207
Views
0
CrossRef citations to date
0
Altmetric
Review

Tackling seizures in patients with Alzheimer’s disease

ORCID Icon, &
Pages 1131-1145 | Received 19 Jul 2023, Accepted 30 Oct 2023, Published online: 09 Nov 2023

References

  • Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–2191. doi: 10.1016/S0140-6736(15)61340-X
  • Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42. doi: 10.1002/msj.20157
  • Friedman D, Honig LS, Scarmeas N. Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci Ther. 2012;18(4):285–294. doi: 10.1111/j.1755-5949.2011.00251.x
  • Scarmeas N, Honig LS, Choi H, et al. Seizures in Alzheimer disease: who, when, and how common? Arch Neurol. 2009;66(8):992–997. doi: 10.1001/archneurol.2009.130
  • Zhao B, Shen L-X, Ou Y-N, et al. Risk of seizures and subclinical epileptiform activity in patients with dementia: a systematic review and meta-analysis. Ageing Res Rev. 2021;72:101478. doi: 10.1016/j.arr.2021.101478
  • Zawar I, Kapur J. Does Alzheimer’s disease with mesial temporal lobe epilepsy represent a distinct disease subtype? Alzheimer’s & dementia. Alzheimer’s Dementia. 2023;19(6):2697–2706. doi: 10.1002/alz.12943
  • Tombini M, Assenza G, Ricci L, et al. Temporal lobe epilepsy and Alzheimer’s disease: from preclinical to clinical evidence of a strong Association. ADR. 2021;5(1):243–261. doi: 10.3233/ADR-200286
  • Hesdorffer DC, Hauser WA, Annegers JF, et al. Dementia and adult-onset unprovoked seizures. Neurology. 1996;46(3):727–730. doi: 10.1212/WNL.46.3.727
  • Amatniek JC, Hauser WA, DelCastillo-Castaneda C, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47:867–872. doi: 10.1111/j.1528-1167.2006.00554.x
  • Johnson EL, Krauss GL, Kucharska-Newton A, et al. Dementia in late-onset epilepsy: the atherosclerosis risk in communities study. Neurology. 2020;95(24):e3248–e3256. doi: 10.1212/WNL.0000000000011080
  • Breteler MM, van Duijn CM, Chandra V, et al. Medical history and the risk of Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM risk factors research group. Int J Epidemiol. 1991;20 Suppl 2(Supplement 2):S36–42. doi: 10.1093/ije/20.Supplement_2.S36
  • Johnson EL, Krauss GL, Lee AK, et al. Association between midlife risk factors and late-onset epilepsy: results from the atherosclerosis risk in communities study. JAMA Neurol. 2018;75(11):1375–1382. doi: 10.1001/jamaneurol.2018.1935
  • Cleary P, Shorvon S, Tallis R. Late-onset seizures as a predictor of subsequent stroke. Lancet. 2004;363(9416):1184–1186. doi: 10.1016/S0140-6736(04)15946-1
  • Wannamaker BB, Wilson DA, Malek AM, et al. Stroke after adult-onset epilepsy: a population-based retrospective cohort study. Epilepsy Behav. 2015;43:93–99. doi: 10.1016/j.yebeh.2014.11.028
  • Sillanpää M, Anttinen A, Rinne JO, et al. Childhood-onset epilepsy five decades later. A prospective population-based cohort study. Epilepsia. 2015;56(11):1774–1783. doi: 10.1111/epi.13187
  • Joutsa J, Rinne JO, Hermann B, et al. Association between childhood-onset epilepsy and amyloid burden 5 decades later. JAMA Neurol. 2017;74(5):583. doi: 10.1001/jamaneurol.2016.6091
  • Liu C-C, Liu C-C, Kanekiyo T, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263
  • Thygesen LC, Gimsing L, Bautz A, et al. Chronic neurodegenerative illnesses and epilepsy in Danish Adventists and Baptists: a nationwide cohort study. JAD. 2017;56(4):1429–1435. doi: 10.3233/JAD-160710
  • Forloni G, Balducci C, Perry G, et al. Alzheimer’s disease, Oligomers, and inflammation. Perry G, Avila J, Tabaton M, et al., editors. JAD. 2018;62(3):1261–1276. doi: 10.3233/JAD-170819
  • Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40. doi: 10.1038/nrneurol.2010.178
  • Vossel KA, Tartaglia MC, Nygaard HB, et al. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311–322. doi: 10.1016/S1474-4422(17)30044-3
  • Noebels J. A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia. 2011;52(Suppl 1):39–46. doi: 10.1111/j.1528-1167.2010.02909.x
