2,479
Views
0
CrossRef citations to date
0
Altmetric
Review

Current perspectives on prevention of vascular cognitive impairment and promotion of vascular brain health

, , &
Pages 25-44 | Received 21 Jul 2023, Accepted 17 Oct 2023, Published online: 02 Nov 2023

References

  • Karami N, Kazeminia M, Karami A, et al. Global prevalence of depression, anxiety, and stress in cardiac patients: a systematic review and meta-analysis. J Affective Disorders. 2023;324:175–189. doi:10.1016/j.jad.2022.12.055
  • Warriach ZI, Patel S, Khan F, et al. Association of depression with cardiovascular diseases. Cureus. 2022;14(6):e26296. doi:10.7759/cureus.26296
  • Goldfarb M, De Hert M, Detraux J, et al. Severe mental illness and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2022;80(9):918–933. doi: 10.1016/j.jacc.2022.06.017
  • Arnaud AM, Brister TS, Duckworth K, et al. Impact of major depressive disorder on comorbidities: a systematic literature review. J Clin Psychiatry. 2022;83(6). doi: 10.4088/JCP.21r14328
  • Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–2713. doi: 10.1161/STR.0b013e3182299496
  • Akinyemi RO, Mukaetova-Ladinska EB, Attems J, et al. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer’s disease and vascular dementia. Curr Alzheimer Res. 2013;10(6):642–653. doi:10.2174/15672050113109990037
  • Howlett SE, Rockwood K. Ageing: develop models of frailty. Nature. 2014;512(7514):253. doi:10.1038/512253d
  • Rockwood K, Theou O, Mitnitski A. What are frailty instruments for? Age Ageing. 2015;44(4):545–547. doi:10.1093/ageing/afv043
  • Wang X, Carcel C, Woodward M, et al. Blood pressure and stroke: a review of sex- and Ethnic/Racial-specific attributes to the epidemiology, pathophysiology, and management of raised blood pressure. Stroke. 2022;53(4):1114–1133. doi:10.1161/STROKEAHA.121.035852
  • O’Brien JT, Erkinjuntti T, Reisberg B, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98. doi: 10.1016/S1474-4422(03)00305-3
  • Hachinski V, Iadecola C, Petersen RC, et al. National Institute of neurological disorders and stroke–Canadian stroke network vascular cognitive impairment harmonization standards. Stroke. 2006;37(9):2220–2241. doi: 10.1161/01.STR.0000237236.88823.47
  • Sachdev P. Vascular cognitive disorder. Int J Geriat Psychiatry. 1999;14(5):402–403. doi:10.1002/(SICI)1099-1166(199905)14:5<402:AID-GPS958>3.0.CO;2-H
  • American Psychiatric Association D, Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American psychiatric association; 2013. p. 591–644. doi: 10.1176/appi.books.9780890425596
  • Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–218. doi: 10.1097/WAD.0000000000000034
  • Skrobot OA, O’Brien J, Black S, et al. The vascular impairment of cognition classification consensus study. Alzheimer’s Dementia. 2017;13(6):624–633. doi: 10.1016/j.jalz.2016.10.007
  • Skrobot OA, Black SE, Chen C, et al. Progress toward standardized diagnosis of vascular cognitive impairment: guidelines from the vascular impairment of cognition classification consensus study. Alzheimer’s Dementia. 2018;14(3):280–292. doi: 10.1016/j.jalz.2017.09.007
  • Sachdev PS, Lipnicki DM, Crawford JD, et al. The vascular behavioral and cognitive disorders criteria for vascular cognitive disorders: a validation study. Eur J Neurol. 2019;26(9):1161–1167. doi:10.1111/ene.13960
  • Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International workshop. Neurology. 1993;43(2):250–260. doi: 10.1212/WNL.43.2.250
  • Akinyemi RO, Owolabi MO, Ihara M, et al. Stroke, cerebrovascular diseases and vascular cognitive impairment in Africa. Brain Res Bull. 2019;145:97–108. doi: 10.1016/j.brainresbull.2018.05.018
  • Lam BYK, Cai Y, Akinyemi R, et al. The global burden of cerebral small vessel disease in low- and middle-income countries: a systematic review and meta-analysis. Int J Stroke. 2023;18(1):15–27. doi: 10.1177/17474930221137019
  • Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–696. doi:10.1016/S1474-4422(19)30079-1
  • Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. doi: 10.1016/S1474-4422(10)70104-6
  • Mijajlovic MD, Pavlovic A, Brainin M, et al. Post-stroke dementia – a comprehensive review. BMC Med. 2017;15(1):11. doi: 10.1186/s12916-017-0779-7
  • Leys D, Hénon H, Mackowiak-Cordoliani M-A, et al. Poststroke dementia. Lancet Neurol. 2005;4(11):752–759. doi:10.1016/S1474-4422(05)70221-0
  • Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–1018. doi:10.1016/S1474-4422(09)70236-4
  • Pendlebury ST, Rothwell PM, Oxford Vascular S. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford vascular study. Lancet Neurol. 2019;18(3):248–258. doi:10.1016/S1474-4422(18)30442-3
  • Craig L, Hoo ZL, Yan TZ, et al. Prevalence of dementia in ischaemic or mixed stroke populations: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2022;93(2):180–187. doi:10.1136/jnnp-2020-325796
  • Allan LM, Rowan EN, Firbank MJ, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain. 2012;134(Pt 12):3716–3727. doi: 10.1093/brain/awr273
  • Bejot Y, Aboa-Eboule C, Durier J, et al. Prevalence of early dementia after first-ever stroke: a 24-year population-based study. Stroke. 2011;42(3):607–612. doi: 10.1161/STROKEAHA.110.595553
