279
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging biomarkers to predict clinical outcomes in Guillain–Barré syndrome

, , & ORCID Icon
Pages 1201-1215 | Received 18 Apr 2023, Accepted 17 Oct 2023, Published online: 30 Oct 2023

References

  • Yuki N, Hartung HP. Guillain–Barré syndrome. N Engl J Med. 2012;366(24):2294–2304. doi: 10.1056/NEJMra1114525
  • Ruts L, Drenthen J, Jacobs BC, et al. Distinguishing acute-onset CIDP from fluctuating Guillain-barre syndrome: a prospective study. Neurology. 2010;74(21):1680–1686. doi: 10.1212/WNL.0b013e3181e07d14
  • Govoni V, Granieri E, Manconi M, et al. Is there a decrease in guillain–barré syndrome incidence after bovine ganglioside withdrawal in Italy? a population-based study in the local health district of Ferrara, Italy. J Neurol Sci. 2003;216(1):99–103. doi: 10.1016/S0022-510X(03)00215-6
  • Kinnunen E, Färkkilä M, Hovi T, et al. Incidence of Guillain-Barré syndrome during a nationwide oral poliovirus vaccine campaign. Neurology. 1989;39(8):1034–1036. doi: 10.1212/WNL.39.8.1034
  • Sejvar JJ, Baughman AL, Wise M, et al. Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology. 2011;36(2):123–133. doi: 10.1159/000324710
  • Webb AJ, Brain SA, Wood R, et al. Seasonal variation in Guillain-Barré syndrome: a systematic review, meta-analysis and Oxfordshire cohort study. J Neurol Neurosurg Psychiatry. 2015;86(11):1196–1201. doi: 10.1136/jnnp-2014-309056
  • Yuki N, Susuki K, Koga M, et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barré syndrome. Proc Natl Acad Sci U S A. 2004;101(31):11404–11409. doi: 10.1073/pnas.0402391101
  • Querol L, Lleixà C. Novel immunological and therapeutic insights in Guillain-Barré syndrome and CIDP. Neurotherapeutics. 2021;18(4):2222–2235. doi: 10.1007/s13311-021-01117-3
  • Hafer-Macko CE, Sheikh KA, Li CY. et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol. 1996;39(5):625–635. doi: 10.1002/ana.410390512
  • Nakano Y, Kanda T. Pathology of Guillain–Barré syndrome. Clin Exp Neuroim. 2016;7(4):312–319. doi: 10.1111/cen3.12342
  • Fokke C, van den Berg B, Drenthen J, et al. Diagnosis of Guillain-Barré syndrome and validation of Brighton criteria. Brain. 2014;137(1):33–43. doi: 10.1093/brain/awt285
  • Willison HJ, Jacobs BC, Van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388(10045):717–727. doi: 10.1016/S0140-6736(16)00339-1
  • Fisher M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med. 1956;255(2):57–65. doi: 10.1056/NEJM195607122550201
  • Lo YL. Clinical and immunological spectrum of the miller fisher syndrome. Muscle Nerve. 2007;36(5):615–627. doi: 10.1002/mus.20835
  • den Bergh PY V, Piéret F. Electrodiagnostic criteria for acute and chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve. 2004;29(4):565–574. doi: 10.1002/mus.20022
  • Van Den Berg B, Walgaard C, Drenthen J. et al. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10(8):469–482. doi: 10.1038/nrneurol.2014.121
  • Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of Guillain–Barré syndrome in ten steps. Nat Rev Neurol. 2019;15(11):671–683. doi: 10.1038/s41582-019-0250-9
  • Efficiency of plasma exchange in Guillain-Barré syndrome: role of replacement fluids. French cooperative group on plasma exchange in guillain-barré syndrome. Ann Neurol. 1987;22(6):753–761. doi: 10.1002/ana.410220612
  • Kazatchkine MD, Kaveri SV, Mackay IR. et al. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345(10):747–755. doi: 10.1056/NEJMra993360
  • Sechidis K, Papangelou K, Metcalfe PD, et al. Distinguishing prognostic and predictive biomarkers: an information theoretic approach. Vol. 34. (UK): Bioinformatics (Oxford; 2018. p. 3365–3376.
