158
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in molecular and imaging biomarkers in lower-grade gliomas

ORCID Icon, , , &
Pages 1217-1231 | Received 07 Aug 2023, Accepted 15 Nov 2023, Published online: 20 Nov 2023

References

  • Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncology. 2021;23(Supplement_3):iii1–iii105. doi: 10.1093/neuonc/noab200
  • Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–773. doi: 10.1056/NEJMoa0808710
  • Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–744. doi: 10.1038/nature08617
  • Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27(25):4150–4154. doi: 10.1200/JCO.2009.21.9832
  • Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–483. doi: 10.1038/nature10866
  • Cancer Genome Atlas Research Network, Brat DJ, Verhaak RGW, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–2498.
  • Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–2508. doi: 10.1056/NEJMoa1407279
  • Labussière M, Idbaih A, Wang X-W, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology. 2010;74(23):1886–1890. doi: 10.1212/WNL.0b013e3181e1cf3a
  • Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1
  • Schiff D, Van den Bent M, Vogelbaum MA, et al. Recent developments and future directions in adult lower-grade gliomas: society for neuro-oncology (SNO) and European association of Neuro-oncology (EANO) consensus. Neuro Oncol. 2019;21(7):837–853. doi: 10.1093/neuonc/noz033
  • Aoki K, Nakamura H, Suzuki H, et al. Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol. 2018;20(1):66–77. doi: 10.1093/neuonc/nox132
  • Reuss DE, Kratz A, Sahm F, et al. Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol. 2015;130(3):407–417. doi: 10.1007/s00401-015-1454-8
  • Aibaidula A, Chan A-Y, Shi Z, et al. Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro-Oncology. 2017;19(10):1327–1337. doi: 10.1093/neuonc/nox078
  • Hasselblatt M, Jaber M, Reuss D, et al. Diffuse astrocytoma, IDH-Wildtype: a dissolving diagnosis. J Neuropathol Exp Neurol. 2018;77(6):422–425. doi: 10.1093/jnen/nly012
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106
  • Berzero G, Di Stefano AL, Ronchi S, et al. IDH-wildtype lower-grade diffuse gliomas: the importance of histological grade and molecular assessment for prognostic stratification. Neuro Oncol. 2021;23(6):955–966. doi: 10.1093/neuonc/noaa258
  • Rudà R, Bruno F, Ius T, et al. IDH wild-type grade 2 diffuse astrocytomas: prognostic factors and impact of treatments within molecular subgroups. Neuro Oncol. 2022;24(5):809–820. doi: 10.1093/neuonc/noab239
  • Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30. doi: 10.1016/j.ccr.2010.12.014
  • Chowdhury R, Yeoh KK, Tian Y-M, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12(5):463–469. doi: 10.1038/embor.2011.43
  • Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–522. doi: 10.1016/j.ccr.2010.03.017
  • Turcan S, Makarov V, Taranda J, et al. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet. 2018;50(1):62–72. doi: 10.1038/s41588-017-0001-z
  • Barthel FP, Wesseling P, Verhaak RGW. Reconstructing the molecular life history of gliomas. Acta Neuropathol. 2018;135(5):649–670. doi: 10.1007/s00401-018-1842-y
  • Picca A, Berzero G, Di Stefano AL, et al. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev Mol Diagn. 2018;18(12):1041–1051. doi: 10.1080/14737159.2018.1548935
  • Reifenberger J, Reifenberger G, Liu L, et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol. 1994;145(5):1175–1190.