  • Pohjasvaara T, Erkinjuntti T, Vataja R, et al. Dementia three months after stroke. Baseline frequency and effect of different definitions of dementia in the helsinki stroke aging memory study (SAM) cohort. Stroke. 1997;28(4):785–792. doi:10.1161/01.STR.28.4.785
  • Thomas AJ, Kalaria RN, O’Brien JT. Depression and vascular disease: what is the relationship? J Affective Disorders. 2004;79(1–3):81–95. doi:10.1016/S0165-0327(02)00349-X
  • Allan LM, Rowan EN, Thomas AJ, et al. Long-term incidence of depression and predictors of depressive symptoms in older stroke survivors. Br J Psychiatry. 2013;203(6):453–460. doi:10.1192/bjp.bp.113.128355
  • Bella R, Ferri R, Cantone M, et al. Motor cortex excitability in vascular depression. Int J Psychophysiol. 2011;82(3):248–253. doi: 10.1016/j.ijpsycho.2011.09.006
  • Polvikoski TM, van Straaten EC, Barkhof F, et al. Frontal lobe white matter hyperintensities and neurofibrillary pathology in the oldest old. Neurology. 2010;75(23):2071–2078. doi: 10.1212/WNL.0b013e318200d6f9
  • Zekry D, Duyckaerts C, Moulias R, et al. Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol. 2002;103(5):481–487. doi: 10.1007/s00401-001-0493-5
  • Schneider JA, Wilson RS, Bienias JL, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology. 2004;62(7):1148–1155. doi:10.1212/01.WNL.0000118211.78503.F5
  • Kalaria RN, Kenny RA, Ballard CG, et al. Towards defining the neuropathological substrates of vascular dementia. J Neurolog Sci. 2004;226(1–2):75–80. doi:10.1016/j.jns.2004.09.019
  • Kalaria RN, Ihara M. Medial temporal lobe atrophy is the norm in cerebrovascular dementias. Eur J Neurol. 2017;24(4):539–540. doi:10.1111/ene.13243
  • Collaborators GBDS, Stark BA, Johnson CO. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20(10):795–820. doi: 10.1016/S1474-4422(21)00252-0
  • Ding Q, Liu S, Yao Y, et al. Global, regional, and National burden of ischemic stroke, 1990–2019. Neurology. 2022;98(3):e279–e290. doi:10.1212/WNL.0000000000013115
  • Collaborators GBDD. The burden of dementia due to down syndrome, Parkinson’s disease, stroke, and traumatic brain injury: a systematic analysis for the global burden of disease study 2019. Neuroepidemiology. 2021;55(4):286–296
  • Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. doi: 10.1016/j.jacc.2020.11.010
  • Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals. Diabet Res Clin Pract. 2022;188:109924. doi: 10.1016/j.diabres.2022.109924
  • Exalto LG, Weaver NA, Kuijf HJ, et al. Sex differences in Poststroke cognitive impairment: a multicenter study in 2343 patients with acute ischemic stroke. Stroke. 2023;54(9):2296–2303. doi: 10.1161/STROKEAHA.123.042507
  • Cantone M, Fisicaro F, Ferri R, et al. Sex differences in mild vascular cognitive impairment: a multimodal transcranial magnetic stimulation study. PLoS One. 2023;18(3):e0282751. doi: 10.1371/journal.pone.0282751
  • Bryan RN, Cai J, Burke G, et al. Prevalence and anatomic characteristics of infarct-like lesions on MR images of middle-aged adults: the atherosclerosis risk in communities study. AJNR Am J Neuroradiol. 1999;20(7):1273–1280.
  • Inzitari D, Pracucci G, Poggesi A, et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ. 2009;339(jul06 1):b2477. doi: 10.1136/bmj.b2477
  • Del Brutto OH, Mera RM, Cagino K, et al. Neuroimaging signatures of frailty: a population-based study in community-dwelling older adults (the atahualpa project). Geriatrics Gerontol Int. 2016;17(2):270–276. doi: 10.1111/ggi.12708
  • Jochems ACC, Arteaga C, Chappell F, et al. Longitudinal changes of white matter hyperintensities in sporadic small vessel disease: a systematic review and meta-analysis. Neurology. 2022;99(22):e2454–e2463. doi: 10.1212/WNL.0000000000201205
  • Zhang F, Ping Y, Jin X, et al. White matter hyperintensities and post-stroke depression: a systematic review and meta-analysis. J Affective Disorders. 2023;320:370–380. doi:10.1016/j.jad.2022.09.166
  • Howard DPJ, Gaziano L, Rothwell PM, et al. Risk of stroke in relation to degree of asymptomatic carotid stenosis: a population-based cohort study, systematic review, and meta-analysis. Lancet Neurol. 2021;20(3):193–202. doi:10.1016/S1474-4422(20)30484-1
  • Lazar RM, Wadley VG, Myers T, et al. Baseline cognitive impairment in patients with asymptomatic carotid stenosis in the CREST-2 trial. Stroke. 2021;52(12):3855–3863. doi: 10.1161/STROKEAHA.120.032972
  • Blevins BL, Vinters HV, Love S, et al. Brain arteriolosclerosis. Acta Neuropathol. 2021;141(1):1–24. doi: 10.1007/s00401-020-02235-6
  • Kalaria RN, Hase Y. Neurovascular Ageing and age-related diseases. Subcell Biochem. 2019;91:477–499.
  • Molnar AA, Nadasy GL, Dornyei G, et al. The aging venous system: from varicosities to vascular cognitive impairment. Geroscience. 2021;43(6):2761–2784. doi: 10.1007/s11357-021-00475-2
  • Kapadia A, Dmytriw AA. Venous dysfunction plays a critical role in “normal” white matter disease of aging. Med Hypotheses. 2021;146:110457. doi:10.1016/j.mehy.2020.110457
  • Carare RO, Aldea R, Agarwal N, et al. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of vascular professional interest area (PIA): cerebrovascular disease and the failure of elimination of amyloid-beta from the brain and retina with age and Alzheimer’s disease-opportunities for therapy. Alzheimer’s Dementia. 2020;12(1):e12053.