  • Cretin B, Sellal F, Philippi N, et al. Epileptic prodromal Alzheimer’s disease, a retrospective study of 13 new cases: expanding the spectrum of alzheimer’s disease to an epileptic variant? J Alzheimers Dis. 2016;52(3):1125–1133. doi: 10.3233/JAD-150096
  • Vossel KA, Beagle AJ, Rabinovici GD, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013;70(9):1158–1166. doi: 10.1001/jamaneurol.2013.136
  • Palop JJ, Mucke L. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13(7):812–818. doi: 10.1038/nn.2583
  • Irizarry MC, Jin S, He F, et al. Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch Neurol. 2012;69(3):368–372. doi: 10.1001/archneurol.2011.830
  • Putcha D, Brickhouse M, O’Keefe K, et al. Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci. 2011;31(48):17680–17688. doi: 10.1523/JNEUROSCI.4740-11.2011
  • Zott B, Busche MA, Sperling RA, et al. What happens with the circuit in Alzheimer’s disease in mice and humans? Annu Rev Neurosci. 2018;41(1):277–297. doi: 10.1146/annurev-neuro-080317-061725
  • Vossel KA, Ranasinghe KG, Beagle AJ, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease: subclinical epileptiform activity in AD. Ann Neurol. 2016;80(6):858–870. doi: 10.1002/ana.24794
  • Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):459–480. doi: 10.1016/S1474-4422(18)30499-X
  • Hauser WA, Annegers JF, Kurland LT. Incidence of Epilepsy and Unprovoked Seizures in Rochester, Minnesota: 1935–1984. Epilepsia. 1993;34(3):453–458. doi: 10.1111/j.1528-1157.1993.tb02586.x
  • Neri S, Mastroianni G, Gardella E, et al. Epilepsy in neurodegenerative diseases. Epileptic Disord. 2022;24(2):249–273. doi: 10.1684/epd.2021.1406
  • Mendez MF, Lim GTH. Seizures in Elderly Patients with Dementia: Epidemiology and Management. Drugs Aging. 2003;20(11):791–803. doi: 10.2165/00002512-200320110-00001
  • Asadollahi M, Atazadeh M, Noroozian M. Seizure in Alzheimer’s Disease: An Underestimated Phenomenon. Am J Alzheimers Dis Other Demen. 2019;34(2):81–88. doi: 10.1177/1533317518813551
  • Cook M, Baker N, Lanes S, et al. Incidence of stroke and seizure in Alzheimer’s disease dementia. Age Ageing. 2015;44:695–699. doi: 10.1093/ageing/afv061
  • Samson WN, van Duijn CM, Hop WC, et al. Clinical features and mortality in patients with early-onset Alzheimer’s disease. Eur Neurol. 1996;36(2):103–106. doi: 10.1159/000117218
  • Amatniek JC, Hauser WA, DelCastillo-Castaneda C, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. 2006;47:6. doi: 10.1111/j.1528-1167.2006.00554.x
  • Larner AJ. Presenilin-1 mutation Alzheimer’s disease: a genetic epilepsy syndrome? Epilepsy Behav. 2011;21(1):20–22. doi: 10.1016/j.yebeh.2011.03.022
  • Cabrejo L, Guyant-Maréchal L, Laquerrière A, et al. Phenotype associated with APP duplication in five families. Brain. 2006;129(11):2966–2976. doi: 10.1093/brain/awl237
  • Jayadev S, Leverenz JB, Steinbart E, et al. Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain. 2010;133(4):1143–1154. doi: 10.1093/brain/awq033
  • Lai F, Williams RS. A prospective study of Alzheimer disease in Down syndrome. Arch Neurol. 1989;46(8):849–853. doi: 10.1001/archneur.1989.00520440031017
  • Möller JC, Hamer HM, Oertel WH, et al. Late-onset myoclonic epilepsy in Down’s syndrome (LOMEDS). Seizure. 2001;10(4):303–305. doi: 10.1053/seiz.2000.0500
  • Beagle AJ, Darwish SM, Ranasinghe KG, et al. Relative Incidence of seizures and myoclonus in Alzheimer’s disease, dementia with Lewy Bodies, and Frontotemporal dementia. Cretin B, editor. JAD. 2017;60(1):211–223. doi: 10.3233/JAD-170031
  • Chen J-Y, Stern Y, Sano M, et al. Cumulative risks of developing extrapyramidal signs, psychosis, or myoclonus in the course of Alzheimer’s disease. Arch Neurol. 1991;48(11):1141–1143. doi: 10.1001/archneur.1991.00530230049020
  • Ugawa Y, Kohara N, Hirasawa H, et al. Myoclonus in Alzheimer’s disease. J Neurol. 1987;235(2):90–94. doi: 10.1007/BF00718016
  • Hallett M, Wilkins DE. Myoclonus in Alzheimer’s disease and minipolymyoclonus. Adv Neurol. 1986;43:399–405.