  • Sejvar JJ, Kohl KS, Gidudu J, et al. Guillain–Barré syndrome and Fisher syndrome: case definitions and guidelines for collection, analysis, and presentation of immunization safety data. Vaccine. 2011;29(3):599–612. doi: 10.1016/j.vaccine.2010.06.003
  • Wakerley BR, Uncini A, Yuki N. Guillain–Barré and Miller Fisher syndromes—new diagnostic classification. Nat Rev Neurol. 2014;10(9):537–544. doi: 10.1038/nrneurol.2014.138
  • Goodfellow JA, Willison HJ. Guillain–Barré syndrome: a century of progress. Nat Rev Neurol. 2016;12(12):723–731. doi: 10.1038/nrneurol.2016.172
  • Hughes RA, Cornblath DR. Guillain-Barré syndrome. Lancet. 2005;366(9497):1653–1666. doi: 10.1016/S0140-6736(05)67665-9
  • Doets AY, Verboon C, van den Berg B. et al. Regional variation of Guillain-Barré syndrome. Brain. 2018;141(10):2866–2877. doi: 10.1093/brain/awy232
  • Kleyweg RP, van der Meché FG, van der Meche FG. Treatment related fluctuations in Guillain-barre syndrome after high-dose immunoglobulins or plasma-exchange. J Neurol Neurosurg Psychiatry. 1991;54(11):957–960. doi: 10.1136/jnnp.54.11.957
  • Witsch J, Galldiks N, Bender A, et al. Long-term outcome in patients with guillain–barré syndrome requiring mechanical ventilation. J Neurol. 2013;260(5):1367–1374. doi: 10.1007/s00415-012-6806-x
  • Walgaard C, Lingsma HF, Ruts L, et al. Prediction of respiratory insufficiency in guillain-barré syndrome. Ann Neurol. 2010;67(6):781–787. doi: 10.1002/ana.21976
  • Luijten LWG, Doets AY, Arends S, et al. Modified Erasmus GBS respiratory insufficiency score: a simplified clinical tool to predict the risk of mechanical ventilation in guillain-barré syndrome. J Neurol Neurosurg Psychiatry. 2023;94:300–308. doi: 10.1136/jnnp-2022-329937
  • Lawn ND, Fletcher DD, Henderson RD, et al. Anticipating mechanical ventilation in guillain-barré syndrome. Arch Neurol. 2001;58(6):893–898. doi: 10.1001/archneur.58.6.893
  • Sharshar T, Chevret S, Bourdain F. et al. Early predictors of mechanical ventilation in guillain-barré syndrome. Crit Care Med. 2003;31(1):278–283. doi: 10.1097/00003246-200301000-00044
  • Zochodne DW. Autonomic involvement in guillain-barré syndrome: a review. Muscle Nerve. 1994;17(10):1145–1155. doi: 10.1002/mus.880171004
  • van den Berg B, Walgaard C, Drenthen J, et al. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10(8):469–482. doi: 10.1038/nrneurol.2014.121
  • Funakoshi K, Kuwabara S, Odaka M, et al. Clinical predictors of mechanical ventilation in fisher/guillain-barré overlap syndrome. J Neurol Neurosurg Psychiatry. 2009;80(1):60–64. doi: 10.1136/jnnp.2008.154351
  • van Koningsveld R, Steyerberg EW, Hughes RA, et al. A clinical prognostic scoring system for guillain-barré syndrome. Lancet Neurol. 2007;6(7):589–594. doi: 10.1016/S1474-4422(07)70130-8
  • Doets AY, Lingsma HF, Walgaard C, et al. Predicting outcome in guillain-barré syndrome: international validation of the modified Erasmus GBS outcome score. Neurology. 2022;98:e518–e532. doi: 10.1212/WNL.0000000000013139
  • Tan CY, Razali SNO, Goh KJ, et al. The utility of Guillain-Barré syndrome prognostic models in Malaysian patients. J Peripheral Nervous Sys. 2019;24(2):168–173. doi: 10.1111/jns.12320
  • Dourado Júnior MET, Fernandes UT, Ramos ES. et al. Egos has a reduced capacity to predicts GBS prognosis in Northeast Brazil. Acta Neurol Scand. 2018;138(5):459–462. doi: 10.1111/ane.12995
  • Busl KM, Fried H, Muehlschlegel S, et al. Guidelines for neuroprognostication in adults with guillain–barré syndrome. Neurocritical care 2023: Epub ahead of print. Neurocrit Care. 2023;38(3):564–583. doi: 10.1007/s12028-023-01707-3
  • Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for guillain-barré syndrome. Cochrane Database Syst Rev. 2014;2019(10):Cd002063. doi: 10.1002/14651858.CD002063.pub6
  • Oczko-Walker M, Manousakis G, Wang S, et al. Plasma exchange after initial intravenous immunoglobulin treatment in guillain-barré syndrome: critical reassessment of effectiveness and cost-efficiency. J Clin Neuromuscul Dis. 2010;12(2):55–61. doi: 10.1097/CND.0b013e3181f3dbbf
  • Visser LH, Schmitz PI, Meulstee J, et al. Prognostic factors of guillain-barré syndrome after intravenous immunoglobulin or plasma exchange. Dutch Guillain-Barré study group. Neurology. 1999;53(3):598–598. doi: 10.1212/WNL.53.3.598
  • Kuitwaard K, de Gelder J, Tio-Gillen AP. et al. Pharmacokinetics of intravenous immunoglobulin and outcome in guillain-barré syndrome. Ann Neurol. 2009;66(5):597–603. doi: 10.1002/ana.21737
  • Walgaard C, Jacobs BC, Lingsma HF. et al. Second intravenous immunoglobulin dose in patients with guillain-barré syndrome with poor prognosis (SID-GBS): a double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(4):275–283. doi: 10.1016/S1474-4422(20)30494-4
  • Verboon C, Harbo T, Cornblath DR. et al. Intravenous immunoglobulin treatment for mild Guillain-Barré syndrome: an international observational study. J Neurol Neurosurg Psychiatry. 2021;92(10):1080–1088. doi: 10.1136/jnnp-2020-325815
  • Van Koningsveld R, Schmitz PI, Ang CW, et al. Infections and course of disease in mild forms of guillain-barré syndrome. Neurology. 2002;58(4):610–614. doi: 10.1212/WNL.58.4.610
  • Illes Z, Blaabjerg M. Cerebrospinal fluid findings in guillain-barre syndrome and chronic inflammatory demyelinating polyneuropathies. Handbook Clin Neurol. 2017;146:125–138.