  • Poh L, Sim WL, Jo DG, et al. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener. 2022;17(1):4. doi: 10.1186/s13024-021-00506-8
  • Custodero C, Ciavarella A, Panza F, et al. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: a systematic review and meta-analysis. Geroscience. 2022;44(3):1373–1392. doi: 10.1007/s11357-022-00556-w
  • Skrobot OA, McKnight AJ, Passmore PA, et al. A validation study of vascular cognitive impairment genetics meta-analysis findings in an independent collaborative cohort. J Alzheimer’s Disease: JAD. 2016;53(3):981–989. doi: 10.3233/JAD-150862
  • Ballard CG, Morris CM, Rao H, et al. APOE epsilon4 and cognitive decline in older stroke patients with early cognitive impairment. Neurology. 2004;63(8):1399–1402. doi: 10.1212/01.WNL.0000141851.93193.17
  • Kalaria RN, Kittner SJ. Top-NOTCH3 variants in the population at large. Stroke. 2020;51(12):3482–3484. doi:10.1161/STROKEAHA.120.031609
  • Cho BPH, Harshfield EL, Al-Thani M, et al. Association of vascular risk factors and genetic factors with penetrance of variants causing monogenic stroke. JAMA Neurol. 2022;79(12):1303–1311. doi:10.1001/jamaneurol.2022.3832
  • Rajeev V, Chai YL, Poh L, et al. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun. 2023;11(1):93. doi: 10.1186/s40478-023-01590-1
  • Rolandi E, Zaccaria D, Vaccaro R, et al. Estimating the potential for dementia prevention through modifiable risk factors elimination in the real-world setting: a population-based study. Alzheimer’s Res Ther. 2020;12(1):94. doi: 10.1186/s13195-020-00661-y
  • Ingaramo RA. Obesity, diabetes, and other cardiovascular risk factors in native populations of South America. Curr Hypertens Rep. 2016;18(1):9. doi:10.1007/s11906-015-0613-6
  • Noale M, Limongi F, Maggi S. Epidemiology of cardiovascular diseases in the elderly. Adv Exp Med Biol. 2020;1216:29–38.
  • Allan LM, Rowan EN, Firbank MJ, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain. 2011;134(Pt 12):3716–3727. doi: 10.1093/brain/awr273
  • Afilalo J, Karunananthan S, Eisenberg MJ, et al. Role of frailty in patients with cardiovascular disease. Am J Cardiol. 2009;103(11):1616–1621. doi:10.1016/j.amjcard.2009.01.375
  • Singh M, Stewart R, White H. Importance of frailty in patients with cardiovascular disease. Eur Heart J. 2014;35(26):1726–1731. doi:10.1093/eurheartj/ehu197
  • Gheorghe A, Griffiths U, Murphy A, et al. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1):975. doi:10.1186/s12889-018-5806-x
  • Delgado J, Masoli J, Hase Y, et al. Trajectories of cognitive change following stroke: stepwise decline towards dementia in the elderly. Brain Commun. 2022;4(3):fcac129. doi: 10.1093/braincomms/fcac129
  • McHutchison CA, Backhouse EV, Cvoro V, et al. Education, socioeconomic status, and intelligence in childhood and stroke risk in later life: a meta-analysis. Epidemiology. 2017;28(4):608–618. doi:10.1097/EDE.0000000000000675
  • Sarki AM, Nduka CU, Stranges S, et al. Prevalence of hypertension in low- and middle-income countries: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(50):e1959. doi:10.1097/MD.0000000000001959
  • Cantone M, Lanza G, Puglisi V, et al. Hypertensive crisis in acute cerebrovascular diseases presenting at the emergency department: a narrative review. Brain Sci. 2021;11(1):70. doi: 10.3390/brainsci11010070
  • Forouzanfar MH, Liu P, Roth GA, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm hg, 1990-2015. JAMA. 2017;317(2):165–182. doi: 10.1001/jama.2016.19043
  • Zhou B, Carrillo-Larco RM, Danaei G, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet. 2021;398(10304):957–980. doi: 10.1016/S0140-6736(21)01330-1
  • Mahinrad S, Sorond FA, Gorelick PB. Hypertension and cognitive dysfunction: a review of mechanisms, life-course observational studies and clinical trial results. Rev Cardiovasc Med. 2021;22(4):1429–1449. doi:10.31083/j.rcm2204148
  • Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375(9718):938–948. doi:10.1016/S0140-6736(10)60309-1
  • de Heus RAA, Tzourio C, Lee EJL, et al. Association between blood pressure variability with dementia and cognitive impairment: a systematic review and meta-analysis. Hypertension. 2021;78(5):1478–1489. doi: 10.1161/HYPERTENSIONAHA.121.17797
  • Jia P, Lee HWY, Chan JYC, et al. Long-term blood pressure variability increases risks of dementia and cognitive decline: a meta-analysis of longitudinal studies. Hypertension. 2021;78(4):996–1004. doi:10.1161/HYPERTENSIONAHA.121.17788
  • Aribisala BS, Morris Z, Eadie E, et al. Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension. 2014;63(5):1011–1018. doi: 10.1161/HYPERTENSIONAHA.113.02735
  • Markus HS, Erik de Leeuw F. Cerebral small vessel disease: recent advances and future directions. Int J Stroke. 2023;18(1):4–14. doi:10.1177/17474930221144911
  • Jiang X, Lewis CE, Allen NB, et al. Premature cardiovascular disease and brain health in midlife: the CARDIA study. Neurology. 2023;100(14):e1454–e1463. doi:10.1212/WNL.0000000000206825