  • Rao SC, Dove G, Cascino GD, et al. Recurrent seizures in patients with dementia: frequency, seizure types, and treatment outcome. Epilepsy Behav. 2009;14(1):118–120. doi: 10.1016/j.yebeh.2008.08.012
  • Zarea A, Charbonnier C, Rovelet-Lecrux A, et al. Seizures in dominantly inherited Alzheimer disease. Neurology. 2016;87(9):912–919. doi: 10.1212/WNL.0000000000003048
  • Sarkis RA, Dickerson BC, Cole AJ, et al. Clinical and neurophysiologic characteristics of unprovoked seizures in patients diagnosed with dementia. JNP. 2016;28(1):56–61. doi: 10.1176/appi.neuropsych.15060143
  • Lanz M, Oehl B, Brandt A, et al. Seizure induced cardiac asystole in epilepsy patients undergoing long term video-EEG monitoring. Seizure. 2011;20(2):167–172. doi: 10.1016/j.seizure.2010.11.017
  • Subota A, Jetté N, Josephson CB, et al. Risk factors for dementia development, frailty, and mortality in older adults with epilepsy – a population-based analysis. Epilepsy Behav. 2021;120:108006. doi: 10.1016/j.yebeh.2021.108006
  • Werhahn KJ Epilepsy in the elderly. Deutsches Ärzteblatt international [Internet]. 2009 [cited 2023 Jun 24]. Available from: https://www.aerzteblatt.de/10.3238/arztebl.2009.0135.
  • Brodie MJ, Elder AT, Kwan P. Epilepsy in later life. Lancet Neurol. 2009;8(11):1019–1030. doi: 10.1016/S1474-4422(09)70240-6
  • Epilepsy Study Group of the Italian Neurological Society, Ricci L, Boscarino M, et al. Clinical utility of home videos for diagnosing epileptic seizures: a systematic review and practical recommendations for optimal and safe recording. Neurol Sci. 2021;42(4):1301–1309.
  • Veran O, Kahane P, Thomas P, et al. De Novo epileptic confusion in the elderly: A 1-year prospective study: De Novo epileptic confusion in the elderly. Epilepsia. 2009;51(6):1030–1035. doi: 10.1111/j.1528-1167.2009.02410.x
  • Rabinowicz AL, Starkstein SE, Leiguarda RC, et al. Transient Epileptic Amnesia in Dementia: A Treatable Unrecognized Cause of Episodic Amnestic Wandering. Alzheimer Dis Associated Disorde. 2000;14(4):231–233. doi: 10.1097/00002093-200010000-00008
  • Cretin B, Philippi N, Sellal F, et al. Can the syndrome of transient epileptic amnesia be the first feature of Alzheimer’s disease? Seizure. 2014;23(10):918–920. doi: 10.1016/j.seizure.2014.07.008
  • Gallassi R. Epileptic Amnesic syndrome: an update and further considerations. Epilepsia. 2006;47(s2):103–105. doi: 10.1111/j.1528-1167.2006.00704.x
  • Palop JJ, Chin J, Roberson ED, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55:697–711. doi: 10.1016/j.neuron.2007.07.025
  • Cirrito JR, Yamada KA, Finn MB, et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron. 2005;48(6):913–922. doi: 10.1016/j.neuron.2005.10.028
  • Reyes-Marin KE, Nuñez A. Seizure susceptibility in the APP/PS1 mouse model of Alzheimer’s disease and relationship with amyloid β plaques. Brain Res. 2017;1677:93–100. doi: 10.1016/j.brainres.2017.09.026
  • Harris SS, Wolf F, De Strooper B, et al. Tipping the scales: peptide-dependent dysregulation of neural circuit dynamics in Alzheimer’s disease. Neuron. 2020;107(3):417–435. doi: 10.1016/j.neuron.2020.06.005
  • Rodriguez GA, Barrett GM, Duff KE, et al. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol. 2020;18(8):e3000851. doi: 10.1371/journal.pbio.3000851
  • Saito Y, Inoue T, Zhu G, et al. Hyperpolarization-activated cyclic nucleotide gated channels: a potential molecular link between epileptic seizures and Aβ generation in Alzheimer’s disease. Mol Neurodegener. 2012;7(1):50. doi: 10.1186/1750-1326-7-50
  • Gourmaud S, Shou H, Irwin DJ, et al. Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain. 2020;143(1):191–209. doi: 10.1093/brain/awz381
  • Costa C, Romoli M, Liguori C, et al. Alzheimer’s disease and late-onset epilepsy of unknown origin: two faces of beta amyloid pathology. Neurobiol Aging. 2019;73:61–67. doi: 10.1016/j.neurobiolaging.2018.09.006