  • Moran AP, Annuk H, Prendergast MM. Antibodies induced by ganglioside-mimicking campylobacter jejuni lipooligosaccharides recognise epitopes at the nodes of Ranvier. J Neuroimmunol. 2005;165(1–2):179–185. doi: 10.1016/j.jneuroim.2005.04.013
  • Kaida K, Ariga T, Yu RK. Antiganglioside antibodies and their pathophysiological effects on guillain-barré syndrome and related disorders–a review. Glycobiology. 2009;19(7):676–692. doi: 10.1093/glycob/cwp027
  • Safa A, Azimi T, Sayad A, et al. A review of the role of genetic factors in guillain–barré syndrome. J Mol Neurosci. 2021;71(5):902–920. doi: 10.1007/s12031-020-01720-7
  • Godschalk PC, Heikema AP, Gilbert M, et al. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in guillain-barré syndrome. J Clin Invest. 2004;114(11):1659–1665. doi: 10.1172/JCI200415707
  • Lopez PH, Zhang G, Zhang J. et al. Passive transfer of IgG anti-GM1 antibodies impairs peripheral nerve repair. J Neurosci. 2010;30(28):9533–9541. doi: 10.1523/JNEUROSCI.2281-10.2010
  • Zhang G, Lopez PH, Li CY, et al. Anti-ganglioside antibody-mediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain. 2004;127(5):1085–1100. doi: 10.1093/brain/awh127
  • McGonigal R, Rowan EG, Greenshields KN. et al. Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain. 2010;133(7):1944–1960. doi: 10.1093/brain/awq119
  • Goodfellow JA, Bowes T, Sheikh K. Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated Injury in a model of acute motor axonal neuropathy. J Neurosci. 2005;25(7):1620–1628. doi: 10.1523/JNEUROSCI.4279-04.2005
  • Susuki K, Rasband MN, Tohyama K. et al. Anti-GM 1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci. 2007;27(15):3956–3967. doi: 10.1523/JNEUROSCI.4401-06.2007
  • Gregson NA, Jones D, Thomas PK. et al. Acute motor neuropathy with antibodies to GM1 ganglioside. J Neurol. 1991;238(8):447–451. doi: 10.1007/BF00314652
  • Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of guillain-barré syndrome. Ann Neurol. 1999;45(2):168–173. doi: 10.1002/1531-8249(199902)45:2<168:AID-ANA6>3.0.CO;2-6
  • Lopez PH, Zhang G, Bianchet MA. et al. Structural requirements of anti-GD1a antibodies determine their target specificity. Brain. 2008;131(7):1926–1939. doi: 10.1093/brain/awn074
  • Chiba A, Kusunoki S, Obata H, et al. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-barre syndrome: clinical and immunohistochemical studies. Neurology. 1993;43(10):1911–1911. doi: 10.1212/WNL.43.10.1911
  • Chiba A, Kusunoki S, Shimizu T. et al. Serum IgG antibody to ganglioside GQ1b is a possible marker of miller fisher syndrome. Ann Neurol. 1992;31(6):677–679. doi: 10.1002/ana.410310619
  • Shahrizaila N, Yuki N. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry. 2013;84(5):576–583. doi: 10.1136/jnnp-2012-302824
  • Chiba A, Kusunoki S, Obata H, et al. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in miller fisher syndrome and guillain-barré syndrome: clinical and immunohistochemical studies. Neurology. 1993;43(10):1911–1911. doi: 10.1212/WNL.43.10.1911
  • Kaida K, Morita D, Kanzaki M, et al. Ganglioside complexes as new target antigens in guillain–barré syndrome. Ann Neurol. 2004;56(4):567–571. doi: 10.1002/ana.20222
  • Shahrizaila N, Kokubun N, Sawai S, et al. Antibodies to single glycolipids and glycolipid complexes in guillain-barre syndrome subtypes. Neurology. 2014;83(2):118–124. doi: 10.1212/WNL.0000000000000577