  • Suzuki H, Aoki K, Chiba K, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47(5):458–468. doi: 10.1038/ng.3273
  • Picca A, Berzero G, Sanson M. Current therapeutic approaches to diffuse grade II and III gliomas. Ther Adv Neurol Disord. 2018;11:1756285617752039. doi: 10.1177/1756285617752039
  • Appay R, Dehais C, Maurage C-A, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol. 2019;21(Supplement_3):iii1–iii1. doi: 10.1093/neuonc/noz126.000
  • Gleize V, Alentorn A, Connen de Kérillis L, et al. CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas. Ann Neurol. 2015;78(3):355–374. doi: 10.1002/ana.24443
  • Louis DN, Giannini C, Capper D, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135:639–642. doi: 10.1007/s00401-018-1826-y
  • Shirahata M, Ono T, Stichel D, et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018;136(1):153–166. doi: 10.1007/s00401-018-1849-4
  • Reis GF, Pekmezci M, Hansen HM, et al. CDKN2A loss is associated with shortened overall survival in lower-grade (world Health organization grades II–III) astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–452. doi: 10.1097/NEN.0000000000000188
  • Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–608. doi: 10.1007/s00401-020-02127-9
  • Tesileanu CMS, Dirven L, Wijnenga MMJ, et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 2020;22(4):515–523. doi: 10.1093/neuonc/noz200
  • Muench A, Teichmann D, Spille D, et al. A novel type of IDH wild-type glioma characterized by gliomatosis cerebri-like growth pattern, TERT promoter mutation, and distinct epigenetic profile. Am J Surg Pathol. [Internet]. 9900. Available from: https://journals.lww.com/ajsp/fulltext/9900/a_novel_type_of_idh_wild_type_glioma_characterized.233.aspx
  • Ceccarelli M, Barthel FP, Malta TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550–563. doi: 10.1016/j.cell.2015.12.028
  • Picca A, Berzero G, Bielle F, et al. FGFR1 actionable mutations, molecular specificities, and outcome of adult midline gliomas. Neurology. 2018;90(23):e2086–e2094. doi: 10.1212/WNL.0000000000005658
  • Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–186. doi: 10.1038/s41571-020-00447-z
  • Tesileanu CMS, Sanson M, Wick W, et al. Temozolomide and radiotherapy versus radiotherapy alone in patients with glioblastoma, IDH-wildtype: post hoc analysis of the EORTC randomized phase III CATNON trial. Clin Cancer Res. 2022;28(12):2527–2535. doi: 10.1158/1078-0432.CCR-21-4283
  • Fujimoto K, Arita H, Satomi K, et al. TERT promoter mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic glioma with molecular features of glioblastoma. Acta Neuropathol. 2021;142(2):323–338. doi: 10.1007/s00401-021-02337-9
  • Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):753–766. discussion 264-266. doi: 10.1227/01.neu.0000318159.21731.cf
  • Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. JCO. 2008;26(8):1338–1345. doi: 10.1200/JCO.2007.13.9337
  • Beiko J, Suki D, Hess KR, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014;16(1):81–91. doi: 10.1093/neuonc/not159
  • Jakola AS, Skjulsvik AJ, Myrmel KS, et al. Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol. 2017;28(8):1942–1948. doi: 10.1093/annonc/mdx230
  • Kavouridis VK, Boaro A, Dorr J, et al. Contemporary assessment of extent of resection in molecularly defined categories of diffuse low-grade glioma: a volumetric analysis. J Neurosurg. 2019;1–11. doi: 10.3171/2019.6.JNS19972
  • Wijnenga MMJ, French PJ, Dubbink HJ, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol. 2018;20(1):103–112. doi: 10.1093/neuonc/nox176
  • Jakola AS, Pedersen LK, Skjulsvik AJ, et al. The impact of resection in IDH-mutant WHO grade 2 gliomas: a retrospective population-based parallel cohort study. Journal Of Neurosurgery. 2022;137(5):1321–1328. doi: 10.3171/2022.1.JNS212514
  • Hervey-Jumper SL, Zhang Y, Phillips JJ, et al. Interactive effects of molecular, therapeutic, and patient factors on outcome of diffuse low-grade glioma. JCO. 2023;41:2029–2042. doi: 10.1200/JCO.21.02929
  • Harary M, Kavouridis VK, Torre M, et al. Predictors and early survival outcomes of maximal resection in WHO grade II 1p/19q-codeleted oligodendrogliomas. Neuro Oncol. 2020;22:369–380. doi: 10.1093/neuonc/noz168