  • Decker JM, Krüger L, Sydow A, et al. The tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR 2B receptor-mediated excitotoxicity. EMBO Rep. 2016;17(4):552–569. doi: 10.15252/embr.201541439
  • Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau Mediates amyloid-β Toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–397. doi: 10.1016/j.cell.2010.06.036
  • Holth JK, Bomben VC, Reed JG, et al. Tau loss Attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci. 2013;33(4):1651–1659. doi: 10.1523/JNEUROSCI.3191-12.2013
  • Wu JW, Hussaini SA, Bastille IM, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19(8):1085–1092. doi: 10.1038/nn.4328
  • Roberson ED, Halabisky B, Yoo JW, et al. Amyloid-β/Fyn–Induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci. 2011;31(2):700–711. doi: 10.1523/JNEUROSCI.4152-10.2011
  • DeVos SL, Goncharoff DK, Chen G, et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci. 2013;33(31):12887–12897. doi: 10.1523/JNEUROSCI.2107-13.2013
  • Tai XY, Koepp M, Duncan JS, et al. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain. 2016;139(9):2441–2455. doi: 10.1093/brain/aww187
  • Tábuas-Pereira M, Durães J, Lopes J, et al. Increased CSF tau is associated with a higher risk of seizures in patients with Alzheimer’s disease. Epilepsy Behav. 2019;98:207–209. doi: 10.1016/j.yebeh.2019.06.033
  • Hickman LB, Stern JM, Silverman DHS, et al. Clinical, imaging, and biomarker evidence of amyloid- and tau-related neurodegeneration in late-onset epilepsy of unknown etiology. Front Neurol. 2023;14:1241638. doi: 10.3389/fneur.2023.1241638
  • Jack CR, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–547. doi: 10.1212/WNL.0000000000002923
  • Ehlers MD. Peripheral activity and central substrates of BACE1: therapeutic implications for Alzheimer’s disease. Biol Psychiatry. 2018;83(5):393–394. doi: 10.1016/j.biopsych.2017.12.005
  • Hu X, Zhou X, He W, et al. BACE1 deficiency causes altered neuronal activity and neurodegeneration. J Neurosci. 2010;30(26):8819–8829. doi: 10.1523/JNEUROSCI.1334-10.2010
  • Mazdeh M, Komaki A, Omrani MD, et al. Expression analysis of beta-secretase 1 (BACE1) and its naturally occurring antisense (BACE1-AS) in blood of epileptic patients. Neurol Sci. 2018;39(9):1565–1569. doi: 10.1007/s10072-018-3458-3
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi: 10.1038/nrneurol.2017.188
  • Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res. 2020;161:106282. doi: 10.1016/j.eplepsyres.2020.106282
  • Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. doi: 10.1016/S1474-4422(15)70016-5
  • Aboud O, Mrak RE, Boop FA, et al. Epilepsy: neuroinflammation, neurodegeneration, and APOE genotype. acta neuropathol commun. Acta Neuropathol Commun. 2013;1(1):41. doi: 10.1186/2051-5960-1-41
  • Ramos B, Baglietto-Vargas D, Del Rio JC, et al. Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1×APP transgenic model of Alzheimer’s disease. Neurobiol Aging. 2006;27(11):1658–1672. doi: 10.1016/j.neurobiolaging.2005.09.022
  • Iascone DM, Li Y, Sümbül U, et al. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. Neuron. 2020;106(4):566–578.e8. doi: 10.1016/j.neuron.2020.02.015
  • Guzmán B C-F, Vinnakota C, Govindpani K, et al. The GABAergic system as a therapeutic target for Alzheimer’s disease. Journal Of Neurochemistry. 2018;146(6):649–669. doi: 10.1111/jnc.14345
  • Lauterborn JC, Scaduto P, Cox CD, et al. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer’s disease. Nat Commun. 2021;12(1):2603. doi: 10.1038/s41467-021-22742-8
  • Huijbers W, Mormino EC, Schultz AP, et al. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain. 2015;138(4):1023–1035. doi: 10.1093/brain/awv007
  • Bakker A, Albert MS, Krauss G, et al. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clin. 2015;7:688–698. doi: 10.1016/j.nicl.2015.02.009