  • Kaida K-I, Morita D, Kanzaki M, et al. Ganglioside complexes as new target antigens in guillain–barré syndrome. Ann Neurol. 2004;56(4):567–571. doi: 10.1002/ana.20222
  • Lleixà C, Martín-Aguilar L, Pascual-Goñi E. et al. Autoantibody screening in guillain–barré syndrome. J Neuroinflammation. 2021;18(1):251. doi: 10.1186/s12974-021-02301-0
  • Thomma RCM, Fokke C, Walgaard C. et al. High and persistent anti-GM1 antibody titers are associated with poor clinical recovery in guillain-barré syndrome. Neurol(r) Neuroimmunol Neuroinflammation. 2023;10(4):10. doi: 10.1212/NXI.0000000000200107
  • Cats EA, van der Pol WL, Piepers S, et al. Correlates of outcome and response to IVIg in 88 patients with multifocal motor neuropathy. Neurology. 2010;75(9):818–825. doi: 10.1212/WNL.0b013e3181f0738e
  • Le Cann M, Bouhour F, Viala K, et al. CANOMAD: a neurological monoclonal gammopathy of clinical significance that benefits from B-cell–targeted therapies. Blood. 2020;136(21):2428–2436. doi: 10.1182/blood.2020007092
  • Martín-Aguilar L, Lleixà C, Pascual-Goñi E. Autoimmune nodopathies, an emerging diagnostic category. Curr Opin Neurol. 2022;35(5):579–585. doi: 10.1097/WCO.0000000000001107
  • Sun T, Chen X, Shi S. et al. Peripheral blood and cerebrospinal fluid cytokine levels in Guillain Barré syndrome: a systematic review and meta-analysis. Front Neurosci. 2019;13:717. doi: 10.3389/fnins.2019.00717
  • Gafson AR, Barthélemy NR, Bomont P. et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143(7):1975–1998. doi: 10.1093/brain/awaa098
  • Körtvelyessy P, Kuhle J, Düzel E, et al. Ratio and index of neurofilament light chain indicate its origin in guillain‐barré syndrome. Ann Clin Transl Neurol. 2020;7(11):2213–2220. doi: 10.1002/acn3.51207
  • Altmann P, De Simoni D, Kaider A. et al. Increased serum neurofilament light chain concentration indicates poor outcome in guillain-barré syndrome. J Neuroinflammation. 2020;17(1):86. doi: 10.1186/s12974-020-01737-0
  • Martín-Aguilar L, Camps-Renom P, Lleixà C, et al. Serum neurofilament light chain predicts long-term prognosis in guillain-barré syndrome patients. J Neurol Neurosurg Psychiatry. 2021;92(1):70–77. doi: 10.1136/jnnp-2020-323899
  • Keddie S, Smyth D, Keh RYS. et al. Peripherin is a biomarker of axonal damage in peripheral nervous system disease. Brain. 2023. doi:10.1093/brain/awad234
  • Ning P, Yang B, Yang X, et al. Lymphocyte-based ratios for predicting respiratory failure in Guillain-Barré syndrome. J Neuroimmunol. 2021;353:577504. doi: 10.1016/j.jneuroim.2021.577504
  • Jahan I, Ahmed R, Ahmed J, et al. Neutrophil-lymphocyte ratio in guillain-barré syndrome: a prognostic biomarker of severe disease and mechanical ventilation in Bangladesh. J Peripheral Nervous Sys. 2023;28(1):47–57. doi: 10.1111/jns.12531
  • Ren K, Yang A, Lu J, et al. Association between serum low-density neutrophils and acute-onset and recurrent guillain–barré syndrome. Brain Behav. 2022;12(1):e2456. doi: 10.1002/brb3.2456
  • Fokkink W-J, Walgaard C, Kuitwaard K, et al. Association of Albumin levels with outcome in intravenous immunoglobulin–treated guillain-barré syndrome. JAMA Neurol. 2017;74(2):189. doi: 10.1001/jamaneurol.2016.4480
  • Li M, Song J, Yin P, et al. Single-cell analysis reveals novel clonally expanded monocytes associated with IL1β–IL1R2 pair in acute inflammatory demyelinating polyneuropathy. Scientific Reports 2023; 13.
