/MD.0000000000000382
  • Mohammadi A, Fazeli B, Taheri M, et al. Modulatory effects of curcumin on apoptosis and cytotoxicity-related molecules in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Biomed Pharmacother. 2017;85:457–462. doi: 10.1016/j.biopha.2016.11.050
  • Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–125. doi: 10.1007/978-0-387-46401-5_3
  • Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J HerbMed Pharmacol. 2018;7(4):211–219. doi: 10.15171/jhp.2018.33
  • Poursina Z, Mohammadi A, Yazdi SZ, et al. Curcumin increased the expression of c‐FLIP in HTLV‐1‐associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. J Cell Biochem. 2019;120(9):15740–15745. doi: 10.1002/jcb.28843
  • Matsuzaki T, Saito M, Usuku K, et al. A prospective uncontrolled trial of fermented milk drink containing viable lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis. J Neurolog Sci. 2005;237(1–2):75–81. doi: 10.1016/j.jns.2005.05.011
  • Fukushima N, Nishiura Y, Nakamura T, et al. Involvement of p38 MAPK signaling pathway in IFN-γ and HTLV-I expression in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neuroimmunol. 2005;159(1–2):196–202. doi: 10.1016/j.jneuroim.2004.10.007
  • Ju W, Zhang M, J-K J, et al. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP. Blood J Am Soc Hematology. 2011;117(6):1938–1946. doi: 10.1182/blood-2010-09-305425
  • Boostani R, Vakili R, Hosseiny SS, et al. Triple therapy with prednisolone, Pegylated interferon and sodium valproate improves clinical outcome and reduces human T-Cell leukemia virus type 1 (HTLV-1) proviral load, tax and HBZ mRNA expression in patients with HTLV-1-Associated myelopathy/tropical spastic paraparesis. Neurotherapeutics. 2015;12(4):887–895. doi: 10.1007/s13311-015-0369-3
  • Nakamura T, Matsuo T, Fukuda T, et al. Efficacy of prosultiamine treatment in patients with human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis: results from an open-label clinical trial. BMC Med. 2013;11(1):1–9. doi: 10.1186/1741-7015-11-182
  • Kataoka A, Imai H, Inayoshi S, et al. Intermittent high-dose vitamin C therapy in patients with HTLV-I associated myelopathy. J Neurol Neurosurg Psychiatry. 1993;56(11):1213–1216. doi: 10.1136/jnnp.56.11.1213
  • Netto EC, Silva AC, Pedroso C, et al. Hypovitaminosis D is associated with higher levels of inflammatory cytokines and with HAM/TSP in HTLV-Infected patients. Viruses. 2021;13(11):2223. doi: 10.3390/v13112223
  • Boostani R, Saber H, Etemadi M. Effects of danazol on clinical improvement of patients with human T-cell lymphotropic virus type I associated myelopathy/tropical spastic paraparesis (HAM/TSP): a placebo-controlled clinical trial. Iran J Basic Med Sci. 2013;16(3):213–216.
  • Harrington WJ Jr., Sheremata WA, Snodgrass SR, et al. Tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM): treatment with an anabolic steroid danazol. AIDS Res Hum Retroviruses. 1991;7(12):1031–1034. doi: 10.1089/aid.1991.7.1031
  • Nakamura T, Satoh K, Fukuda T, et al. Pentosan polysulfate treatment ameliorates motor function with increased serum soluble vascular cell adhesion molecule-1 in HTLV-1-associated neurologic disease. J Neurovirol. 2014;20(3):269–277. doi: 10.1007/s13365-014-0244-8
  • Narukawa N, Shiizaki K, Kitabata Y, et al. Plasma exchange for the treatment of human T-cell lymphotropic virus type 1 associated myelopathy. Ther Apher. 2001;5(6):491–493. doi: 10.1046/j.1526-0968.2001.00398.x
  • Sakamoto H, Itonaga H, Sawayama Y, et al. Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia/lymphoma with HTLV-1-associated myelopathy. Int J Hematol. 2021;113(5):765–769. doi: 10.1007/s12185-020-03075-6
  • Facchinetti LD, Araújo AQ, Silva MT, et al. Home-based exercise program in TSP/HAM individuals: a feasibility and effectiveness study. Arq Neuropsiquiatr. 2017;75(4):221–227. doi: 10.1590/0004-282x20170022
  • Sá KN, Macêdo MC, Andrade RP, et al. Physiotherapy for human T-lymphotropic virus 1-associated myelopathy: review of the literature and future perspectives. J Multidiscip Healthc. 2015;8:117–125. doi: 10.2147/JMDH.S71978
  • Mota RS, Macêdo MC, Corradini S, et al. The effect of home exercise on the posture and mobility of people with HAM/TSP: a randomized clinical trial. Arq Neuropsiquiatr. 2020;78(3):149–157. doi: 10.1590/0004-282x20190169
  • Macêdo MC, Mota RS, Patrício NA, et al. Pain and quality of life in human T-cell lymphotropic virus type 1-associated myelopathy or tropical spastic paraparesis after Home-based exercise protocol: a randomized clinical trial. Rev Soc Bras Med Trop. 2019;52:e20180270. doi: 10.1590/0037-8682-0270-2018
  • Costa KHA, Silva T, Souza GDS, et al. Influence of proprioceptive neuromuscular facilitation on the muscle tonus and amplitude of movement in HTLV-1-infected patients with HAM/TSP. Rev Soc Bras Med Trop. 2018;51(4):550–553. doi: 10.1590/0037-8682-0115-2017
  • Croda MG, de Oliveira AC, Vergara MP, et al. Corticosteroid therapy in TSP/HAM patients: the results from a 10 years open cohort. J Neurol Sci. 2008;269(1–2):133–137. doi: 10.1016/j.jns.2008.01.004
  • Keikha M, Ghazvini K, Eslami M, et al. Molecular targeting of PD-1 signaling pathway as a novel therapeutic approach in HTLV-1 infection. Microb Pathog. 2020;144:104198. doi: 10.1016/j.micpath.2020.104198
  • Ghorbanzadeh Neghab M, Jalili-Nik M, Soltani A, et al. Rigosertib is more potent than wortmannin and rapamycin against adult T-cell leukemia-lymphoma. BioFactors. 2023. doi: 10.1002/biof.1985
  • Jalili-Nik M, Soltani A, Hashemy SI, et al. Development of potential inhibitors for human T-lymphotropic virus type I integrase enzyme: a molecular modeling approach. Curr Comput Aided Drug Des. 2023;20(1):72–86. doi: 10.2174/1573409919666230419082839
  • Barski MS, Vanzo T, Zhao XZ, et al. Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures. Nat Commun. 2021;12(1):4996. doi: 10.1038/s41467-021-25284-1
  • Lockbaum GJ, Henes M, Talledge N, et al. Inhibiting HTLV-1 protease: a viable antiviral target. ACS Chem Biol. 2021;16(3):529–538. doi: 10.1021/acschembio.0c00975
  • Kuhnert M, Blum A, Steuber H, et al. Privileged structures meet human T-Cell leukemia virus-1 (HTLV-1): C2-symmetric 3,4-disubstituted pyrrolidines as nonpeptidic HTLV-1 protease inhibitors. J Med Chem. 2015;58(11):4845–4850. doi: 10.1021/acs.jmedchem.5b00346
  • Boostani R, Ghabeli Juibary A. Acute human T-lymphotropic virus type I-associated myelitis: a rare case successfully treated with intravenous pulse methylprednisolone. J Neurovirol. 2014;20(4):423–425. doi: 10.1007/s13365-014-0256-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.