  • Kim WSH, Luciw NJ, Atwi S, et al. Associations of white matter hyperintensities with networks of gray matter blood flow and volume in midlife adults: a coronary artery risk development in young adults magnetic resonance imaging substudy. Human Brain Mapp. 2022;43(12):3680–3693. doi: 10.1002/hbm.25876
  • Affleck AJ, Sachdev PS, Halliday GM. Past antihypertensive medication use is associated with lower levels of small vessel disease and lower Aβ plaque stage in the brains of older individuals. Neuropathol Appl Neurobiol. 2023;49(4):e12922. doi: 10.1111/nan.12922
  • Kayima J, Wanyenze RK, Katamba A, et al. Hypertension awareness, treatment and control in Africa: a systematic review. BMC Cardiovasc Disord. 2013;13(1):54. doi: 10.1186/1471-2261-13-54
  • Chang-Quan H, Hui W, Chao-Min W, et al. The association of antihypertensive medication use with risk of cognitive decline and dementia: a meta-analysis of longitudinal studies. Int J Clin Pract. 2011;65(12):1295–1305. doi: 10.1111/j.1742-1241.2011.02810.x
  • Levi Marpillat N, Macquin-Mavier I, Tropeano AI, et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013;31(6):1073–1082. doi:10.1097/HJH.0b013e3283603f53
  • Tully PJ, Hanon O, Cosh S, et al. Diuretic antihypertensive drugs and incident dementia risk: a systematic review, meta-analysis and meta-regression of prospective studies. J Hypertens. 2016;34(6):1027–1035. doi:10.1097/HJH.0000000000000868
  • Gupta A, Perdomo S, Billinger S, et al. Treatment of hypertension reduces cognitive decline in older adults: a systematic review and meta-analysis. BMJ Open. 2020;10(11):e038971. doi:10.1136/bmjopen-2020-038971
  • Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA. 2020;323(19):1934–1944. doi: 10.1001/jama.2020.4249
  • Ou YN, Tan CC, Shen XN, et al. Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies. Hypertension. 2020;76(1):217–225. doi: 10.1161/HYPERTENSIONAHA.120.14993
  • Peters R, Yasar S, Anderson CS, et al. Investigation of antihypertensive class, dementia, and cognitive decline: a meta-analysis. Neurology. 2020;94(3):e267–e281. doi: 10.1212/WNL.0000000000008732
  • den Brok M, van Dalen JW, Abdulrahman H, et al. Antihypertensive medication classes and the risk of dementia: a systematic review and network meta-analysis. J Am Med Dir Assoc. 2021;22(7):1386–1395 e1315. doi: 10.1016/j.jamda.2020.12.019
  • Ho JK, Moriarty F, Manly JJ, et al. Blood-brain barrier crossing renin-angiotensin drugs and cognition in the elderly: a meta-analysis. Hypertension. 2021;78(3):629–643. doi: 10.1161/HYPERTENSIONAHA.121.17049
  • Peters R, Xu Y, Fitzgerald O, et al. Blood pressure lowering and prevention of dementia: an individual patient data meta-analysis. Eur Heart J. 2022;43(48):4980–4990. doi: 10.1093/eurheartj/ehac584
  • van Rijssel AE, Stins BC, Beishon LC, et al. Effect of antihypertensive treatment on cerebral blood flow in older adults: a systematic review and meta-analysis. Hypertension. 2022;79(5):1067–1078. doi: 10.1161/HYPERTENSIONAHA.121.18255
  • Dallaire-Theroux C, Quesnel-Olivo MH, Brochu K, et al. Evaluation of intensive vs standard blood pressure reduction and Association with cognitive decline and dementia: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(11):e2134553. doi: 10.1001/jamanetworkopen.2021.34553
  • Cunningham EL, Todd SA, Passmore P, et al. Pharmacological treatment of hypertension in people without prior cerebrovascular disease for the prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2021;5(5):CD004034. doi:10.1002/14651858.CD004034.pub4
  • Jordan F, Quinn TJ, McGuinness B, et al. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia. Cochrane Database Syst Rev. 2020;4(4):CD011459. doi: 10.1002/14651858.CD011459.pub2
  • Kwan J, Hafdi M, Chiang LLW, et al. Antithrombotic therapy to prevent cognitive decline in people with small vessel disease on neuroimaging but without dementia. Cochrane Database Syst Rev. 2022;7(7):CD012269. doi:10.1002/14651858.CD012269.pub2
  • Ryan J, Storey E, Murray AM, et al. Randomized placebo-controlled trial of the effects of aspirin on dementia and cognitive decline. Neurology. 2020;95(3):e320–e331. doi: 10.1212/WNL.0000000000009277
  • Alexander P, Visagan S, Jawhar S, et al. Antiplatelets and vascular dementia: a systematic review. J Aging Res. 2022;2022:9780067. doi: 10.1155/2022/9780067
  • Wong KS, Wang Y, Leng X, et al. Early dual versus mono antiplatelet therapy for acute non-cardioembolic ischemic stroke or transient ischemic attack: an updated systematic review and meta-analysis. Circulation. 2013;128(15):1656–1666. doi: 10.1161/CIRCULATIONAHA.113.003187
  • Kim WJ, Noh JH, Han K, et al. The Association between second-line oral antihyperglycemic medication on types of dementia in type 2 diabetes: a nationwide real-world longitudinal study. J Alzheimer’s Disease: JAD. 2021;81(3):1263–1272. doi:10.3233/JAD-201535
  • Dai J, Ports KD, Corrada MM, et al. Metformin and dementia risk: a systematic review with respect to time related Biases. J Alzheimers Dis Rep. 2022;6(1):443–459. doi:10.3233/ADR-220002