  • Patel SH, Bansal AG, Young EB, et al. Extent of surgical resection in lower-grade gliomas: differential impact based on molecular subtype. AJNR Am J Neuroradiol. 2019;40(7):1149–1155. doi: 10.3174/ajnr.A6102
  • Rossi M, Gay L, Ambrogi F, et al. Association of supratotal resection with progression-free survival, malignant transformation, and overall survival in lower-grade gliomas. Neuro Oncol. 2021;23(5):812–826. doi: 10.1093/neuonc/noaa225
  • Rossi M, Ambrogi F, Gay L, et al. Is supratotal resection achievable in low-grade gliomas? Feasibility, putative factors, safety, and functional outcome. Journal Of Neurosurgery. 2019;132(6):1692–1705. doi: 10.3171/2019.2.JNS183408
  • Mandonnet E, Duffau H, Bauchet L. A new tool for grade II glioma studies: plotting cumulative time with quality of life versus time to malignant transformation. J Neurooncol. 2012;106(1):213–215. doi: 10.1007/s11060-011-0659-5
  • Duffau H, Mandonnet E. The “onco-functional balance” in surgery for diffuse low-grade glioma: integrating the extent of resection with quality of life. Acta Neurochir. 2013;155(6):951–957. doi: 10.1007/s00701-013-1653-9
  • Mandonnet E, Duffau H. An attempt to conceptualize the individual onco-functional balance: why a standardized treatment is an illusion for diffuse low-grade glioma patients. Crit Rev Oncol Hematol. 2018;122:83–91. doi: 10.1016/j.critrevonc.2017.12.008
  • De Witt Hamer PC, Klein M, Hervey-Jumper SL, et al. Functional outcomes and Health-related quality of life following glioma surgery. Neurosurg. 2021;88(4):720–732. doi: 10.1093/neuros/nyaa365
  • Englot DJ, Berger MS, Barbaro NM, et al. Predictors of seizure freedom after resection of supratentorial low-grade gliomas. A review. J Neurosurg. 2011;115(2):240–244. doi: 10.3171/2011.3.JNS1153
  • Ng S, Herbet G, Moritz-Gasser S, et al. Return to work following surgery for incidental diffuse low-grade glioma: a prospective series with 74 patients. Neurosurg. 2020;87(4):720–729. doi: 10.1093/neuros/nyz513
  • Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma. N Engl J Med. 2016;374(14):1344–1355. doi: 10.1056/NEJMoa1500925
  • Lassman AB, Hoang-Xuan K, Polley M-Y, et al. Joint final report of EORTC 26951 and RTOG 9402: phase III trials with procarbazine, lomustine, and vincristine chemotherapy for anaplastic oligodendroglial tumors. JCO. 2022;40(23):2539–2545. doi: 10.1200/JCO.21.02543
  • Van Den Bent MJ, Erridge S, Vogelbaum MA, et al. Second interim and first molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion. JCO. 2019;37:2000–2000. doi: 10.1200/JCO.2019.37.15_suppl.2000
  • Bell EH, Zhang P, Shaw EG, et al. Comprehensive Genomic analysis in NRG oncology/RTOG 9802: a phase III trial of radiation versus radiation plus procarbazine, lomustine (CCNU), and vincristine in high-risk low-grade glioma. JCO. 2020;38(29):3407–3417. doi: 10.1200/JCO.19.02983
  • Cairncross JG, Wang M, Jenkins RB, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol. 2014;32(8):783–790. doi: 10.1200/JCO.2013.49.3726
  • Baumert BG, Hegi ME, van den Bent MJ, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016;17(11):1521–1532. doi: 10.1016/S1470-2045(16)30313-8
  • Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–343. doi: 10.1200/JCO.2012.43.2674
  • van den Bent MJ, Brandes AA, Taphoorn MJB, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31(3):344–350. doi: 10.1200/JCO.2012.43.2229
  • Jaeckle KA, Ballman KV, van den Bent M, et al. CODEL: phase III study of RT, RT + TMZ, or TMZ for newly diagnosed 1p/19q codeleted oligodendroglioma. Analysis from the initial study design. Neuro Oncol. 2021;23(3):457–467. doi: 10.1093/neuonc/noaa168
  • Rudà R, Pellerino A, Pace A, et al. Efficacy of initial temozolomide for high-risk low grade gliomas in a phase II AINO (Italian association for Neuro-oncology) study: a post-hoc analysis within molecular subgroups of WHO 2016. J Neurooncol. 2019;145(1):115–123. doi: 10.1007/s11060-019-03277-x
  • Wahl M, Phillips JJ, Molinaro AM, et al. Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neuro Oncol. 2017;19:242–251. doi: 10.1093/neuonc/now176
  • Wick A, Sander A, Koch M, et al. Improvement of functional outcome for patients with newly diagnosed grade 2 or 3 gliomas with co-deletion of 1p/19q – IMPROVE CODEL: the NOA-18 trial. BMC Cancer. 2022;22(1):645. doi: 10.1186/s12885-022-09720-z