  • Li X, Yang L, Wang G. et al. Extensive cytokine biomarker analysis in serum of guillain-barré syndrome patients. Sci Rep. 2023;13(1):8354. doi: 10.1038/s41598-023-35610-w
  • Rajabally YA, Durand MC, Mitchell J, et al. Electrophysiological diagnosis of guillain–barré syndrome subtype: could a single study suffice? J Neurol Neurosurg Psychiatry. 2015;86(1):115–119. doi: 10.1136/jnnp-2014-307815
  • Brooks JA, McCudden C, Breiner A. et al. Causes of albuminocytological dissociation and the impact of age-adjusted cerebrospinal fluid protein reference intervals: a retrospective chart review of 2627 samples collected at tertiary care centre. BMJ Open. 2019;9(2):e025348. doi: 10.1136/bmjopen-2018-025348
  • Lehmensiek V, Süssmuth SD, Brettschneider J, et al. Proteome analysis of cerebrospinal fluid in guillain–barré syndrome (GBS). J Neuroimmunol. 2007;185(1–2):190–194. doi: 10.1016/j.jneuroim.2007.01.022
  • D’Aguanno S, Franciotta D, Lupisella S, et al. Protein profiling of guillain–barrè syndrome cerebrospinal fluid by two-dimensional electrophoresis and mass spectrometry. Neurosci Lett. 2010;485(1):49–54. doi: 10.1016/j.neulet.2010.08.060
  • Nishino S, Kanbayashi T, Fujiki N, et al. CSF hypocretin levels in Guillain-Barré syndrome and other inflammatory neuropathies. Neurology. 2003;61(6):823–825. doi: 10.1212/01.WNL.0000081049.14098.50
  • Han RK, Cheng YF, Zhou SS. et al. Increased circulating Th17 cell populations and elevated CSF osteopontin and IL-17 concentrations in patients with guillain-barré syndrome. J Clin Immunol. 2014;34(1):94–103. doi: 10.1007/s10875-013-9965-3
  • Liu M-Q, Wang J, Huang C-N. et al. Elevated cerebrospinal fluid levels of beta-2-microglobulin in patients with guillain-barré syndrome and their correlations with clinical features. Neurol Sci. 2021;42(10):4249–4255. doi: 10.1007/s10072-021-05108-2
  • Ding Y, Shi Y, Wang L, et al. Potential biomarkers identified by tandem mass tags based quantitative proteomics for diagnosis and classification of Guillain–Barré syndrome. Eur J Neurol. 2022;29(4):1155–1164. doi: 10.1111/ene.15213
  • Sun T, Chen X, Shi S. et al. Peripheral blood and cerebrospinal fluid cytokine levels in Guillain Barré syndrome: a systematic review and meta-analysis. Front Neurosci. 2019;13:717. doi: 10.3389/fnins.2019.00717
  • Breville G, Lascano AM, Roux-Lombard P, et al. Interleukin 8, a biomarker to differentiate guillain-barré syndrome from CIDP. Neurol(r) Neuroimmunol Neuroinflammation. 2021;8(5):e1031. doi: 10.1212/NXI.0000000000001031
  • Petzold A, Brettschneider J, Jin K. et al. CSF protein biomarkers for proximal axonal damage improve prognostic accuracy in the acute phase of Guillain-Barré syndrome. Muscle Nerve. 2009;40(1):42–49. doi: 10.1002/mus.21239
  • Petzold A, Hinds N, Murray NM, et al. CSF neurofilament levels: a potential prognostic marker in guillain-barré syndrome. Neurology. 2006;67(6):1071–1073. doi: 10.1212/01.wnl.0000237334.69665.92
  • Axelsson M, Sjögren M, Andersen O. et al. Neurofilament light protein levels in cerebrospinal fluid predict long-term disability of guillain-barré syndrome: a pilot study. Acta Neurol Scand. 2018;138(2):143–150. doi: 10.1111/ane.12927
  • Péter M, Török W, Petrovics-Balog A. et al. Cerebrospinal fluid lipidomic biomarker signatures of demyelination for multiple sclerosis and Guillain–Barré syndrome. Sci Rep. 2020;10(1):18380. doi: 10.1038/s41598-020-75502-x
  • Capodivento G, De Michelis C, Carpo M. et al. CSF sphingomyelin: a new biomarker of demyelination in the diagnosis and management of CIDP and GBS. J Neurol Neurosurg Psychiatry. 2021;92(3):303–310. doi: 10.1136/jnnp-2020-324445
  • Albers JW, Kelly JJ Jr. Acquired inflammatory demyelinating polyneuropathies: clinical and electrodiagnostic features. Muscle Nerve. 1989;12(6):435–451. doi: 10.1002/mus.880120602
  • Asbury AK, Arnason BG, Adams RD. The inflammatory lesion in idiopathic polyneuritis. Its role in pathogenesis. Medicine (Baltimore). 1969;48(3):173–215. doi: 10.1097/00005792-196905000-00001