  • Zhang JH, Zhang XY, Sun YQ, et al. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: a systematic review and meta-analysis. Front Neurosci. 2022;16:984559. doi:10.3389/fnins.2022.984559
  • Kim YG, Jeon J, Kim HJ, et al. Risk of dementia in older patients with type 2 diabetes on dipeptidyl-peptidase IV inhibitors versus sulfonylureas: a real-world population-based cohort study. J Clin Med. 2018;8(1):28. doi: 10.3390/jcm8010028
  • Norgaard CH, Friedrich S, Hansen CT, et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimers Dement (N Y). 2022;8(1):e12268. doi: 10.1002/trc2.12268
  • Tang H, Shao H, Shaaban CE, et al. Newer glucose-lowering drugs and risk of dementia: a systematic review and meta-analysis of observational studies. J American Geriatrics Society. 2023;71(7):2096–2106. doi: 10.1111/jgs.18306
  • Luan S, Cheng W, Wang C, et al. Impact of glucagon-like peptide 1 analogs on cognitive function among patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol. 2022;13:1047883. doi:10.3389/fendo.2022.1047883
  • Jin Y, Zhao H, Hou Y, et al. The effects of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide 1 receptor agonists on cognitive functions in adults with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol. 2020;57(10):1129–1144. doi:10.1007/s00592-020-01529-1
  • Wu CY, Iskander C, Wang C, et al. Association of Sodium–glucose cotransporter 2 inhibitors with time to dementia: a population-based cohort study. Diabetes Care. 2023;46(2):297–304. doi: 10.2337/dc22-1705
  • Yang Z, Wang H, Edwards D, et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: a systematic review and meta-analysis. Ageing Res Rev. 2020;57:100962. doi: 10.1016/j.arr.2019.100962
  • McGuinness B, Craig D, Bullock R, et al. Statins for the prevention of dementia. Cochrane Database Syst Rev. 2016;2016(1):CD003160. doi:10.1002/14651858.CD003160.pub3
  • Wardlaw JM, Woodhouse LJ, Mhlanga II, et al. Isosorbide mononitrate and Cilostazol treatment in patients with symptomatic cerebral small vessel disease: the lacunar intervention trial-2 (LACI-2) randomized clinical trial. JAMA Neurol. 2023;80(7):682. doi: 10.1001/jamaneurol.2023.1526
  • Tai SY, Chien CY, Chang YH, et al. Cilostazol use is associated with reduced risk of dementia: a nationwide cohort study. Neurotherapeutics. 2017;14(3):784–791. doi:10.1007/s13311-017-0512-4
  • Pajewski NM, Berlowitz DR, Bress AP, et al. Intensive vs standard blood pressure control in adults 80 years or older: a secondary analysis of the systolic blood pressure intervention trial. J American Geriatrics Society. 2020;68(3):496–504. doi: 10.1111/jgs.16272
  • Gaussoin SA, Pajewski NM, Chelune G, et al. Effect of intensive blood pressure control on subtypes of mild cognitive impairment and risk of progression from SPRINT study. J American Geriatrics Society. 2022;70(5):1384–1393. doi: 10.1111/jgs.17583
  • Bello-Chavolla OY, Antonio-Villa NE, Vargas-Vazquez A, et al. Pathophysiological mechanisms linking type 2 diabetes and dementia: review of evidence from clinical, translational and epidemiological Research. Curr Diabetes Rev. 2019;15(6):456–470. doi:10.2174/1573399815666190129155654
  • Cheng G, Huang C, Deng H, et al. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42(5):484–491. doi:10.1111/j.1445-5994.2012.02758.x
  • Antal B, McMahon LP, Sultan SF, et al. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: complementary findings from UK Biobank and meta-analyses. Elife. 2022;11: doi: 10.7554/eLife.73138
  • Luchsinger JA, Ryan C, Launer LJ. Diabetes and cognitive impairment. In: Cowie C, Casagrande S, and Menke A, et al. Diabetes in America. 3rd ed. Chapter 24, Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018. PMID: 33651563.
  • Guan Y, Ebrahimzadeh SA, Cheng CH, et al. Association of diabetes and hypertension with brain structural integrity and cognition in the Boston Puerto Rican health study cohort. Neurology. 2022;98(15):e1534–e1544. doi: 10.1212/WNL.0000000000200120
  • Shi S, Gouskova N, Najafzadeh M, et al. Intensive versus standard blood pressure control in type 2 diabetes: a restricted mean survival time analysis of a randomised controlled trial. BMJ Open. 2021;11(9):e050335. doi:10.1136/bmjopen-2021-050335
  • Wu CY, Shapiro L, Ouk M, et al. Glucose-lowering drugs, cognition, and dementia: the clinical evidence. Neurosci Biobehav Rev. 2022;137:104654. doi: 10.1016/j.neubiorev.2022.104654
  • Hamal C, Velugoti L, Tabowei G, et al. Metformin for the improvement of comorbid depression symptoms in diabetic patients: a systematic review. Cureus. 2022;14(8):e28609. doi: 10.7759/cureus.28609
  • Sergi D, Zauli E, Tisato V, et al. Lipids at the nexus between cerebrovascular disease and vascular dementia: the impact of HDL-Cholesterol and ceramides. Int J Mol Sci. 2023;24(5):4403. doi: 10.3390/ijms24054403
  • Wee J, Sukudom S, Bhat S, et al. The relationship between midlife dyslipidemia and lifetime incidence of dementia: a systematic review and meta-analysis of cohort studies. Alzheimer’s Dementia. 2023;15(1):e12395. doi: 10.1002/dad2.12395