  • Sperling RA, Laviolette PS, O’Keefe K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178–188. doi: 10.1016/j.neuron.2009.07.003
  • Di Lazzaro V, Rothwell J, Capogna M. Noninvasive stimulation of the human brain: activation of multiple cortical circuits. Neuroscientist. 2018;24(3):246–260. doi: 10.1177/1073858417717660
  • de Goede AA, Ter Braack EM, van Putten MJAM. Single and paired pulse transcranial magnetic stimulation in drug naïve epilepsy. Clin Neurophysiol. 2016;127(9):3140–3155. doi: 10.1016/j.clinph.2016.06.025
  • Cantone M, Di Pino G, Capone F, et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol. 2014;125(8):1509–1532. doi: 10.1016/j.clinph.2014.04.010
  • Di Lazzaro V, Bella R, Benussi A, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol. 2021;132(10):2568–2607. doi: 10.1016/j.clinph.2021.05.035
  • Horváth A, Szűcs A, Hidasi Z, et al. Prevalence, semiology, and risk factors of epilepsy in Alzheimer’s disease: an ambulatory EEG study. JAD. 2018;63(3):1045–1054. doi: 10.3233/JAD-170925
  • Liedorp M, Stam CJ, van der Flier WM, et al. Prevalence and clinical significance of epileptiform EEG discharges in a large memory clinic cohort. Dement Geriatr Cognit Disord. 2010;29(5):432–437. doi: 10.1159/000278620
  • Brunetti V, D’Atri A, Della Marca G, et al. Subclinical epileptiform activity during sleep in Alzheimer’s disease and mild cognitive impairment. Clin Neurophysiol. 2020;131(5):1011–1018. doi: 10.1016/j.clinph.2020.02.015
  • Lam AD, Sarkis RA, Pellerin KR, et al. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology. 2020;95(16):e2259–e2270. doi: 10.1212/WNL.0000000000010612
  • Ung H, Cazares C, Nanivadekar A, et al. Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain. 2017;140(8):2157–2168. doi: 10.1093/brain/awx143
  • Krauss GL, Summerfield M, Brandt J, et al. Mesial temporal spikes interfere with working memory. Neurology. 1997;49(4):975–980. doi: 10.1212/WNL.49.4.975
  • Aldenkamp AP, Arends J. Effects of epileptiform EEG discharges on cognitive function: is the concept of “transient cognitive impairment” still valid? Epilepsy Behav. 2004;5(Suppl 1):S25–34. doi: 10.1016/j.yebeh.2003.11.005
  • Aldenkamp AP, Arends J, Verspeek S, et al. The cognitive impact of epileptiform EEG-discharges; relationship with type of cognitive task. Child Neuropsychol. 2004;10(4):297–305. doi: 10.1080/09297040490909341
  • Kleen JK, Scott RC, Holmes GL, et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology. 2013;81(1):18–24. doi: 10.1212/WNL.0b013e318297ee50
  • Lam AD, Deck G, Goldman A, et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat Med. 2017;23(6):678–680. doi: 10.1038/nm.4330
  • Bootsma HP, Ricker L, Hekster YA, et al. The impact of side effects on long-term retention in three new antiepileptic drugs. Seizure. 2009;18(5):327–331. doi: 10.1016/j.seizure.2008.11.006
  • Mula M, Trimble MR. Antiepileptic drug-induced cognitive adverse effects: potential mechanisms and contributing factors. CNS Drugs. 2009;23(2):121–137. doi: 10.2165/00023210-200923020-00003
  • Picton JD, Marino AB, Nealy KL. Benzodiazepine use and cognitive decline in the elderly. Am J Health Syst Pharm. 2018;75(1):e6–e12. doi: 10.2146/ajhp160381
  • Aldenkamp AP. Effects of antiepileptic drugs on cognition. Epilepsia. 2001;42(s1):46–49. doi: 10.1046/j.1528-1157.2001.00516.x
  • Hessen E, Lossius MI, Reinvang I, et al. Influence of major antiepileptic drugs on attention, reaction time, and speed of information processing: results from a randomized, double-blind, placebo-controlled withdrawal study of seizure-free epilepsy patients receiving monotherapy: COGNITIVE INFLUENCE of MAJOR AEDS. Epilepsia. 2006;47(12):2038–2045. doi: 10.1111/j.1528-1167.2006.00805.x
  • Gomer B, Wagner K, Frings L, et al. The influence of antiepileptic drugs on cognition: a comparison of levetiracetam with topiramate. Epilepsy Behav. 2007;10(3):486–494. doi: 10.1016/j.yebeh.2007.02.007