  • Hausmanowa-Petrusewicz I, Emeryk B, Rowińska-Marcińska K. et al. Nerve conduction in the Guillain-Barré-Strohl syndrome. J Neurol. 1979;220(3):169–184. doi: 10.1007/BF00705535
  • Hadden RD, Cornblath DR, Hughes RA. et al. Electrophysiological classification of guillain-barré syndrome: clinical associations and outcome. Plasma exchange/Sandoglobulin Guillain-Barré syndrome trial group. Ann Neurol. 1998;44(5):780–788. doi: 10.1002/ana.410440512
  • Ho TW, Mishu B, Li CY, et al. Guillain-Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain. 1995;118(Pt 3):597–605. doi: 10.1093/brain/118.3.597
  • Dornonville de la Cour C, Andersen H, Stålberg E. et al. Electrophysiological signs of permanent axonal loss in a follow-up study of patients with guillain-barré syndrome. Muscle Nerve. 2005;31(1):70–77. doi: 10.1002/mus.20240
  • Kapoor R, Davies M, Blaker PA. et al. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol. 2003;53(2):174–180. doi: 10.1002/ana.10443
  • Berciano J, García A, Figols J, et al. Perineurium contributes to axonal damage in acute inflammatory demyelinating polyneuropathy. Neurology. 2000;55(4):552–559. doi: 10.1212/WNL.55.4.552
  • Ho TW, Li CY, Cornblath DR, et al. Patterns of recovery in the Guillain-Barre syndromes. Neurology. 1997;48(3):695–700. doi: 10.1212/WNL.48.3.695
  • Verma R, Chaudhari TS, Raut TP, et al. Clinico-electrophysiological profile and predictors of functional outcome in guillain–barre syndrome (GBS). J Neurol Sci. 2013;335(1–2):105–111. doi: 10.1016/j.jns.2013.09.002
  • Durand MC, Porcher R, Orlikowski D. et al. Clinical and electrophysiological predictors of respiratory failure in Guillain-Barré syndrome: a prospective study. Lancet Neurol. 2006;5(12):1021–1028. doi: 10.1016/S1474-4422(06)70603-2
  • Uncini A, Susuki K, Yuki N. Nodo-paranodopathy: beyond the demyelinating and axonal classification in anti-ganglioside antibody-mediated neuropathies. Clin Neurophysiol. 2013;124(10):1928–1934. doi: 10.1016/j.clinph.2013.03.025
  • Umapathi T, Tan EY, Kokubun N. et al. Non-demyelinating, reversible conduction failure in Fisher syndrome and related disorders. J Neurol Neurosurg Psychiatry. 2012;83(9):941–948. doi: 10.1136/jnnp-2012-303079
  • Mori M, Kuwabara S, Fukutake T, et al. Intravenous immunoglobulin therapy for Miller Fisher syndrome. Neurology. 2007;68(14):1144–1146. doi: 10.1212/01.wnl.0000258673.31824.61
  • Mori M, Kuwabara S, Fukutake T, et al. Clinical features and prognosis of Miller Fisher syndrome. Neurology. 2001;56(8):1104–1106. doi: 10.1212/WNL.56.8.1104
  • Durand MC, Lofaso F, Lefaucheur JP, et al. Electrophysiology to predict mechanical ventilation in guillain–barré syndrome. Eur J Neurol. 2003;10(1):39–44. doi: 10.1046/j.1468-1331.2003.00505.x
  • Durand MC, Prigent H, Sivadon-Tardy V, et al. Significance of phrenic nerve electrophysiological abnormalities in guillain-barré syndrome. Neurology. 2005;65(10):1646–1649. doi: 10.1212/01.wnl.0000184589.62101.b9
  • Zifko U, Chen R, Remtulla H, et al. Respiratory electrophysiological studies in guillain-barre syndrome. J Neurol Neurosurg Psychiatry. 1996;60(2):191–194. doi: 10.1136/jnnp.60.2.191
  • Chanson JB, Echaniz-Laguna A. Early electrodiagnostic abnormalities in acute inflammatory demyelinating polyneuropathy: a retrospective study of 58 patients. Clin Neurophysiol. 2014;125(9):1900–1905. doi: 10.1016/j.clinph.2014.01.007
  • Gordon PH, Wilbourn AJ. Early electrodiagnostic findings in Guillain-Barré syndrome. Arch Neurol. 2001;58(6):913–917. doi: 10.1001/archneur.58.6.913
  • Magistris MR, Sukockienė E, Truffert A. Does impaired conduction of Ia afferents explain early tendon areflexia in guillain-barré syndrome? Clin Neurophysiol. 2021;132(1):104–105. doi: 10.1016/j.clinph.2020.11.004
  • García A, Infante J, Berciano J. Ia afferent fibers in peripheral nerve disorders: evidence for divergent vulnerability. Clin Neurophysiol Pract. 2021;6:133–134. doi: 10.1016/j.cnp.2021.03.004