  • Power MC, Rawlings A, Sharrett AR, et al. Association of midlife lipids with 20-year cognitive change: a cohort study. Alzheimer’s Dementia. 2018;14(2):167–177. doi: 10.1016/j.jalz.2017.07.757
  • Seixas AA, Turner AD, Bubu OM, et al. Obesity and race may explain differential burden of white matter hyperintensity load. Clin Interventions Aging. 2021;16:1563–1571. doi: 10.2147/CIA.S316064
  • Yu J, Morys F, Dagher A, et al. Associations between sleep-related symptoms, obesity, cardiometabolic conditions, brain structural alterations and cognition in the UK biobank. Sleep Med. 2023;103:41–50. doi: 10.1016/j.sleep.2023.01.023
  • Ishii M, Iadecola C. Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2016;1862(5):966–974. doi:10.1016/j.bbadis.2015.10.029
  • Anjum I, Fayyaz M, Wajid A, et al. Does obesity increase the risk of dementia: a literature review. Cureus. 2018;10(5):e2660. doi:10.7759/cureus.2660
  • Erickson LD, Gale SD, Anderson JE, et al. Association between exposure to air pollution and total gray matter and total white matter volumes in adults: a cross-sectional study. Brain Sci. 2020;10(3):164. doi: 10.3390/brainsci10030164
  • Delgado-Saborit JM, Guercio V, Gowers AM, et al. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. Sci Total Environ. 2021;757:143734. doi:10.1016/j.scitotenv.2020.143734
  • Shaffer RM, Sheppard L, Peskind ER, et al. Fine particulate matter exposure and cerebrospinal fluid markers of vascular injury. J Alzheimer’s Disease: JAD. 2019;71(3):1015–1025. doi:10.3233/JAD-190563
  • Perales-Puchalt J, Vidoni ML, Llibre Rodriguez J, et al. Cardiovascular health and dementia incidence among older adults in Latin America: results from the 10/66 study. Int J Geriat Psychiatry. 2019;34(7):1041–1049. doi: 10.1002/gps.5107
  • Fernandes BFS, Caramelli P. Ischemic stroke and infectious diseases in low-income and middle-income countries. Curr Opin Neurol. 2019;32(1):43–48. doi:10.1097/WCO.0000000000000641
  • Obi IE, McPherson KC, Pollock JS. Childhood adversity and mechanistic links to hypertension risk in adulthood. Br J Pharmacol. 2019;176(12):1932–1950. doi:10.1111/bph.14576
  • Godoy LC, Frankfurter C, Cooper M, et al. Association of adverse childhood experiences with cardiovascular disease later in life: a review. JAMA Cardiol. 2021;6(2):228–235. doi:10.1001/jamacardio.2020.6050
  • Seligowski AV, Webber TK, Marvar PJ, et al. Involvement of the brain–heart axis in the link between PTSD and cardiovascular disease. Depress Anxiety. 2022;39(10–11):663–674. doi:10.1002/da.23271
  • Dawson J, Bejot Y, Christensen LM, et al. European Stroke Organisation (ESO) guideline on pharmacological interventions for long-term secondary prevention after ischaemic stroke or transient ischaemic attack. Eur Stroke J. 2022;7(3):I–XLI. doi: 10.1177/23969873221100032
  • van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, et al. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease—a review. Adv Nutr. 2019;10(6):1040–1065. doi:10.1093/advances/nmz054
  • Andrews V, Zammit G, O’Leary F. Dietary pattern, food, and nutritional supplement effects on cognitive outcomes in mild cognitive impairment: a systematic review of previous reviews. Nutr Rev. 2023;81(11):1462–1489. doi: 10.1093/nutrit/nuad013
  • Malek Rivan NF, Shahar S, Fakhruddin N, et al. The effect of dietary patterns on mild cognitive impairment and dementia incidence among community-dwelling older adults. Front Nutr. 2022;9:901750. doi:10.3389/fnut.2022.901750
  • Chen H, Dhana K, Huang Y, et al. Association of the mediterranean dietary approaches to stop hypertension intervention for neurodegenerative delay (MIND) diet with the risk of dementia. JAMA Psychiatry. 2023;80(6):630–638. doi: 10.1001/jamapsychiatry.2023.0800
  • Gil Martinez V, Avedillo Salas A, Santander Ballestin S. Vitamin supplementation and dementia: a systematic review. Nutrients. 2022;14(5):1033. doi: 10.3390/nu14051033
  • Bonyadi N, Dolatkhah N, Salekzamani Y, et al. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep. 2022;12(1):3239. doi:10.1038/s41598-022-07302-4
  • Bermejo PE, Dorado R, Zea-Sevilla MA. Role of Citicoline in patients with mild cognitive impairment. J Exp Neurosci. 2023;18:26331055231152496. doi:10.1177/26331055231152496
  • Davinelli S, Ali S, Solfrizzi V, et al. Carotenoids and cognitive outcomes: a meta-analysis of randomized intervention trials. Antioxidants. 2021;10(2):223. doi: 10.3390/antiox10020223
  • Iso-Markku P, Kujala UM, Knittle K, et al. Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case–control studies. Br J Sports Med. 2022;56(12):701–709. doi:10.1136/bjsports-2021-104981
  • Balbim GM, Falck RS, Barha CK, et al. Effects of exercise training on the cognitive function of older adults with different types of dementia: a systematic review and meta-analysis. Br J Sports Med. 2022;56(16):933–940. doi: 10.1136/bjsports-2021-104955
  • Yan J, Li X, Guo X, et al. Effect of multicomponent exercise on cognition, physical function and activities of daily life in older adults with dementia or mild cognitive impairment: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2023. doi:10.1016/j.apmr.2023.04.011.
