314
Views
0
CrossRef citations to date
0
Altmetric
Meta-analysis

Efficacy analysis of three brain stimulation techniques for Alzheimer’s disease: a meta-analysis of repeated transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation

, , , & ORCID Icon
Pages 117-127 | Received 18 Jul 2023, Accepted 06 Dec 2023, Published online: 13 Dec 2023

References

  • Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25(24):5789. doi: 10.3390/molecules25245789
  • GBD. Dementia forecasting collaborators estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet Public Health. 2019;7(2):e105–e125.
  • Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–308. doi: 10.1001/archneur.56.3.303
  • Skaper SD, Facci L, Zusso M, et al. Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol Disord Drug Targets. 2017;16(3):220–233. doi: 10.2174/1871527316666170113120853
  • Belleville S, Clément F, Mellah S, et al. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain. 2011;134(6):1623–1634. doi: 10.1093/brain/awr037
  • Chen AC, Oathes DJ, Chang C, et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci U S A. 2013;110(49):19944–19949. doi: 10.1073/pnas.1311772110
  • Forno G, Lladó A, Hornberger M. Going round in circles-the Papez circuit in Alzheimer’s disease. Eur J Neurosci. 2021;54(10):7668–7687. doi: 10.1111/ejn.15494
  • Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct. 2019;224(9):3001–3018. doi: 10.1007/s00429-019-01945-2
  • Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021;22(8):503–513. doi: 10.1038/s41583-021-00474-4
  • Cheyuo C, Germann J, Yamamoto K, et al. Connectomic neuromodulation for Alzheimer’s disease: a systematic review and meta-analysis of invasive and non-invasive techniques. Transl Psychiatry. 2022;12(1):490. doi: 10.1038/s41398-022-02246-9
  • Zhou J, Seeley WW. Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry. 2014;75(7):565–573. doi: 10.1016/j.biopsych.2014.01.020
  • Shafqat S, Chohan MO. Alzheimer disease therapeutics: perspectives from the developing world. J Alzheimers Dis. 2008;15(2):285–287. doi:10.3233/JAD-2008-15211
  • Dhillon S. Aducanumab: First Approval. Drugs. 2021;81(12):1437–1443. doi: 10.1007/s40265-021-01569-z
  • Boggio PS, Valasek CA, Campanhã C, et al. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s disease. Neuropsychol Rehabil. 2011;21(5):703–716. doi: 10.1080/09602011.2011.617943
  • Boggio PS, Khoury LP, Martins DC, et al. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2008;80(4):444–447. doi: 10.1136/jnnp.2007.141853
  • Ferreri F, Vecchio F, Ponzo D, et al. Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG-TMS study. Hum Brain Mapp. 2014;35(5):1969–1980. doi: 10.1002/hbm.22306
  • Cirillo G, Di Pino G, Capone F, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18. doi: 10.1016/j.brs.2016.11.009
  • Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208–213. doi: 10.1016/j.rehab.2015.05.005
  • Wu X, Ji GJ, Geng Z, et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: a randomized controlled trial. Brain Stimul. 2022;15(1):35‐45. doi: 10.1016/j.brs.2021.11.007
  • Di Lazzaro V, Bella R, Benussi A, et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol. 2021;132(10):2568–2607. doi: 10.1016/j.clinph.2021.05.035
  • Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9(1):527–565. doi: 10.1146/annurev.bioeng.9.061206.133100
  • Rroji O, van Kuyck K, Nuttin B, et al. Anodal tDCS over the primary motor cortex facilitates long-term memory formation reflecting use-dependent plasticity. PLoS One. 2015;10(5):e0127270. doi: 10.1371/journal.pone.0127270
  • Clark VP, Coffman BA, Trumbo MC, et al. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1 H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71. doi: 10.1016/j.neulet.2011.05.244
  • Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92. doi: 10.1016/j.clinph.2016.10.087
  • Ahmed MA, Darwish ES, Khedr EM, et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol. 2012;259(1):83–92. doi: 10.1007/s00415-011-6128-4
  • Elder GJ, Taylor JP. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimers Res Ther. 2014;6(9):74. doi: 10.1186/s13195-014-0074-1
  • Ferrucci R, Mameli F, Guidi I, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71(7):493–498. doi: 10.1212/01.wnl.0000317060.43722.a3
  • Miniussi C, Cappa SF, Cohen LG, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008;1(4):326–336. doi: 10.1016/j.brs.2008.07.002
  • Pennisi G, Ferri R, Cantone M, et al. A review of transcranial magnetic stimulation in vascular dementia. Dement Geriatr Cognit Disord. 2011;31(1):71–80. doi: 10.1159/000322798
  • Vallar G, Bolognini N. Behavioural facilitation following brain stimulation: implications for neurorehabilitation. Neuropsychol Rehabil. 2011;21(5):618–649. doi: 10.1080/09602011.2011.574050
  • Lee DJ, Lozano CS, Dallapiazza RF, et al. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg. 2019;131(2):333–342. doi: 10.3171/2019.4.JNS181761
  • Chen YS, Shu K, Kang HC. Deep brain stimulation in Alzheimer’s disease: targeting the nucleus basalis of meynert. J Alzheimers Dis. 2021;80(1):53–70. doi: 10.3233/JAD-201141
  • Ríos AS, Oxenford S-O, Neudorfer C, et al. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease. Nat Commun. 2022;13(1):7707. doi: 10.1038/s41467-022-34510-3
  • Scharre DW, Weichart E, Nielson D, et al. Deep brain stimulation of frontal lobe networks to treat Alzheimer’s disease. J Alzheimers Dis. 2018;62(2):621–633. doi: 10.3233/JAD-170082
  • Guyatt GH, Oxman AD, Schünemann HJ, et al. GRADE guidelines: a new series of articles in the journal of clinical epidemiology. J Clin Epidemiol. 2011;64(4):380–382. doi: 10.1016/j.jclinepi.2010.09.011
  • Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions (version 5.1.0). Chichester (UK): John Wiley & Sons; 2011. p. 30–66.