  • Meulstee J, van der Meché FG, van der Meche FG. Electrodiagnostic criteria for polyneuropathy and demyelination: application in 135 patients with guillain-barre syndrome. Dutch Guillain-Barre study group. J Neurol Neurosurg Psychiatry. 1995;59(5):482–486. doi: 10.1136/jnnp.59.5.482
  • Rath J, Schober B, Zulehner G. et al. Nerve conduction studies in guillain-barré syndrome: influence of timing and value of repeated measurements. J Neurol Sci. 2021;420:117267. doi: 10.1016/j.jns.2020.117267
  • Rajabally YA, Hiew FL. Optimizing electrodiagnosis for Guillain–Barré syndrome: clues from clinical practice. Muscle Nerve. 2017;55(5):748–751. doi: 10.1002/mus.25433
  • Ibrahim J, Grapperon AM, Manfredonia F, et al. Serial electrophysiology in guillain-barré syndrome: a retrospective cohort and case-by-case multicentre analysis. Acta Neurol Scand. 2018;137:335–340. doi: 10.1111/ane.12872
  • Umapathi T, Lim CSJ, BCJ N, et al. A simplified, graded, electrodiagnostic criterion for Guillain-Barré syndrome that incorporates sensory nerve conduction studies. Sci Rep. 2019;9(1):7724. doi: 10.1038/s41598-019-44090-w
  • Raman PT, Taori GM. Prognostic significance of electrodiagnostic studies in the guillain-barre syndrome. J Neurol Neurosurg Psychiatry. 1976;39(2):163–170. doi: 10.1136/jnnp.39.2.163
  • Rasera A, Romito S, Segatti A, et al. Very early and early neurophysiological abnormalities in Guillain–Barré syndrome: a 4-year retrospective study. Eur J Neurol. 2021;28(11):3768–3773. doi: 10.1111/ene.15011
  • Arends S, Drenthen J, van den Bergh P. et al. Electrodiagnosis of guillain-barre syndrome in the International GBS outcome study: differences in methods and reference values. Clin Neurophysiol. 2022;138:231–240. doi: 10.1016/j.clinph.2021.12.014
  • Gallardo E, Y-I N, Simon NG. Ultrasound in the diagnosis of peripheral neuropathy: structure meets function in the neuromuscular clinic. J Neurol Neurosurg Psychiatry. 2015;86(10):1066–1074. doi: 10.1136/jnnp-2014-309599
  • Kerasnoudis A, Tsivgoulis G. Nerve ultrasound in peripheral neuropathies: a review. J Neuroimaging. 2015;25(4):528–538. doi: 10.1111/jon.12261
  • Roomizadeh P, Eftekharsadat B, Abedini A. et al. Ultrasonographic assessment of carpal tunnel syndrome severity: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2019;98(5):373–381. doi: 10.1097/PHM.0000000000001104
  • Vij N, Traube B, Bisht R, et al. An update on treatment modalities for ulnar nerve entrapment: a literature review. Anesth Pain Med. 2020;10(6):e112070. doi: 10.5812/aapm.112070
  • Dhanapalaratnam R, Issar T, Poynten AM. et al. Diagnostic accuracy of nerve ultrasonography for the detection of peripheral neuropathy in type 2 diabetes. Eur J Neurol. 2022;29(12):3571–3579. doi: 10.1111/ene.15534
  • Salvalaggio A, Coraci D, Cacciavillani M. et al. Nerve ultrasound in hereditary transthyretin amyloidosis: red flags and possible progression biomarkers. J Neurol. 2021;268(1):189–198. doi: 10.1007/s00415-020-10127-8
  • Brünger J, Motte J, Grüter T, et al. Nerve ultrasound distinguishes non-inflammatory axonal polyneuropathy from inflammatory polyneuropathy with secondary axonal damage. Front Neurol. 2021;12:809359. doi: 10.3389/fneur.2021.809359
  • Räphael JC, Chevret S, Hughes RA, et al. Plasma exchange for guillain-barre syndrome. Cochrane Database Syst Rev. 2012;11(7). doi: 10.1002/14651858.CD001798.pub2
  • Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for guillain-barré syndrome. Cochrane Database Syst Rev. 2014;2019(10). CD002063. doi: 10.1002/14651858.CD002063.pub6
  • Zaidman CM, Harms MB, Pestronk A. Ultrasound of inherited vs. acquired demyelinating polyneuropathies. J Neurol. 2013;260(12):3115–3121. doi: 10.1007/s00415-013-7123-8
  • Liu L, Ye Y, Wang L. et al. Nerve ultrasound evaluation of guillain-barré syndrome subtypes in northern China. Muscle Nerve. 2021;64(5):560–566. doi: 10.1002/mus.27386
  • Grimm A, Oertl H, Auffenberg E, et al. Differentiation between guillain–barré syndrome and acute-onset chronic inflammatory demyelinating Polyradiculoneuritis—a prospective follow-up study using ultrasound and neurophysiological measurements. Neurotherapeutics. 2019;16(3):838–847. doi: 10.1007/s13311-019-00716-5