  • Rivas-Campo Y, Garcia-Garro PA, Aibar-Almazan A, et al. The effects of high-intensity functional training on cognition in older adults with cognitive impairment: a systematic review. Healthcare. 2022;10(4):670. doi: 10.3390/healthcare10040670
  • Liu L, Dong H, Jin X, et al. Tackling dementia: a systematic review of interventions based on physical activity. J Geriatr Phys Ther. 2022;45(4):E169–E180. doi:10.1519/JPT.0000000000000332
  • Xu W, Wang HF, Wan Y, et al. Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open. 2017;7(10):e014706. doi:10.1136/bmjopen-2016-014706
  • Venegas-Sanabria LC, Cavero-Redondo I, Martinez-Vizcaino V, et al. Effect of multicomponent exercise in cognitive impairment: a systematic review and meta-analysis. BMC Geriatr. 2022;22(1):617. doi:10.1186/s12877-022-03302-1
  • Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–666. doi:10.1038/s41582-018-0070-3
  • Gomez-Soria I, Marin-Puyalto J, Peralta-Marrupe P, et al. Effects of multi-component non-pharmacological interventions on cognition in participants with mild cognitive impairment: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2022;103:104751. doi:10.1016/j.archger.2022.104751
  • Kumagai R, Osaki T, Oki Y, et al. The Japan-multimodal intervention trial for prevention of dementia PRIME Tamba (J-MINT PRIME Tamba): study protocol of a randomised controlled multi-domain intervention trial. Arch Gerontol Geriatr. 2023;104:104803. doi: 10.1016/j.archger.2022.104803
  • Solomon A, Stephen R, Altomare D, et al. Multidomain interventions: state-of-the-art and future directions for protocols to implement precision dementia risk reduction. A user manual for brain health services—part 4 of 6. Alzheimer’s Res Ther. 2021;13(1):171. doi: 10.1186/s13195-021-00875-8
  • Akpa OM, Okekunle AP, Asowata OJ, et al. Frequent vegetable consumption is inversely associated with hypertension among indigenous Africans. Eur J Prev Cardiol. 2022;29(18):2359–2371. doi: 10.1093/eurjpc/zwac208
  • Okekunle AP, Asowata O, Akpa OM, et al. Dietary patterns associated with stroke among West Africans: a case–control study. Int J Stroke. 2023;18(2):193–200. doi: 10.1177/17474930221094933
  • Ding H, Reiss AB, Pinkhasov A, et al. Plants, plants, and more plants: plant-derived Nutrients and their protective roles in cognitive function, Alzheimer’s disease, and other dementias. Medicina (Kaunas). 2022;58(8):1025. doi: 10.3390/medicina58081025
  • Godos J, Grosso G, Ferri R, et al. Mediterranean diet, mental health, cognitive status, quality of life, and successful aging in southern Italian older adults. Exp Gerontol. 2023;175:112143. doi: 10.1016/j.exger.2023.112143
  • Saito S, Yamamoto Y, Ihara M. Development of a multicomponent intervention to prevent Alzheimer’s disease. Front Neurol. 2019;10:490. doi:10.3389/fneur.2019.00490
  • Currenti W, Godos J, Alanazi AM, et al. Dietary fats and cognitive status in Italian middle-old adults. Nutrients. 2023;15(6):1429. doi: 10.3390/nu15061429
  • Fisicaro F, Lanza G, Pennisi M, et al. Daily mocha coffee intake and psycho-cognitive status in non-demented non-smokers subjects with subcortical ischaemic vascular disease. Int J Food Sci Nutr. 2022;73(6):821–828. doi: 10.1080/09637486.2022.2050999
  • Fisicaro F, Lanza G, Pennisi M, et al. Moderate mocha coffee consumption is associated with higher cognitive and mood status in a non-demented elderly population with subcortical ischemic vascular disease. Nutrients. 2021;13(2):536. doi: 10.3390/nu13020536
  • Sekikawa A, Higashiyama A, Lopresti BJ, et al. Associations of equol-producing status with white matter lesion and amyloid-β deposition in cognitively normal elderly Japanese. Alzheimers Dement (N Y). 2020;6(1):e12089. doi: 10.1002/trc2.12089
  • Hess NC, Smart NA. Isometric exercise training for managing vascular risk factors in mild cognitive impairment and Alzheimer’s disease. Front Aging Neurosci. 2017;9:48. doi:10.3389/fnagi.2017.00048
  • Barnes JN, Pearson AG, Corkery AT, et al. Exercise, arterial stiffness, and cerebral vascular function: potential impact on brain health. J Int Neuropsychol Soc. 2021;27(8):761–775. doi:10.1017/S1355617721000394
  • Stevenson W, Hase Y, Wilson E, et al. Long-term effects of experimental carotid stenosis on hippocampal infarct pathology, neurons and glia and amelioration by environmental enrichment. Brain Res Bull. 2020;163:72–83. doi: 10.1016/j.brainresbull.2020.07.014
  • Hase Y, Polvikoski TM, Ihara M, et al. Carotid artery disease in post-stroke survivors and effects of enriched environment on stroke pathology in a mouse model of carotid artery stenosis. Neuropathol Appl Neurobiol. 2019;45(7):681–697. doi: 10.1111/nan.12550
  • LaCroix AZ, Hubbard RA, Gray SL, et al. Trajectories of physical function prior to death and brain neuropathology in a community-based cohort: the act study. BMC Geriatr. 2017;17(1):258. doi: 10.1186/s12877-017-0637-7
  • Frisoni GB, Altomare D, Ribaldi F, et al. Dementia prevention in memory clinics: recommendations from the European task force for brain health services. Lancet Reg Health Eur. 2023;26:100576. doi: 10.1016/j.lanepe.2022.100576
  • Shannon OM, Lee V, Bundy R, et al. Feasibility and acceptability of a multi-domain intervention to increase Mediterranean diet adherence and physical activity in older UK adults at risk of dementia: protocol for the MedEx-UK randomised controlled trial. BMJ Open. 2021;11(2):e042823. doi: 10.1136/bmjopen-2020-042823
