127
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging antibody-based therapies for Huntington’s disease: current status and perspectives for future development

ORCID Icon, & ORCID Icon
Pages 299-312 | Received 19 Nov 2023, Accepted 31 Jan 2024, Published online: 07 Feb 2024

References

  • Medina A, Mahjoub Y, Shaver L, et al. Prevalence and incidence of Huntington’s disease: an updated systematic review and meta-analysis. Mov Disord. 2022;37(12):2327–2335. doi: 10.1002/mds.29228. Epub 2022 Sep 26. PMID: 36161673; PMCID: PMC10086981.
  • Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306(5940):234–238. doi: 10.1038/306234a0
  • Macdonald M, HD Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–983. doi: 10.1016/0092-8674(93)90585-E
  • Grody WW, Deignan JL. Diagnostic Molecular Genetics. In: Pyeritz R, Korf B, and Grody W, editors. Emery and Rimoin’s principles and practice of medical genetics and genomics. 7th ed. Cambridge, MA, USA: Elsevier; 2019. p. 165–203.
  • Ranen NG, Stine OC, Abbott MH, et al. Anticipation and instability of IT-15 (Cag)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet. 1995;57(3):593–602.
  • Fusilli C, Migliore S, Mazza T, et al. Biological and clinical manifestations of juvenile Huntington’s disease: a retrospective analysis. The Lancet Neurology. 2018;17(11):986–993. doi: 10.1016/S1474-4422(18)30294-1
  • Bashir H, Jankovic J. Treatment options for chorea. Expert Rev Neurother. 2018;18:51–63. doi: 10.1080/14737175.2018.1403899
  • Kumar A, Kumar V, Singh K, et al. Therapeutic advances for Huntington’s disease. Brain Sci. 2020;10(1):43. doi: 10.3390/brainsci10010043
  • Barnat M, Le Friec J, Benstaali C, et al. Huntingtin-mediated multipolar-bipolar transition of newborn cortical neurons is critical for their postnatal neuronal morphology. Neuron. 2017;93(1):99–114. doi: 10.1016/j.neuron.2016.11.035
  • Jurcau A. Molecular pathophysiological mechanisms in Huntington’s disease. Biomedicines. 2022;10:1432. doi: 10.3390/biomedicines10061432
  • Saudou F, Humbert S. The biology of huntingtin. Neuron. 2016;89(5):910–926. doi: 10.1016/j.neuron.2016.02.003
  • Kang R, Wang L, Sanders SS, et al. Altered regulation of striatal neuronal N-methyl-D-aspartate receptor trafficking by palmitoylation in Huntington disease mouse model. Front Synaptic Neurosci. 2019;11:3. doi: 10.3389/fnsyn.2019.00003
  • Groc L, Choquet D. Linking glutamate receptor movements and synapse function. Science. 2020;368(6496):eaay4631. doi: 10.1126/science.aay4631
  • Hassel B, Tessler S, Faull RL, et al. Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res. 2008;33(2):232–237. doi: 10.1007/s11064-007-9463-1
  • Yablonska S, Ganesan V, Ferrando LM, et al. Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proc Natl Acad Sci USA. 2019;116:16593–16602. doi: 10.1073/pnas.1904101116
  • Jurcau A, Jurcau CM. Mitochondria in Huntington’s disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res. 2023;18(7):1472–1477. doi: 10.4103/1673-5374.360289
  • Woo JH, Cho H, Seol YH, et al. Power failure of mitochondria and oxidative stress in neurodegeneration and its computational model. Antioxidants. 2021;10(2):229. doi: 10.3390/antiox10020229
  • Mackay JP, Nasrallah WB, Raymond LA. Cause or compensation?—Altered neuronal Ca 2+ handling in Huntington’s disease. CNS Neurosci Ther. 2018;24(4):301–310. doi: 10.1111/cns.12817
  • Chang DT, Rintoul GL, Pandipati S, et al. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobio Dis. 2006;22(2):388–400. doi: 10.1016/j.nbd.2005.12.007
  • Sawant N, Morton H, Kshirsagar S, et al. Mitochondrial abnormalities and synaptic damage in Huntington’s disease: a focus on defective mitophagy and mitochondria-targeted therapeutics. Mol Neurobiol. 2021;58:6350–6377. doi: 10.1007/s12035-021-02556-x
  • Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev. 2010;90(3):905–981.