  • Varma AR, Fau SJ, JJ L, et al. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1999;66(2):184–188. doi: 10.1136/jnnp.66.2.184
  • Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014;10(11):634–642. doi: 10.1038/nrneurol.2014.181
  • Petersen RC, Roberts Ro Fau - Knopman DS, Knopman Ds Fau - Boeve BF, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–1455. doi: 10.1001/archneurol.2009.266
  • Khedr EM, Gamal NF, El-Fetoh NA, et al. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Front Aging Neurosci. 2014;6:275. doi: 10.3389/fnagi.2014.00275
  • Tao Y, Lei B, Zhu Y, et al. Repetitive transcranial magnetic stimulation decreases serum amyloid-β and increases ectodomain of p75 neurotrophin receptor in patients with Alzheimer’s disease. J Integr Neurosci. 2022;21(5):140. doi: 10.31083/j.jin2105140
  • Chang CH, Lane HY, Lin CH. Brain Stimulation in Alzheimer’s Disease. Front Psychiatry. 2018;9:201. doi: 10.3389/fpsyt.2018.00201
  • Cotelli M, Calabria M, Manenti R, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82(7):794–797. doi: 10.1136/jnnp.2009.197848
  • Wu Y, Xu W, Liu X, et al. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer’s disease: a randomized, double-blind, sham-controlled study. Shanghai Arch Psychiatry. 2015;27(5):280–288. doi: 10.11919/j.issn.1002-0829.215107
  • Padala PR, Padala KP, Lensing SY, et al. Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: a double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Res. 2018;261:312–318. doi: 10.1016/j.psychres.2017.12.063
  • Alcalá-Lozano R, Morelos-Santana E, Cortés-Sotres JF, et al. Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer’s disease. Brain Stimul. 2018;11(3):625–627. doi: 10.1016/j.brs.2017.12.011
  • Bagattini C, Zanni M, Barocco F, et al. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimul. 2020;13(6):1655–1664. doi: 10.1016/j.brs.2020.09.010
  • Padala PR, Boozer EM, Lensing SY, et al. Neuromodulation for apathy in Alzheimer’s disease: a double-blind, randomized, sham-controlled Pilot study. J Alzheimers Dis. 2020;77(4):1483–1493. doi: 10.3233/JAD-200640
  • Li X, Qi G, Yu C, et al. Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment. Brain Stimul. 2021;14(3):503–510. doi: 10.1016/j.brs.2021.01.012
  • Wu X, Ji GJ, Geng Z, et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: a randomized controlled trial. Brain Stimul. 2022;15(1):35–45. doi: 10.1016/j.brs.2021.11.007
  • Suemoto CK, Apolinario D, Nakamura-Palacios EM, et al. Effects of a non-focal plasticity protocol on apathy in moderate alzheimer’s disease: a randomized, double-blind, sham-controlled trial. Brain Stimul. 2014;7(2):308–313. doi: 10.1016/j.brs.2013.10.003
  • Bystad M, Grønli O, Rasmussen ID, et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimers Res Ther. 2016;8(1):13. doi: 10.1186/s13195-016-0180-3
  • Lu H, Chan SSM, Chan WC, et al. Randomized controlled trial of TDCS on cognition in 201 seniors with mild neurocognitive disorder. Ann Clin Transl Neurol. 2019;6(10):1938–1948. doi: 10.1002/acn3.50823
  • Laxton AW, Tang-Wai DF, McAndrews MP, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68(4):521–534. doi: 10.1002/ana.22089
  • Smith GS, Laxton AW, Tang-Wai DF, et al. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol. 2012;69(9):1141–1148. doi: 10.1001/archneurol.2012.590
  • Kuhn J, Hardenacke K, Lenartz D, et al. Deep brain stimulation of the nucleus basalis of meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20(3):353–360. doi: 10.1038/mp.2014.32
  • Lozano AM, Fosdick L, Chakravarty MM, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777–787. doi: 10.3233/JAD-160017
  • Lara AH, Wallis JD. The role of prefrontal cortex in working memory: a Mini review. Front Syst Neurosci. 2015;9:173. doi: 10.3389/fnsys.2015.00173
  • Drumond Marra HL, Myczkowski ML, Maia Memória C, et al. Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: a randomized controlled study. Behav Neurol. 2015;2015:1–13. doi: 10.1155/2015/287843