  • Cantone M, Lanza G, Fisicaro F, et al. Evaluation and treatment of vascular cognitive impairment by transcranial magnetic stimulation. Neural Plast. 2020;2020:8820881. doi: 10.1155/2020/8820881
  • Lanza G, Bella R, Giuffrida S, et al. Preserved transcallosal inhibition to transcranial magnetic stimulation in nondemented elderly patients with leukoaraiosis. Bio Med Res Int. 2013;2013:351680. doi: 10.1155/2013/351680
  • Balasubramanian P, DelFavero J, Ungvari A, et al. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev. 2020;64:101189. doi: 10.1016/j.arr.2020.101189
  • Forte M, Rodolico D, Ameri P, et al. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown). 2023;24(Supplement 1):e3–e14. doi: 10.2459/JCM.0000000000001397
  • Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 2008;7(9):812–826. doi: 10.1016/S1474-4422(08)70169-8
  • O’Donnell MJ, Chin SL, Rangarajan S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–775. doi: 10.1016/S0140-6736(16)30506-2
  • Owolabi MO, Sarfo F, Akinyemi R, et al. Dominant modifiable risk factors for stroke in Ghana and Nigeria (SIREN): a case-control study. Lancet Glob Health. 2018;6(4):e436–e446. doi: 10.1016/S2214-109X(18)30002-0
  • Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2020;395(10226):795–808. doi: 10.1016/S0140-6736(19)32008-2
  • Schwarzinger M, Pollock BG, Hasan OSM, et al. Contribution of alcohol use disorders to the burden of dementia in France 2008-13: a nationwide retrospective cohort study. Lancet Public Health. 2018;3(3):e124–e132. doi:10.1016/S2468-2667(18)30022-7
  • Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a risk factor for vascular contributions to cognitive impairment and dementia. Front Aging Neurosci. 2018;10:350. doi:10.3389/fnagi.2018.00350
  • Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–446. doi: 10.1016/S0140-6736(20)30367-6
  • Kivimaki M, Singh-Manoux A, Batty GD, et al. Association of alcohol-induced loss of consciousness and overall alcohol consumption with risk for dementia. JAMA Netw Open. 2020;3(9):e2016084. doi: 10.1001/jamanetworkopen.2020.16084
  • Piras F, Banaj N, Porcari DE, et al. Later life depression as risk factor for developing dementia: epidemiological evidence, predictive models, preventive strategies and future trends. Minerva Med. 2021;112(4):456–466. doi:10.23736/S0026-4806.21.07571-6
  • Huuskonen MT, Liu Q, Lamorie-Foote K, et al. Air pollution particulate matter amplifies white matter vascular pathology and demyelination caused by Hypoperfusion. Front Immunol. 2021;12:785519. doi: 10.3389/fimmu.2021.785519
  • Joyce DP, Gracias CS, Murphy F, et al. Potentially undiagnosed cognitive impairment in patients with peripheral arterial disease: a systematic review of the literature. Surgeon. 2022;20(4):e134–e143. doi:10.1016/j.surge.2021.06.007
  • Xu YY, Xie J, Yin H, et al. The global burden of disease attributable to low physical activity and its trends from 1990 to 2019: an analysis of the global burden of disease study. Front Public Health. 2022;10:1018866. doi: 10.3389/fpubh.2022.1018866
  • Mooldijk SS, Ikram MK, Ikram MA. Adiponectin, leptin, and Resistin and the risk of dementia. J Gerontol. 2022;77(6):1245–1249. doi:10.1093/gerona/glab267
  • Wang S, Molassiotis A, Guo C, et al. Association between social integration and risk of dementia: a systematic review and meta-analysis of longitudinal studies. J American Geriatrics Society. 2023;71(2):632–645. doi:10.1111/jgs.18094
  • Serafin P, Zaremba M, Sulejczak D, et al. Air pollution: a silent key driver of dementia. Biomedicines. 2023;11(5):1477. doi: 10.3390/biomedicines11051477
  • Fu X, Eikelboom RH, Tian R, et al. The relationship of age-related hearing loss with cognitive decline and dementia in a Sinitic language-speaking adult population: a systematic review and meta-analysis. Innov Aging. 2023;7(1):igac078. doi:10.1093/geroni/igac078
  • Wilker EH, Osman M, Weisskopf MG. Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ. 2023;381:e071620. doi:10.1136/bmj-2022-071620
  • Mukadam N, Sommerlad A, Huntley J, et al. Population attributable fractions for risk factors for dementia in low-income and middle-income countries: an analysis using cross-sectional survey data. Lancet Glob Health. 2019;7(5):e596–e603. doi:10.1016/S2214-109X(19)30074-9
  • Mulligan MD, Murphy R, Reddin C, et al. Population attributable fraction of hypertension for dementia: global, regional, and national estimates for 186 countries. EClinicalMedicine. 2023;60:102012. doi: 10.1016/j.eclinm.2023.102012
  • Yu JT, Xu W, Tan CC, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91(11):1201–1209. doi: 10.1136/jnnp-2019-321913
  • Oscanoa TJ, Amado J, Vidal X, et al. Angiotensin-receptor blockers and the risk of Alzheimer s disease: a meta-analysis. Curr Rev Clin Exp Pharmacol. 2021;16(1):73–78. doi:10.2174/1574884715666200131120224
  • Adesuyan M, Jani YH, Alsugeir D, et al. Antihypertensive agents and incident Alzheimer’s disease: a systematic review and meta-analysis of observational studies. J Prev Alzheimers Dis. 2022;9(4):715–724. doi: 10.14283/jpad.2022.77
  • Battle CE, Abdul-Rahim AH, Shenkin SD, et al. Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments: a network meta-analysis. Cochrane Database Syst Rev. 2021;2(2):CD013306. doi:10.1002/14651858.CD013306.pub2