  • Dubois C, Kong G, Tran H, et al. Small non-coding RNAs are dysregulated in Huntington’s disease transgenic mice independently of the therapeutic effects of an environmental intervention. Mol Neurobiol. 2021;58(7):3308–3318. doi: 10.1007/s12035-021-02342-9
  • Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science. 2001;293(5529):493–498. doi: 10.1126/science.1059581
  • Hay DG, Sathasiwam K, Tobaben S, et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Human Molecular Genetics. 2004;13(13):1389–1405. doi: 10.1093/hmg/ddh144
  • Bhutani N, Venkatraman P, Goldberg AL. Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO J. 2007;26:1385–1396. doi: 10.1038/sj.emboj.7601592
  • Harding RJ, Tong YF. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sinica. 2018;39(5):754–769. doi: 10.1038/aps.2018.11
  • Davies SW, Turmaine M, Cozens BA, et al. Formation of intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90(3):537–548. doi: 10.1016/s0092-8674(00)80513-9
  • Slow EJ, Graham RK, Osmand AP, et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci, USA. 2005;102(32):11402–11407. doi: 10.1073/pnas.0503634102
  • Sica RE. Could astrocytes be the primary target of an offending agent causing the primary degenerative diseases of the human central nervous system? A hypothesis. Med Hypotheses. 2015;84(5):481–489. doi: 10.1016/j.mehy.2015.02.004
  • Gratuze M, Cisbani G, Cicchetti F, et al. Is Huntington’s disease a tauopathy? Brain. 2016;139(Pt 4):1014–1025. doi: 10.1093/brain/aww021
  • Maxan A, Cicchetti F. Tau: a common denominator and therapeutic target for neurodegenerative disorders. J Exp Neurosci. 2018;12:1–4. doi: 10.1177/1179069518772380
  • St-Amour I, Turgeon A, Goupil C, et al. Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease. Acta Neuropathol. 2018;135(2):249–65. doi: 10.1007/s00401-017-1786-7
  • Messer A, Butler DC. Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis. 2020;13:104619.
  • Bashir H. Emerging therapies in Huntington’s disease. Expert Rev Neurother. 2019;19(10):983–995. doi: 10.1080/14737175.2019.1631161
  • Jarosińska OD, Rüdiger SGD. Molecular strategies to target protein aggregation in Huntington’s disease. Front Mol Biosci. 2021;8:769184.
  • Schleidgen S, Dederer HG, Sgodda S, et al. Human germline editing in the era of CRISPR-Cas: risk and uncertainty, inter-generational responsibility, therapeutic legitimacy. BMC Med Ethics. 2020;21(1):87. doi: 10.1186/s12910-020-00487-1
  • Mittelman D, Moye C, Morton J, et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci USA. 2009;106(24):9607–9612. doi: 10.1073/pnas.0902420106
  • Wild EJ, Tabrizi S. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16(10):837–847.