  • Mellinghoff IK, Ellingson BM, Touat M, et al. Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. JCO. 2020;38(29):3398–3406. doi: 10.1200/JCO.19.03327
  • Mellinghoff IK, Penas-Prado M, Peters KB, et al. Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin Cancer Res. 2021;27(16):4491–4499. doi: 10.1158/1078-0432.CCR-21-0611
  • Mellinghoff IK, Lu M, Wen PY, et al. Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial. Nat Med. 2023;29(3):615–622. doi: 10.1038/s41591-022-02141-2
  • Mellinghoff IK, Van Den Bent MJ, Blumenthal DT, et al. Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med. 2023;389(7):589–601. doi: 10.1056/NEJMoa2304194
  • Platten M, Bunse L, Wick W. Emerging targets for anticancer vaccination: IDH. ESMO Open. 2021;6(4):100214. doi: 10.1016/j.esmoop.2021.100214
  • Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–327. doi: 10.1038/nature13387
  • Pellegatta S, Valletta L, Corbetta C, et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun. 2015;3(1):4. doi: 10.1186/s40478-014-0180-0
  • Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592:463–468. doi: 10.1038/s41586-021-03363-z
  • Mohan A, Peters K, Hotchkiss K, et al. IMMU-06. Targeting idh1 mutant grade II recurrent gliomas using a peptide vaccination strategy. Neurooncol Adv. 2021;3(Supplement_4):iv5–iv6. doi: 10.1093/noajnl/vdab112.019
  • Bunse L, Rupp A-K, Poschke I, et al. AMPLIFY-NEOVAC: a randomized, 3-arm multicenter phase I trial to assess safety, tolerability and immunogenicity of IDH1-vac combined with an immune checkpoint inhibitor targeting programmed death-ligand 1 in isocitrate dehydrogenase 1 mutant gliomas. Neurol Res Pract. 2022;4(1):20. doi: 10.1186/s42466-022-00184-x
  • Picca A, Finocchiaro G. Deciphering diffuse glioma immune microenvironment as a key to improving immunotherapy results. Curr Opin Oncol. 2022;34(6):653–660. doi: 10.1097/CCO.0000000000000895
  • Richard Q, Laurenge A, Mallat M, et al. New insights into the immune TME of adult-type diffuse gliomas. Curr Opin Neurol. 2022;35(6):794–802. doi: 10.1097/WCO.0000000000001112
  • Turcan S, Fabius AWM, Borodovsky A, et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget. 2013;4(10):1729–1736. doi: 10.18632/oncotarget.1412
  • Borodovsky A, Salmasi V, Turcan S, et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget. 2013;4(10):1737–1747. doi: 10.18632/oncotarget.1408
  • Yamashita AS, da Costa Rosa M, Borodovsky A, et al. Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide. Neuro Oncol. 2019;21(2):189–200. doi: 10.1093/neuonc/noy146
  • da Costa Rosa M, Yamashita AS, Riggins GJ. Evaluation of a DNA demethylating agent in combination with all-trans retinoic acid for IDH1-mutant gliomas. Neuro Oncol. 2022;24(5):711–723. doi: 10.1093/neuonc/noab263
  • Federici L, Capelle L, Annereau M, et al. 5-azacitidine in patients with IDH1/2-mutant recurrent glioma. Neuro Oncol. 2020;22(8):1226–1228. doi: 10.1093/neuonc/noaa074
  • Sulkowski PL, Corso CD, Robinson ND, et al. 2-hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9(375):eaal2463. doi: 10.1126/scitranslmed.aal2463
  • Byrum AK, Vindigni A, Mosammaparast N. Defining and modulating ‘BRCAness’. Trends In Cell Biology. 2019;29(9):740–751. doi: 10.1016/j.tcb.2019.06.005
  • Ducray F, Sanson M, Chinot O, et al. KS02.4.A Olaparib in Recurrent IDH-mutant High-Grade Glioma (OLAGLI). Neuro Oncol. 2021;23(Supplement_2):ii4. doi: 10.1093/neuonc/noab180.011
  • Fanucci K, Pilat MJ, Shyr D, et al. Multicenter phase II trial of the PARP inhibitor olaparib in recurrent IDH1- and IDH2-mutant glioma. Cancer Res Commun. 2023;3(2):192–201. doi: 10.1158/2767-9764.CRC-22-0436
  • Ramos R, Climans SA, Adile A, et al. Combination olaparib and durvalumab for patients with recurrent IDH-mutated gliomas. JCO. 2021;39(15_suppl):e14026–e14026. doi: 10.1200/JCO.2021.39.15_suppl.e14026
  • Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell. 2015;28(6):773–784. doi: 10.1016/j.ccell.2015.11.006
  • Seltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22):8981–8987. doi: 10.1158/0008-5472.CAN-10-1666
  • Manfrini E, Smits M, Thust S, et al. From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation. Eur Radiol. 2021;31(8):6334–6341. doi: 10.1007/s00330-020-07582-2