  • Ferrendelli JA, French J, Leppik I, et al. Use of levetiracetam in a population of patients aged 65 years and older: a subset analysis of the KEEPER trial. Epilepsy Behav. 2003;4(6):702–709. doi: 10.1016/j.yebeh.2003.09.007
  • Cumbo E, Ligori LD. Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behav. 2010;17(4):461–466. doi: 10.1016/j.yebeh.2010.01.015
  • Musaeus CS, Shafi MM, Santarnecchi E, et al. Levetiracetam alters oscillatory connectivity in Alzheimer’s disease. JAD. 2017;58(4):1065–1076. doi: 10.3233/JAD-160742
  • Ricci L, Assenza G, Pulitano P, et al. Measuring the effects of first antiepileptic medication in temporal lobe epilepsy: predictive value of quantitative-EEG analysis. Clin Neurophysiol. 2021;132(1):25–35. doi: 10.1016/j.clinph.2020.10.020
  • Cretin B. Pharmacotherapeutic strategies for treating epilepsy in patients with Alzheimer’s disease. Expert Opin Pharmacother. 2018;19(11):1201–1209. doi: 10.1080/14656566.2018.1496237
  • Bakker A, Krauss GL, Albert MS, et al. Reduction of hippocampal hyperactivity Improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74(3):467–474. doi: 10.1016/j.neuron.2012.03.023
  • Labiner DM, Ettinger AB, Fakhoury TA, et al. Effects of lamotrigine compared with levetiracetam on anger, hostility, and total mood in patients with partial epilepsy. Epilepsia. 2009;50(3):434–442. doi: 10.1111/j.1528-1167.2008.01792.x
  • Ng B, Camacho A, Bardwell W, et al. Lamotrigine for agitation in older patients with dementia. IPG. 2009;21(1):207. doi: 10.1017/S1041610208007898
  • Rowan AJ, Ramsay RE, Collins JF, et al. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology. 2005;64(11):1868–1873. doi: 10.1212/01.WNL.0000167384.68207.3E
  • Bainbridge J, De Backer M, Eckhardt K, et al. Safety and tolerability of lacosamide monotherapy in the elderly: a subgroup analysis from lacosamide trials in diabetic neuropathic pain. Epilepsia Open. 2017;2(4):415–423. doi: 10.1002/epi4.12079
  • Bang SR, Ambavade SD, Jagdale PG, et al. Lacosamide reduces HDAC levels in the brain and improves memory: potential for treatment of Alzheimer’s disease. Pharmacol Biochem Behav. 2015;134:65–69. doi: 10.1016/j.pbb.2015.04.011
  • Witt J-A, Helmstaedter C. The impact of perampanel on cognition: a systematic review of studies employing standardized tests in patients with epilepsy. Seizure. 2022;94:107–111. doi: 10.1016/j.seizure.2021.12.001
  • Yue X, Liu X-M, Chen J, et al. The efficacy and cognitive impact of perampanel monotherapy in patients with self-limited epilepsy with centrotemporal spikes: a retrospective analysis. Neuropsychiatr Dis Treat. 2023;19:1263–1271. doi: 10.2147/NDT.S410858
  • Witt J-A, Elger CE, Helmstaedter C. Short-term and longer-term effects of brivaracetam on cognition and behavior in a naturalistic clinical setting—preliminary data. Seizure. 2018;62:49–54. doi: 10.1016/j.seizure.2018.09.016
  • Li K, Hsu C, Yang Y. A review of cognitive and behavioral outcomes of Brivaracetam. The Kaohsiung J Med Scie. 2023;39(2):104–114. doi: 10.1002/kjm2.12648
  • Bellingacci L, Tallarico M, Mancini A, et al. Non-competitive AMPA glutamate receptors antagonism by perampanel as a strategy to counteract hippocampal hyper-excitability and cognitive deficits in cerebral amyloidosis. Neuropharmacology. 2023;225:109373. doi: 10.1016/j.neuropharm.2022.109373
  • Nygaard HB, Kaufman AC, Sekine-Konno T, et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alz Res Therapy. 2015;7(1):25. doi: 10.1186/s13195-015-0110-9
  • Schuetz E, Wagner K, Metternich B, et al. Effects of cenobamate on cognitive performance of epilepsy patients. Seizure. 2022;102:129–133. doi: 10.1016/j.seizure.2022.10.004
  • Lutz MT, Helmstaedter C. EpiTrack: tracking cognitive side effects of medication on attention and executive functions in patients with epilepsy. Epilepsy Behav. 2005;7(4):708–714. doi: 10.1016/j.yebeh.2005.08.015