  • Dabrowska M, Juzwa W, Krzyosiak WJ, et al. Precise excision of the CAG tract from the huntingtin gene by Cas9 nickases. Front Neurosci. 2018;12:75. doi: 10.3389/fnins.2018.00075
  • Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–131. doi: 10.1038/nm.3793
  • Schaefer KA, Wu WH, Colgan DF, et al. Unexpected mutations after CRISPR–Cas9 editing in vivo. Nat Methods. 2017;14(6):547–548. doi: 10.1038/nmeth.4293
  • Ferguson MW, Kennedy CJ, Palpagama TH, et al. Current and possible future therapeutic options for Huntington’s disease. J Cent Nerv Syst Dis. 2022;14:11795735221092517. doi: 10.1177/11795735221092517
  • Fink KD, Deng P, Gutierrez J, et al. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human Huntington’s disease fibroblasts. Cell Transplant. 2016;25:677–686. doi: 10.3727/096368916X690863
  • Jurcau A, Jurcau MC. Therapeutic strategies in Huntington’s disease: from genetic defect to gene therapy. Biomedicines. 2022;10:1895. doi: 10.3390/biomedicines10081895
  • Silva AC, Lobo DD, Martins IM, et al. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain. 2020;143(2):407–429. doi: 10.1093/brain/awz328
  • Rook ME, Southwell AL. Antisense oligonucleotide therapy: from design to the Huntington disease clinic. BioDrugs. 2022;36(2):105–119. doi: 10.1007/s40259-022-00519-9
  • Alterman JF, Godinho BMDC, Hassler MR, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol. 2019;37:884–894. doi: 10.1038/s41587-019-0205-0
  • Harper SQ, Staber PD, He X, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci USA. 2005;102(16):5820–5825. doi: 10.1073/pnas.0501507102
  • Franich NR, Fitzsimons HL, Fong DM, et al. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther. 2008;16(5):947–956. doi: 10.1038/mt.2008.50
  • Miniarikova J, Zanella I, Huseinovic A, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington’s disease. Mol Ther Nucleic Acids. 2016;5:e297. doi: 10.1038/mtna.2016.7
  • Homepage on the internet. [cited 2023 Oct 31]. Available from: www.clinicaltrials.gov
  • Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25(5):461–474. doi: 10.1089/hum.2013.200
  • Willis TA. Therapeutic advances in spinal muscular atrophy. Paediatrics Child Health. 2023;33:23–28. doi: 10.1016/j.paed.2022.12.010
  • Liu X, Valentine SJ, Plasencia MD, et al. Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom. 2007;18(7):1249–1264. doi: 10.1016/j.jasms.2007.04.012
  • Wild EJ, Boggio R, Langbehn D, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125(5):1979–86. doi: 10.1172/JCI80743
  • Masnata M, Sciacca G, Maxan A, et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019;137(6):981–1001. doi: 10.1007/s00401-019-01973-6
  • Jamwal S, Elsworth JD, Rahi V, et al. Gene therapy and immunotherapy as promising strategies to combat Huntington’s disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Rev Neurother. 2020;20(11):1123–1141. doi: 10.1080/14737175.2020.1801424
  • Denis HL, David LS, Cicchetti F. Antibody-based therapies for Huntington’s disease: current status and future directions. Neurobiol Dis. 2019;132:104569. doi: 10.1016/j.nbd.2019.104569
  • Miguez A, Gomis C, Vila C, et al. Soluble mutant huntingtin drives early human pathogenesis in Huntington’s disease. Cell Mol Life Sci. 2023;80(8):238. doi: 10.1007/s00018-023-04882-w
  • Alpaugh M, Cicchetti F. A brief history of antibody-based therapy. Neurobiol Dis. 2019;130:104504. doi: 10.1016/j.nbd.2019.104504
  • Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125:S41–S52. doi: 10.1016/j.jaci.2009.09.046
  • Asaadi Y, Jouneghani FF, Janani S, et al. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res. 2021;9:87. doi: 10.1186/s40364-021-00332-6
  • Ward ES, Güssow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989;341(6242):544–546. doi: 10.1038/341544a0
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi: 10.1038/363446a0
  • Konning D, Zielonka S, Grzeschik J, et al. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol. 2017;45:10–16. doi: 10.1016/j.sbi.2016.10.019