  • Lasocki A, Anjari M, Ӧrs Kokurcan S, et al. Conventional MRI features of adult diffuse glioma molecular subtypes: a systematic review. Neuroradiology. 2021;63(3):353–362. doi: 10.1007/s00234-020-02532-7
  • Hirschler L, Sollmann N, Schmitz‐Abecassis B, et al. Advanced MR techniques for preoperative glioma characterization: part 1. Magn Reson Imaging. 2023;57(6):1655–1675. doi: 10.1002/jmri.28662
  • Hangel G, Schmitz‐Abecassis B, Sollmann N, et al. Advanced MR techniques for preoperative glioma characterization: part 2. Magn Reson Imaging. 2023;57(6):1676–1695. doi: 10.1002/jmri.28663
  • Clement P, Booth T, Borovečki F, et al. GliMR: cross-border collaborations to promote advanced MRI biomarkers for glioma. J Med Biol Eng. 2021;41(2):115–125. doi: 10.1007/s40846-020-00582-z
  • Romeo V, Stanzione A, Ugga L, et al. A critical appraisal of the quality of glioma imaging guidelines using the AGREE II tool: a EuroAIM initiative. Front Oncol. 2019;9:472. doi: 10.3389/fonc.2019.00472
  • Lasocki A, Abdalla G, Chow G, et al. Imaging features associated with H3 K27-altered and H3 G34-mutant gliomas: a narrative systematic review. Cancer Imaging. 2022;22(1):63. doi: 10.1186/s40644-022-00500-3
  • Wasserman JK, Nicholas G, Yaworski R, et al. Radiological and pathological features associated with IDH1-R132H mutation status and early mortality in newly diagnosed anaplastic astrocytic tumours. Scheurer M, editor. PLoS One. 2015;10(4):e0123890. doi: 10.1371/journal.pone.0123890
  • Suh CH, Kim HS, Jung SC, et al. Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis. Eur Radiol. 2019;29(2):745–758. doi: 10.1007/s00330-018-5608-7
  • Natsumeda M, Igarashi H, Gabdulkhaev R, et al. Detection of 2-hydroxyglutarate by 3.0-tesla magnetic resonance spectroscopy in gliomas with rare IDH mutations: making sense of “false-positive” cases. Diagnostics . 2021;11(11):2129. doi: 10.3390/diagnostics11112129
  • Liserre R, Branzoli F, Pagani F, et al. Exceptionally rare IDH1-mutant adult medulloblastoma with concurrent GNAS mutation revealed by in vivo magnetic resonance spectroscopy and deep sequencing. acta neuropathol commun. Acta Neuropathol Commun. 2023;11(1):47. doi: 10.1186/s40478-023-01531-y
  • Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol. 2021;17(8):486–500. doi: 10.1038/s41582-021-00510-y
  • Pope WB, Prins RM, Albert Thomas M, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107(1):197–205. doi: 10.1007/s11060-011-0737-8
  • Kim H, Kim S, Lee HH, et al. In-Vivo Proton Magnetic Resonance Spectroscopy of 2-Hydroxyglutarate in Isocitrate Dehydrogenase-Mutated Gliomas: A Technical Review for Neuroradiologists. Korean J Radiol. 2016;17(5):620. doi: 10.3348/kjr.2016.17.5.620
  • Shams Z, van der Kemp WJM, Emir U, et al. Comparison of 2-hydroxyglutarate detection with sLASER and MEGA-sLASER at 7T. Front Neurol. 2021;12:718423. doi: 10.3389/fneur.2021.718423
  • Suh CH, Kim HS, Paik W, et al. False-Positive Measurement at 2-Hydroxyglutarate MR Spectroscopy in Isocitrate Dehydrogenase Wild-Type Glioblastoma: A Multifactorial Analysis. Radiology. 2019;291(3):752–762. doi: 10.1148/radiol.2019182200
  • Branzoli F, Di Stefano AL, Capelle L, et al. Highly specific determination of IDH status using edited in vivo magnetic resonance spectroscopy. Neuro Oncol. 2018;20(7):907–916. doi: 10.1093/neuonc/nox214
  • Di Stefano AL, Nichelli L, Berzero G, et al. In vivo 2-hydroxyglutarate monitoring with edited MR spectroscopy for the follow-up of IDH-Mutant diffuse gliomas: the IDASPE prospective study. Neurology. 2023;100(1):e94–e106. doi: 10.1212/WNL.0000000000201137
  • Branzoli F, Marjańska M. Magnetic resonance spectroscopy of isocitrate dehydrogenase mutated gliomas: current knowledge on the neurochemical profile. Curr Opin Neurol. 2020;33(4):413–421. doi: 10.1097/WCO.0000000000000833
  • Andronesi OC, Arrillaga-Romany IC, Ly KI, et al. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat Commun. 2018;9(1):1474. doi: 10.1038/s41467-018-03905-6
  • Bolan PJ, Branzoli F, Di Stefano AL, et al. Automated acquisition planning for magnetic resonance spectroscopy in brain Cancer. Med Image Comput Comput Assist Interv. 2020;12267:730–739.