  • Janssen S, Bloem BR, van de Warrenburg BP. The clinical heterogeneity of drug-induced myoclonus: an illustrated review. J Neurol. 2017;264(8):1559–1566. doi: 10.1007/s00415-016-8357-z
  • De Simone R, Puig XS, Gélisse P, et al. Senile myoclonic epilepsy: delineation of a common condition associated with Alzheimer’s disease in down syndrome. Seizure. 2010;19(7):383–389. doi: 10.1016/j.seizure.2010.04.008
  • Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 2012;109(42):E2895–2903. doi: 10.1073/pnas.1121081109
  • Zhang M-Y, Zheng C-Y, Zou M-M, et al. Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol Aging. 2014;35(12):2713–2725. doi: 10.1016/j.neurobiolaging.2014.06.009
  • Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 2012;15(9):1227–1235. doi: 10.1038/nn.3178
  • Shi J-Q, Wang B-R, Tian Y-Y, et al. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther. 2013;19(11):871–881. doi: 10.1111/cns.12144
  • Corbett BF, You JC, Zhang X, et al. Δfosb Regulates Gene expression and cognitive dysfunction in a mouse model of Alzheimer’s disease. Cell Rep. 2017;20(2):344–355. doi: 10.1016/j.celrep.2017.06.040
  • Yassa MA, Stark SM, Bakker A, et al. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. Neuroimage. 2010;51(3):1242–1252. doi: 10.1016/j.neuroimage.2010.03.040
  • Lippa CF, Rosso A, Hepler M, et al. Levetiracetam: A Practical Option for Seizure Management in Elderly Patients With Cognitive Impairment. Am J Alzheimers Dis Other Demen. 2010;25(2):149–154. doi: 10.1177/1533317508325095
  • Vossel K, Ranasinghe KG, Beagle AJ, et al. Effect of Levetiracetam on cognition in patients with Alzheimer disease with and without epileptiform activity: a randomized clinical trial. JAMA Neurol. 2021;78(11):1345. doi: 10.1001/jamaneurol.2021.3310
  • Sen A, Akinola M, Tai XY, et al. An Investigation of Levetiracetam in Alzheimer’s Disease (ILiAD): a double-blind, placebo-controlled, randomised crossover proof of concept study. Trials. 2021;22(1):508. doi: 10.1186/s13063-021-05404-4
  • Tekin S, Aykut-Bingöl C, Tanridağ T, et al. Antiglutamatergic therapy in Alzheimer’s disease–effects of lamotrigine. Short communication. J Neural Transm (Vienna). 1998;105(2–3):295–303. doi: 10.1007/s007020050059
  • Hautecloque-Raysz G, Sellal F, Bousiges O, et al. Epileptic prodromal Alzheimer’s disease treated with antiseizure medications: medium-term outcome of seizures and cognition. J Alzheimers Dis. 2023;94(3):1057–1074. doi: 10.3233/JAD-221197
  • Ryvlin P, Rheims S, Hirsch LJ, et al. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol. 2021;20(12):1038–1047. doi: 10.1016/S1474-4422(21)00300-8
  • Chang C-H, Lane H-Y, Lin C-H. Brain stimulation in Alzheimer’s disease. Front Psychiatry. 2018;9:201. doi: 10.3389/fpsyt.2018.00201
  • Cantello R, Rossi S, Varrasi C, et al. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia. 2007;48(2):366–374. doi: 10.1111/j.1528-1167.2006.00938.x
  • Sudbrack-Oliveira P, Barbosa MZ, Thome-Souza S, et al. Transcranial direct current stimulation (tDCS) in the management of epilepsy: a systematic review. Seizure. 2021;86:85–95. doi: 10.1016/j.seizure.2021.01.020
  • Tsuboyama M, Kaye HL, Rotenberg A. Review of Transcranial Magnetic Stimulation in Epilepsy. Clin Ther. 2020;42(7):1155–1168. doi: 10.1016/j.clinthera.2020.05.016
  • Birba A, Ibáñez A, Sedeño L, et al. Non-invasive brain stimulation: A new strategy in mild cognitive impairment? Front Aging Neurosci [Internet]. 2017;9. [cited 2023 Sep 29]. Available from: http://journal.frontiersin.org/article/10.3389/fnagi.2017.00016/full doi: 10.3389/fnagi.2017.00016
  • Hsu W-Y, Ku Y, Zanto TP, et al. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging. 2015;36:2348–2359. doi: 10.1016/j.neurobiolaging.2015.04.016
  • Chou Y-H, Ton That V, Sundman M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2020;86:1–10. doi: 10.1016/j.neurobiolaging.2019.08.020