  • Di Lazzaro V, Dileone M, Pilato F, et al. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol. 2011;105(5):2150–2156. doi: 10.1152/jn.00781.2010
  • Chou YH, Ton That V, Sundman M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2020;86:1–10. doi: 10.1016/j.neurobiolaging.2019.08.020
  • Arnsten AF, Wang Mj Fau -Paspalas CD, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron. 2012;76(1):223–239. doi: 10.1016/j.neuron.2012.08.038
  • Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018;391(10131):1683–1692. doi: 10.1016/S0140-6736(18)30295-2
  • MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011;16(3):252–264. doi: 10.1038/mp.2010.80
  • Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216. doi: 10.1038/npp.2009.104
  • Perlman G, Simmons an Fau - Wu J, Wu J, et al. Amygdala response and functional connectivity during emotion regulation: a study of 14 depressed adolescents. J Affect Disord. 2012;139(1):75–84. doi: 10.1016/j.jad.2012.01.044
  • Koch G, Bonnì S, Pellicciari MC, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage. 2018;169:302–311. doi: 10.1016/j.neuroimage.2017.12.048
  • Mano T. Application of repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in Alzheimer’s disease: a Pilot study. J Clin Med. 2022;11(3):798. doi: 10.3390/jcm11030798
  • Saitoh Y, Hosomi K, Mano T, et al. Randomized, sham-controlled, clinical trial of repetitive transcranial magnetic stimulation for patients with Alzheimer’s dementia in Japan. Front Aging Neurosci. 2022;14:993306. doi: 10.3389/fnagi.2022.993306
  • Wei L, Zhang Y, Wang J, et al. Parietal-hippocampal rTMS improves cognitive function in Alzheimer’s disease and increases dynamic functional connectivity of default mode network. Psychiatry Res. 2022;315:114721. doi: 10.1016/j.psychres.2022.114721
  • Fontaine D, Deudon A, Lemaire JJ, et al. Symptomatic treatment of memory decline in Alzheimer’s disease by deep brain stimulation: a feasibility study. J Alzheimers Dis. 2013;34(1):315–323. doi: 10.3233/JAD-121579
  • Leoutsakos JMS, Yan HJ, Anderson WS, et al. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the advance trial): a two year follow-up including results of delayed activation. J Alzheimers Dis. 2018;64(2):597–606. doi: 10.3233/JAD-180121
  • Xu DS, Ponce FA. Deep brain stimulation for dementias. Neurosurg Focus. 2018;45(2):E8. doi: 10.3171/2018.5.FOCUS18172
  • Li W, Antuono PG, Xie C, et al. Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers. Cortex. 2014;57:167–176. doi: 10.1016/j.cortex.2014.04.006
  • Weininger J, Roman E, Tierney P, et al. Papez’s forgotten tract: 80 years of unreconciled findings concerning the thalamocingulate tract. Front Neuroanat. 2019;13:14. doi: 10.3389/fnana.2019.00014
  • Chu CS, Li CT, Brunoni AR, et al. Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer’s disease and mild cognitive impairment: a component network meta-analysis. J Neurol Neurosurg Psychiatry. 2021;92(2):195–203. doi: 10.1136/jnnp-2020-323870
  • de Sousa AVC, Grittner U, Rujescu D, et al. Impact of 3-day combined Anodal transcranial direct Current stimulation-visuospatial training on Object-Location memory in Healthy older adults and patients with mild cognitive impairment. J Alzheimers Dis. 2020;75(1):223–244. doi: 10.3233/JAD-191234
  • Rabey JM, Dobronevsky E, Aichenbaum S, et al. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J Neural Transm (Vienna). 2013;120(5):813–819. doi: 10.1007/s00702-012-0902-z
  • Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimers Dement. 2020;16(4):641–650. doi: 10.1016/j.jalz.2019.08.197
  • Reato D, Rahman A, Bikson M, et al. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687. doi: 10.3389/fnhum.2013.00687
  • Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–1048. doi: 10.1016/j.clinph.2015.11.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.