  • Choi I-Y, Andronesi OC, Barker P, et al. Spectral editing in 1 H magnetic resonance spectroscopy: Experts’ consensus recommendations. NMR Biomed. 2021;34(5):e4411. doi: 10.1002/nbm.4411
  • Near J, Harris AD, Juchem C, et al. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed. 2021;34(5):e4257. doi: 10.1002/nbm.4257
  • Tan WL, Huang WY, Yin B, et al. Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases. Am J Neuroradiol. 2014;35(5):920–927. doi: 10.3174/ajnr.A3803
  • Aliotta E, Nourzadeh H, Batchala PP, et al. Molecular subtype classification in lower-grade glioma with accelerated DTI. AJNR Am J Neuroradiol. 2019;ajnr;ajnr.A6162v1. doi: 10.3174/ajnr.A6162
  • Chu J, Song Y, Tian Y, et al. Diffusion kurtosis imaging in evaluating gliomas: different region of interest selection methods on time efficiency, measurement repeatability, and diagnostic ability. Eur Radiol. 2021;31(2):729–739. doi: 10.1007/s00330-020-07204-x
  • Iima M, Le Bihan D. Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future. Radiology. 2016;278(1):13–32. doi: 10.1148/radiol.2015150244
  • Tan Y, Zhang H, Wang X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas. Clin Radiol. 2019;74(4):314–320. doi: 10.1016/j.crad.2018.12.004
  • Zhao J, Wang Y-L, Li X-B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol. 2019;141(1):195–203. doi: 10.1007/s11060-018-03025-7
  • Gu T, Yang T, Huang J, et al. Evaluation of gliomas peritumoral diffusion and prediction of IDH1 mutation by IVIM-DWI. Aging. 2021;13(7):9948–9959. doi: 10.18632/aging.202751
  • Guo H, Liu J, Hu J, et al. Diagnostic performance of gliomas grading and IDH status decoding a comparison between 3D amide proton transfer APT and four diffusion‐weighted MRI models. Magn Reson Imaging. 2022;56(6):1834–1844. doi: 10.1002/jmri.28211
  • Thust SC, Heiland S, Falini A, et al. Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol. 2018;28(8):3306–3317. doi: 10.1007/s00330-018-5314-5
  • Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol. 2004;25(2):214–221.
  • Smits M. Imaging of oligodendroglioma. BJR. 2016;89(1060):20150857. doi: 10.1259/bjr.20150857
  • Siakallis L, Topriceanu C-C, Panovska-Griffiths J, et al. The role of DSC MR perfusion in predicting IDH mutation and 1p19q codeletion status in gliomas: meta-analysis and technical considerations. Neuroradiology. 2023;65(7):1111–1126. doi: 10.1007/s00234-023-03154-5
  • van Santwijk L, Kouwenberg V, Meijer F, et al. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging. 2022;13(1):102. doi: 10.1186/s13244-022-01230-7
  • Yoo R-E, Yun TJ, Hwang I, et al. Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas. Eur Radiol. 2020;30(2):1202–1211. doi: 10.1007/s00330-019-06379-2
  • Yang Y, He MZ, Li T, et al. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev. 2019;42(2):185–195. doi: 10.1007/s10143-017-0906-0
  • Suchorska B, Giese A, Biczok A, et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol. 2018;20(2):279–288. doi: 10.1093/neuonc/nox153
  • Kunz M, Albert NL, Unterrainer M, et al. Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas. Neuro Oncol. 2019;21(2):274–284. doi: 10.1093/neuonc/noy098
  • Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–557. doi: 10.1007/s00259-018-4207-9
  • Jiang S, Zou T, Eberhart CG, et al. Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI: predicting IDH status with APTw MRI. Magn Reson Med. 2017;78(3):1100–1109. doi: 10.1002/mrm.26820
  • Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol. 2018;20(12):1661–1671. doi: 10.1093/neuonc/noy073
  • Joo B, Han K, Ahn SS, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. Eur Radiol. 2019;29(12):6643–6652. doi: 10.1007/s00330-019-06203-x
  • Xu Z, Ke C, Liu J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T. Eur J Radiol. 2021;134:109466. doi: 10.1016/j.ejrad.2020.109466
  • Zhou J, Zaiss M, Knutsson L, et al. Review and consensus recommendations on clinical APT ‐weighted imaging approaches at 3T: application to brain tumors. Magnetic Resonance In Med. 2022;88(2):546–574. doi: 10.1002/mrm.29241
  • Patel SH, Poisson LM, Brat DJ, et al. T2–FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res. 2017;23(20):6078–6085. doi: 10.1158/1078-0432.CCR-17-0560
  • Adamou A, Beltsios ET, Papanagiotou P. The T2-FLAIR mismatch sign as an imaging indicator of IDH-Mutant, 1p/19q non-codeleted lower grade gliomas: a systematic review and diagnostic accuracy meta-analysis. Diagnostics. 2021;11(9):1620. doi: 10.3390/diagnostics11091620