  • Yan Y, Tian M, Wang T, et al. Transcranial magnetic stimulation effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Front Neurol. 2023;14:1209205. doi: 10.3389/fneur.2023.1209205
  • Taylor JJ, Newberger NG, Stern AP, et al. Seizure risk with repetitive TMS: survey results from over a half-million treatment sessions. Brain Stimulation. 2021;14(4):965–973. doi: 10.1016/j.brs.2021.05.012
  • Teselink J, Bawa KK, Koo GK, et al. Efficacy of non-invasive brain stimulation on global cognition and neuropsychiatric symptoms in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review. Ageing Res Rev. 2021;72:101499. doi: 10.1016/j.arr.2021.101499
  • Saleh O, Assaf M, Alzoubi A, et al. The effects of transcranial direct current stimulation on cognitive function for mild cognitive impairment: a systematic review and meta-analysis of randomized controlled trials. Aging Clin Exp Res. 2023. doi:10.1007/s40520-023-02528-2
  • Gomes-Osman J, Indahlastari A, Fried PJ, et al. Non-invasive brain stimulation: probing intracortical circuits and improving cognition in the Aging brain. Front Aging Neurosci. 2018;10:177. doi: 10.3389/fnagi.2018.00177
  • Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer’s disease (review). Exp Ther Med. 2023;26(3):444. doi: 10.3892/etm.2023.12143
  • Senevirathne DKL, Mahboob A, Zhai K, et al. Deep brain stimulation beyond the clinic: navigating the future of Parkinson’s and Alzheimer’s disease therapy. Cells. 2023;12(11):1478. doi: 10.3390/cells12111478
  • Laxton AW, Tang-Wai DF, McAndrews MP, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68(4):521–534. doi: 10.1002/ana.22089
  • Lozano AM, Fosdick L, Chakravarty MM, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777–787. doi: 10.3233/JAD-160017
  • Kuhn J, Hardenacke K, Lenartz D, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20(3):353–360. doi: 10.1038/mp.2014.32
  • Kuba R, Guzaninová M, Brázdil M, et al. Effect of vagal nerve stimulation on interictal epileptiform discharges: a scalp EEG study. Epilepsia. 2002;43(10):1181–1188. doi: 10.1046/j.1528-1157.2002.08202.x
  • Vargas-Caballero M, Warming H, Walker R, et al. Vagus nerve stimulation as a potential therapy in early Alzheimer’s disease: a review. Front Hum Neurosci. 2022;16:866434. doi: 10.3389/fnhum.2022.866434
  • Sjögren MJC, Hellström PTO, Jonsson MAG, et al. Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer’s disease: a pilot study. J Clin Psychiatry. 2002;63(11):972–980. doi: 10.4088/JCP.v63n1103
  • Merrill CA, Jonsson MAG, Minthon L, et al. Vagus nerve stimulation in patients with Alzheimer’s disease: additional follow-up results of a pilot study through 1 year. J Clin Psychiatry. 2006;67(8):1171–1178. doi: 10.4088/JCP.v67n0801
  • Baker J, Libretto T, Henley W, et al. A Longitudinal Study of Epileptic Seizures in Alzheimer’s Disease. Front Neurol. 2019;10:1266. doi: 10.3389/fneur.2019.01266
  • Liu J, Wang L-N, Wu L-Y, et al. Treatment of epilepsy for people with Alzheimer’s disease. Cochrane epilepsy group, editor. Cochrane Database Syst Rev [Internet]. 2016. [cited 2023 Mar 18]. doi:10.1002/14651858.CD011922.pub2
  • Liu J, Wang L-N, Wu L-Y, et al. Treatment of epilepsy for people with Alzheimer’s disease. Cochrane Epilepsy Group, editor. Cochrane Database Syst Rev [Internet]. 2018. [cited 2023 Mar 18]. doi:10.1002/14651858.CD011922.pub3
  • Liu J, Wang L-N. Treatment of epilepsy for people with Alzheimer’s disease. Cochrane epilepsy group, editor. Cochrane Database Syst Rev [Internet]. 2021;2021(5). doi: 10.1002/14651858.CD011922.pub4
  • Vöglein J, Ricard I, Noachtar S, et al. Seizures in Alzheimer’s disease are highly recurrent and associated with a poor disease course. J Neurol. 2020;267(10):2941–2948. doi: 10.1007/s00415-020-09937-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.