  • Wagner TR, Rothbauer U. Nanobodies Right in the middle: intrabodies as toolbox to visualize and modulate antigens in the living cell. Biomolecules. 2020;10(12):1701. doi: 10.3390/biom10121701
  • Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;102:263. doi: 10.1016/j.neuron.2019.03.020
  • Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy. Front Immunol. 2022;13:975803. doi: 10.3389/fimmu.2022.975803
  • Chia KY, Ng KY, Koh RY, et al. Single-chain fv antibodies for targeting neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2018;17(9):671–679. doi: 10.2174/1871527317666180315161626
  • Colby DW, Chu Y, Cassady JP, et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A. 2004;101(51):17616–17621. doi: 10.1073/pnas.0408134101
  • Butler DC, Joshi SN, Genst E, et al. Bifunctional anti-non-amyloid component α-synuclein nanobodies are protective in situ. PloS One. 2016;11(11):e0165964. doi: 10.1371/journal.pone.0165964
  • Cattaneo A, Chirichella M. Targeting the post-translational proteome with intrabodies. Trends Biotechnol. 2019;37(6):578–591. doi: 10.1016/j.tibtech.2018.11.009
  • Paganetti P, Calanca V, Galli C, et al. Beta-site specific intrabodies to decrease and prevent generation of Alzheimer’s abeta peptide. J Cell Bio. 2005;168(6):863–868. doi: 10.1083/jcb.200410047
  • Böldicke T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J Cell Mol Med. 2007;11(1):54–70. doi: 10.1111/j.1582-4934.2007.00002.x
  • Zhang C, Ötjengerdes RM, Roewe J, et al. Applying antibodies inside cells: principles and recent advances in neurobiology, virology and oncology. BioDrugs. 2020;34(4):435–462. doi: 10.1007/s40259-020-00419-w
  • Carlson JR. A new means of inducibly inactivating a cellular protein. Mol Cell Biol. 1988;8(6):2638–2646. doi: 10.1128/mcb.8.6.2638-2646.1988
  • Lecerf JM, Shirley TL, Zhu Q, et al. Human single-chain fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. PNAS. 2001;98(8):4764–4769. doi: 10.1073/pnas.071058398
  • Duennwald ML, Jagadish S, Muchowski PJ, et al. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci USA. 2006;103(29):11045–11050. doi: 10.1073/pnas.0604547103
  • Khoshnan A, Ko J, Patterson PH. Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci USA. 2002;99(2):1002–1007.
  • Legleiter J, Lotz GP, Miller J, et al. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem. 2009;284(32):21647–21658. doi: 10.1074/jbc.M109.016923
  • Hoffner G, Dijan P. Polyglutamine aggregation in Huntington’s disease: does structure determine toxicity? Mol Neurobiol. 2015;52(3):1297–1314. doi: 10.1007/s12035-014-8932-1
  • Nagai Y, Inui T, Popiel HA, et al. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol. 2007;14(4):332–340. doi: 10.1038/nsmb1215
  • Khoshnan A, Southwell AL, Bugg CW, et al. Recombinant intrabodies as molecular tools and potential therapeutics for Huntington’s disease. In: Lo D, and Hughes R, editors. Neurobiology of Huntington’s disease: applications to drug discovery. Boca Raton: CRC Press/Taylor&Francis; 2011. p. 255–266. Chapter 10.
  • Kim YE, Hosp F, Frottin F, et al. Soluble oligomers of PolyQ-expanded huntingtin target a multiplicity of key cellular factors. Mol Cell. 2016;63(6):951–964. doi: 10.1016/j.molcel.2016.07.022
  • Qin ZH, Wang Y, Sapp E, et al. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci. 2004;24(1):269–281. doi: 10.1523/JNEUROSCI.1409-03.2004
  • Southwell AL, Khoshnan A, Dunn DE, et al. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci. 2008;28(36):9013–9020. doi: 10.1523/JNEUROSCI.2747-08.2008
  • Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci. 2009;29(43):13589–13602. doi: 10.1523/JNEUROSCI.4286-09.2009
  • Amaro IA, Henderson LA. An intrabody drug (rAAV6-INT41) reduces the binding of N-terminal huntingtin fragment(s) to DNA to basal levels in PC12 cells and delays cognitive loss in the R6/2 animal model. J Neurodegener Dis. 2016;7120753. doi: 10.1155/2016/7120753. Epub 2016 Aug 10. PMID: 27595037; PMCID: PMC4995342.