  • Juratli TA, Tummala SS, Riedl A, et al. Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups. J Neurooncol. 2019;141(2):327–335. doi: 10.1007/s11060-018-03034-6
  • Foltyn M, Nieto Taborda KN, Neuberger U, et al. T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology. Neurooncol Adv. 2020;2:vdaa004. doi: 10.1093/noajnl/vdaa004
  • Broen MPG, Smits M, Wijnenga MMJ, et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol. 2018;20(10):1393–1399. doi: 10.1093/neuonc/noy048
  • Corell A, Ferreyra Vega S, Hoefling N, et al. The clinical significance of the T2-FLAIR mismatch sign in grade II and III gliomas: a population-based study. BMC Cancer. 2020;20(1):450. doi: 10.1186/s12885-020-06951-w
  • Pinto C, Noronha C, Taipa R, et al. T2-FLAIR mismatch sign: a roadmap of pearls and pitfalls. BJR. 2022;95(1129):20210825. doi: 10.1259/bjr.20210825
  • Jain R, Johnson DR, Patel SH, et al. “Real world” use of a highly reliable imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro Oncol. 2020;22(7):936–943. doi: 10.1093/neuonc/noaa041
  • Mohammed S, Ravikumar V, Warner E, et al. Quantifying T2-FLAIR mismatch using geographically weighted regression and predicting molecular status in lower-grade gliomas. AJNR Am J Neuroradiol. 2022;43(1):33–39. doi: 10.3174/ajnr.A7341
  • Kinoshita M, Arita H, Takahashi M, et al. Impact of Inversion time for FLAIR acquisition on the T2-FLAIR mismatch detectability for IDH-Mutant, non-CODEL astrocytomas. Front Oncol. 2021;10:596448. doi: 10.3389/fonc.2020.596448
  • Li M, Ren X, Chen X, et al. Combining hyperintense FLAIR rim and radiological features in identifying IDH mutant 1p/19q non-codeleted lower-grade glioma. Eur Radiol. 2022;32(6):3869–3879. doi: 10.1007/s00330-021-08500-w
  • Johnson DR, Kaufmann TJ, Patel SH, et al. There is an exception to every rule—T2-FLAIR mismatch sign in gliomas. Neuroradiology. 2019;61(2):225–227. doi: 10.1007/s00234-018-2148-4
  • Kurokawa R, Kurokawa M, Baba A, et al. Dynamic susceptibility contrast-MRI parameters, ADC values, and the T2-FLAIR mismatch sign are useful to differentiate between H3-mutant and H3-wild-type high-grade midline glioma. Eur Radiol. 2022;32(6):3672–3682. doi: 10.1007/s00330-021-08476-7
  • Onishi S, Amatya VJ, Kolakshyapati M, et al. T2-FLAIR mismatch sign in dysembryoplasticneuroepithelial tumor. Eur J Radiol. 2020;126:108924. doi: 10.1016/j.ejrad.2020.108924
  • Song S, Wang L, Yang H, et al. Static 18F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status. Eur Radiol. 2021;31(6):4087–4096. doi: 10.1007/s00330-020-07470-9
  • Johnson DR, Diehn FE, Giannini C, et al. Genetically defined oligodendroglioma is characterized by indistinct tumor borders at MRI. AJNR Am J Neuroradiol. 2017;38(4):678–684. doi: 10.3174/ajnr.A5070
  • Zhao K, Sun G, Wang Q, et al. The diagnostic value of conventional MRI and CT features in the identification of the IDH1-mutant and 1p/19q co-deletion in WHO grade II gliomas. Acad Radiol. 2021;28(7):e189–e198. doi: 10.1016/j.acra.2020.03.008
  • Batchala PP, Muttikkal TJE, Donahue JH, et al. Neuroimaging-based classification algorithm for predicting 1p/19q-codeletion status in IDH -mutant lower grade gliomas. AJNR Am J Neuroradiol. 2019;ajnr;ajnr.A5957v1. doi: 10.3174/ajnr.A5957
  • Lasocki A, Gaillard F, Gorelik A, et al. MRI features can predict 1p/19q status in intracranial gliomas. AJNR Am J Neuroradiol. 2018;39(4):687–692. doi: 10.3174/ajnr.A5572
  • Joyner DA, Garrett J, Batchala PP, et al. MRI features predict tumor grade in isocitrate dehydrogenase (IDH)–mutant astrocytoma and oligodendroglioma. Neuroradiology. 2023;65(1):121–129. doi: 10.1007/s00234-022-03038-0
  • Mancini L, Casagranda S, Gautier G, et al. CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing. Eur J Nucl Med Mol Imaging. 2022;49(7):2377–2391. doi: 10.1007/s00259-022-05676-1
  • Branzoli F, Pontoizeau C, Tchara L, et al. Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy. Neuro Oncol. 2019;21(6):765–774. doi: 10.1093/neuonc/noz031
  • Chakrabarty S, LaMontagne P, Shimony J, et al. MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network. Neurooncol Adv. 2023;5:vdad023. doi: 10.1093/noajnl/vdad023
  • Nishikawa T, Ohka F, Aoki K, et al. Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas. Brain Tumor Pathol. 2023;40(2):85–92. doi: 10.1007/s10014-023-00459-4