  • Kerasnoudis A, Pitarokoili K, Behrendt V. et al. Nerve ultrasound score in distinguishing chronic from acute inflammatory demyelinating polyneuropathy. Clin Neurophysiol. 2014;125(3):635–641. doi: 10.1016/j.clinph.2013.08.014
  • Kerasnoudis A, Pitarokoili K, Behrendt V, et al. Bochum ultrasound score versus clinical and electrophysiological parameters in distinguishing acute-onset chronic from acute inflammatory demyelinating polyneuropathy. Muscle Nerve. 2015;51:846–852. (*). doi: 10.1002/mus.24484
  • Kerasnoudis A, Pitarokoili K, Behrendt V, et al. Correlation of nerve ultrasound, electrophysiological, and clinical findings in post guillain-barré syndrome. J Peripher Nerv Syst. 2013;18(3):232–240. doi: 10.1111/jns5.12037
  • Zaidman CM, Al-Lozi M, Pestronk A. Peripheral nerve size in normals and patients with polyneuropathy: an ultrasound study. Muscle Nerve. 2009;40(6):960–966. doi: 10.1002/mus.21431
  • Grimm A, Décard BF, Axer H. Ultrasonography of the peripheral nervous system in the early stage of guillain-barré syndrome. J Peripheral Nervous Sys. 2014;19(3):234–241. doi: 10.1111/jns.12091
  • Gallardo E, Sedano MJ, Orizaola P, et al. Spinal nerve involvement in early Guillain–Barré syndrome: a clinico-electrophysiological, ultrasonographic and pathological study. Clin Neurophysiol. 2015;126(4):810–819. doi: 10.1016/j.clinph.2014.06.051
  • Razali SNO, Arumugam T, Yuki N, et al. Serial peripheral nerve ultrasound in guillain–barré syndrome. Clin Neurophysiol. 2016;127(2):1652–1656. doi: 10.1016/j.clinph.2015.06.030
  • Grimm A, Décard BF, Schramm A, et al. Ultrasound and electrophysiologic findings in patients with guillain–barré syndrome at disease onset and over a period of six months. Clin Neurophysiol. 2016;127(2):1657–1663. doi: 10.1016/j.clinph.2015.06.032
  • Nguyen C, Haughton VM, Ho KC, et al. Contrast enhancement in spinal nerve roots: an experimental study. AJNR Am J Neuroradiol. 1995;16(2):265–268.
  • Kanda T. Biology of the blood–nerve barrier and its alteration in immune mediated neuropathies. J Neurol Neurosurg Psychiatry. 2013;84(2):208–212. doi: 10.1136/jnnp-2012-302312
  • Gorson KC, Ropper AH, Muriello MA, et al. Prospective evaluation of MRI lumbosacral nerve root enhancement in acute Guillain-Barré syndrome. Neurology. 1996;47(3):813–817. doi: 10.1212/WNL.47.3.813
  • Schreiber S, Schreiber F, Peter A. et al. 7T MR neurography-ultrasound fusion for peripheral nerve imaging. Muscle Nerve. 2020;61(4):521–526. doi: 10.1002/mus.26800
  • Ishaque T, Islam MB, Ara G, et al. High mortality from Guillain-Barré syndrome in Bangladesh. J Peripheral Nervous Sys. 2017;22(2):121–126. doi: 10.1111/jns.12215
  • Walgaard C, Lingsma HF, van Doorn PA, et al. Tracheostomy or not: prediction of prolonged mechanical ventilation in guillain–barré syndrome. Neurocrit Care. 2017;26(1):6–13. doi: 10.1007/s12028-016-0311-5
  • Alexion. A study to evaluate the efficacy and safety of eculizumab in guillain-barré syndrome. In: Clinical Trials. gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2023 Oct 11]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04752566NLMIdentifier:NCT04752566.
  • Walgaard C, Lingsma HF, Ruts L, et al. Early recognition of poor prognosis in Guillain-barre syndrome. Neurology. 2011;76:968–975. doi: 10.1212/WNL.0b013e3182104407
  • Jacobs BC, van den Berg B, Verboon C, et al. International guillain-barré syndrome outcome study: protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome. J Peripher Nerv Syst. 2017;22(2):68–76. doi: 10.1111/jns.12209
  • Chafic Karam. Evaluating efgartigimod in patients with guillain-barré syndrome. In: ClinicalTrials.Gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2023 Oct 11]. Available from: https://clinicaltrials.gov/ct2/show/NCT05701189NLMIdentifier:NCT05701189.
  • Maddur MS, Stephen-Victor E, Das M. et al. Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy. J Neuroinflammation. 2017;14(1):58. doi: 10.1186/s12974-017-0818-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.