  • Wang CE, Zhou H, McGuire JR, et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Bio. 2008;181(5):803–816. doi: 10.1083/jcb.200710158
  • Wolfgang WJ, Miller TW, Webster JM, et al. Suppression of Huntington’s disease pathology in drosophila by human single-chain fv antibodies. Proc Natl Acad Sci USA. 2005;102(32):11563–11568. doi: 10.1073/pnas.0505321102
  • Snyder-Keller A, McLear JA, Hathorn T, et al. Early or late-stage anti N-terminal huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J Neuropathol Exp Neurol. 2010;69:1078–1085. doi: 10.1097/NEN.0b013e3181f530ec
  • Manoutcharian K, Perez-Garmendia R, Gevorkian G. Recombinant antibody fragments for neurodegenerative diseases. Curr Neuropharmacol. 2017;15(5):779–788. doi: 10.2174/1570159X01666160930121647
  • Butler DC, Snyder-Keller A, De Genst E, et al. Differential nuclear localization of complexes may underlie in vivo intrabody efficacy in Huntington’s disease. Protein Eng Des Sel. 2014;27(10):359–363. doi: 10.1093/protein/gzu041
  • Zha J, Liu XM, Zhu J, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631. doi: 10.1038/srep36631
  • Kwam JK, Nannenga BL, Wang MS, et al. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One. 2009;4(5):e5727. doi: 10.1371/journal.pone.0005727
  • Messer A, Joshi SN. Intrabodies as neuroprotective therapeutics. Neurotherapeutics. 2013;10:447–458. doi: 10.1007/s13311-013-0193-6
  • Jurcau A. Insights into the pathogenesis of neurodegenerative diseases: focus on mitochondrial dysfunction and oxidative stress. Int J Mol Sci. 2021;22:11847. doi: 10.3390/ijms222111847
  • Reichsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996;21(7):267–271.
  • Butler DC, Messer A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS One. 2011;6(12):e29199.
  • Chatterjee D, Bhatt M, Butler D, et al. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson’s disease model. NPJ Parkinsons Dis. 2018;4:25. doi: 10.1038/s41531-018-0062-4
  • Clift D, McEwan WA, Labzin LI, et al. A method for the acute and rapid degradation of endogenous proteins. Cell. 2017;171(7):1692–1706.e18. doi: 10.1016/j.cell.2017.10.033
  • Tomoshige S, Nomura S, Ohgane K, et al. Discovery of small molecules that induce the degradation of huntingtin. Angew Chem Int Ed Engl. 2017;56:11530–11533. doi: 10.1002/anie.201706529
  • Tomoshige S, Nomura S, Ohgane K, et al. Degradation of huntingtin mediated by a hybrid molecule composed of IAP antagonist linked to phenyldiazenyl benzothiazole derivative. Bioorg Med Chem Lett. 2018;28(4):707–710. doi: 10.1016/j.bmcl.2018.01.012
  • Lu XH, Yang XW. “Huntingtin holiday”: progress toward an antisense therapy for Huntington’s disease. Neuron. 2012;74:964–966. doi: 10.1016/j.neuron.2012.06.001
  • Bartl S, Oueslati A, Southwell AL, et al. Inhibiting cellular uptake of mutant huntingtin using a monoclonal antibody: implications for the treatment of Huntington’s disease. Neurobiol Dis. 2020;141:104943. doi: 10.1016/j.nbd.2020.104943
  • Miller TW, Shirley TL, Wolfgang WJ, et al. DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther. 2003;7(5 Pt 1):572–579. doi: 10.1016/s1525-0016(03)00063-7
  • Ramsingh AI, Manley K, Rong Y, et al. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington’s disease. Hum Mol Genet. 2015;24(21):6186–6197. doi: 10.1093/hmg/ddv335
  • Cisbani G, Maxan A, Kordower JH, et al. Presence of tau pathology within foetal neural allografts in patients with Huntington’s and Parkinson’s disease. Brain. 2017;140(11):2982–2992. doi: 10.1093/brain/awx255