  • Zulfiqar M, Yousem DM, Lai H. ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?—A meta-analysis. Am J Roentgenol. 2013;200(3):624–629. doi: 10.2214/AJR.12.8679
  • Hirai T, Murakami R, Nakamura H, et al. Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol. 2008;29(8):1505–1510. doi: 10.3174/ajnr.A1121
  • Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-grade gliomas: do changes in rCBV Measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247(1):170–178. doi: 10.1148/radiol.2471062089
  • Caseiras GB, Chheang S, Babb J, et al. Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol. 2010;73(2):215–220. doi: 10.1016/j.ejrad.2008.11.005
  • Hattingen E, Raab P, Franz K, et al. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology. 2008;50(9):759–767. doi: 10.1007/s00234-008-0409-3
  • Singhal T, Narayanan TK, Jacobs MP, et al. 11 C-Methionine PET for grading and prognostication in gliomas: a comparison study with 18 F-FDG PET and contrast enhancement on MRI. J Nucl Med. 2012;53(11):1709–1715. doi: 10.2967/jnumed.111.102533
  • Wang J, Zheng X, Zhang J, et al. An MRI-based radiomics signature as a pretreatment noninvasive predictor of overall survival and chemotherapeutic benefits in lower-grade gliomas. Eur Radiol. 2021;31(4):1785–1794. doi: 10.1007/s00330-020-07581-3
  • Li Z, Liu P, An T, et al. Construction of a prognostic immune signature for lower grade glioma that can be recognized by MRI radiomics features to predict survival in LGG patients. Transl Oncol. 2021;14(6):101065. doi: 10.1016/j.tranon.2021.101065
  • Li Y, Qian Z, Xu K, et al. Radiomic features predict ki-67 expression level and survival in lower grade gliomas. J Neurooncol. 2017;135(2):317–324. doi: 10.1007/s11060-017-2576-8
  • Brasil Caseiras G, Ciccarelli O, Altmann DR, et al. Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative Cerebral blood volume, and apparent diffusion coefficient. Radiology. 2009;253(2):505–512. doi: 10.1148/radiol.2532081623
  • Pallud J, Blonski M, Mandonnet E, et al. Velocity of tumor spontaneous expansion predicts long-term outcomes for diffuse low-grade gliomas. Neuro Oncol. 2013;15(5):595–606. doi: 10.1093/neuonc/nos331
  • Goze C, Blonski M, Le Maistre G, et al. Imaging growth and isocitrate dehydrogenase 1 mutation are independent predictors for diffuse low-grade gliomas. Neuro Oncol. 2014;16(8):1100–1109. doi: 10.1093/neuonc/nou085
  • Pallud J, Mandonnet E, Duffau H, et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60(3):380–383. doi: 10.1002/ana.20946
  • Capelle L, Fontaine D, Mandonnet E, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric world Health organization grade II gliomas: a series of 1097 cases: clinical article. JNS. 2013;118(6):1157–1168. doi: 10.3171/2013.1.JNS121
  • Chen H, Judkins J, Thomas C, et al. Mutant IDH1 and seizures in patients with glioma. Neurology. 2017;88:1805. doi: 10.1212/WNL.0000000000003911
  • Audrey C, Lim K-S, Ahmad Zaki R, et al. Prevalence of seizures in brain tumor: a meta-analysis. Epilepsy Res. 2022;187:107033. doi: 10.1016/j.eplepsyres.2022.107033
  • Pallud J, Audureau E, Blonski M, et al. Epileptic seizures in diffuse low-grade gliomas in adults. Brain. 2014;137:449–462. doi: 10.1093/brain/awt345
  • Avila EK, Chamberlain M, Schiff D, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro Oncol. 2017;19(1):12–21. doi: 10.1093/neuonc/now190
  • Rudà R, Bello L, Duffau H, et al. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol. 2012;14(suppl 4):iv55–iv64. doi: 10.1093/neuonc/nos199
  • Englot DJ, Berger MS, Barbaro NM, et al. Predictors of seizure freedom after resection of supratentorial low-grade gliomas: a review. J Neurosurg. 2011;115(2):240–244. doi: 10.3171/2011.3.JNS1153
  • Mortazavi A, Fayed I, Bachani M, et al. IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol. 2022;24(9):1423–1435. doi: 10.1093/neuonc/noac003
  • Drumm MR, Wang W, Sears TK, et al. Postoperative risk of IDH mutant glioma–associated seizures and their potential management with IDH mutant inhibitors. J Clin Invest. [Internet]. 2023;133(12). doi: 10.1172/JCI168035
  • Vo AH, Ambady P, Spencer D. The IDH1 inhibitor ivosidenib improved seizures in a patient with drug-resistant epilepsy from IDH1 mutant oligodendroglioma. Epilepsy Behav Rep. 2022;18:100526–100526. doi: 10.1016/j.ebr.2022.100526

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.