  • Reetz K, Giehl K, Dogan I, et al. D26 Pathological tau signal in huntington’s disease – an in vivo [18F]-AV-1451 pet imaging report. J Neurol Neurosurg Psychiatry. 2016;87(Suppl 1):A44.1–A44. doi: 10.1136/jnnp-2016-314597.125
  • Yanamandra K, Kfoury N, Jiang H, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80(2):402–414. doi: 10.1016/j.neuron.2013.07.046
  • Boutajangout A, Ingadottir J, Davies P, et al. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–667. doi: 10.1111/j.1471-4159.2011.07337.x
  • Alpaugh M, Masnata M, de Rus Jacquet A, et al. Passive immunization against phosphorylated tau improves features of Huntington’s disease pathology. Mol Ther. 2022;30(4):1500–1522. doi: 10.1016/j.ymthe.2022.01.020
  • Sun CS, Lee CC, Li YN, et al. Conformational switch of polyglutamine-expanded huntingtin into benign aggregates leads to neuroprotective effect. Sci Rep. 2015;5:14992. doi: 10.1038/srep14992
  • Wilton DK, Mastro K, Heller MD, et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat Med. 2023. doi: 10.1038/s41591-023-02566-3
  • Kumar R, Claassen D, Mongan A, et al. A phase 2 open-label study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of Intravenous ANX005 in patients with, or at risk of, manifest Huntington’s disease (HD) (S32.009). Neurology. 2023;100(17_supplement_2):3366. doi: 10.1212/WNL.0000000000203217
  • Leonard JE, Fisher TL, Winter LA, et al. Nonclinical safety evaluation of VX15/2503, a humanized Ig4 anti-SEMAD antibody. Mol Cancer Therapeut. 2015;14(4):964. doi: 10.1158/1535-7163.MCT-14-0924
  • Southwell AL, Franciosi S, Villanueva EB, et al. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington’s disease. Neurobiol Dis. 2015;76:46–56. doi: 10.1016/j.nbd.2015.01.002
  • Feigin A, Evans EE, Fisher TL, et al. Pepinemab antibody blockade of SEMA4D in early Huntington’s disease: a randomized, placebo-controlled, phase 2 trial. Nat Med. 2022;28(10):2183–2193. doi: 10.1038/s41591-022-01919-8
  • Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, et al. Molecular mechanisms of neuroinflammation in aging and Alzheimer’s disease progression. Int J Mol Sci. 2023;24:1869. doi: 10.3390/ijms24031869
  • Pido-Lopez J, Tanudjojo B, Farag S, et al. Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington’s disease by etanercept treatment. Sci Rep. 2019;9(1):7202. doi: 10.1038/s41598-019-43627-3
  • Rabinovici GD, La Joie R. Amyloid-targeting monoclonal antibodies for alzheimer disease. JAMA. 2023;330(6):507–509. doi: 10.1001/jama.2023.11703
  • Jeremic D, Navarro-López JD, Jiménez-Díaz L. Efficacy and safety of anti-amyloid-β monoclonal antibodies in current Alzheimer’s disease phase III clinical trials: a systematic review and interactive web app-based meta-analysis. Ageing Res Rev. 2023;90:102012. doi: 10.1016/j.arr.2023.102012
  • Ananbeh H, Kupkova Skalnikova H. Extracellular vesicles as possible sources of Huntington’s disease biomarkers. In: Thomas E Parkin G, editors. Biomarkers for Huntington’s disease. Contemporary clinical neuroscience. Cham: Springer; 2023. p. 45–75.
  • Zeun P, Scahill RI, Tabrizi SJ, et al. Fluid and imaging biomarkers for Huntington’s disease. Mol Cell Neurosci. 2019;97:67–80.
  • Wexler A. Stigma, history, and Huntington’s disease. The Lancet. 2010;376(9734):18–19. doi: 10.1016/S0140-6736(10)60957-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.