74
Views
0
CrossRef citations to date
0
Altmetric
Review

Identification and treatment of surgically-remediable causes of infantile epileptic spasms syndrome

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 661-680 | Received 01 Apr 2024, Accepted 22 May 2024, Published online: 30 May 2024

References

  • Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE task force on nosology and definitions. Epilepsia. 2022;63(6):1349–1397. doi: 10.1111/epi.17239
  • Howell KB, Freeman JL, Mackay MT, et al. The severe epilepsy syndromes of infancy: a population-based study. Epilepsia. 2021;62(2):358–370. doi: 10.1111/epi.16810
  • Riikonen R. Epidemiological data of west syndrome in Finland. Brain Dev. 2001;23(7):539–541. doi: 10.1016/S0387-7604(01)00263-7
  • Jia JL, Chen S, Sivarajah V, et al. Latitudinal differences on the global epidemiology of infantile spasms: systematic review and meta-analysis. Orphanet J Rare Dis. 2018;13(1):216. doi: 10.1186/s13023-018-0952-x
  • Cone TE. Jr. On a peculiar form of infantile convulsions (hypsarrhythmia) as described in his own infant son by Dr. W.J. West in 1841. Pediatrics. 1970;46(4):603. doi: 10.1542/peds.46.4.603
  • Gibbs EL, Fleming MM, Gibbs FA. Diagnosis and prognosis of hypsarrhythmia and infantile spasms. Pediatrics. 1954;13(1):66–73. doi: 10.1542/peds.13.1.66
  • Peng P, Kessi M, Mao L, et al. Etiologic Classification of 541 infantile spasms cases: a cohort study. Front Pediatr. 2022;10:10. doi: 10.3389/fped.2022.774828
  • Wirrell EC, Shellhaas RA, Joshi C, et al. How should children with West syndrome be efficiently and accurately investigated? Results from the National infantile spasms consortium. Epilepsia. 2015;56(4):617–625. doi: 10.1111/epi.12951
  • Osborne JP, Edwards SW, Dietrich Alber F, et al. The underlying etiology of infantile spasms (West syndrome): information from the International Collaborative infantile spasms study (ICISS). Epilepsia. 2019;60(9):1861–1869. doi: 10.1111/epi.16305
  • Cohen AL, Mulder BPF, Prohl AK, et al. Tuber Locations Associated with infantile spasms map to a common brain network. Ann Neurol. 2021;89(4):726–739. doi: 10.1002/ana.26015
  • Chugani HT, Shewmon DA, Sankar R, et al. Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol. 1992;31(2):212–219. doi: 10.1002/ana.410310212
  • Japaridze N, Muthuraman M, Moeller F, et al. Neuronal networks in west syndrome as revealed by source analysis and renormalized partial directed coherence. Brain Topogr. 2013;26(1):157–170. doi: 10.1007/s10548-012-0245-y
  • Maki Y, Natsume J, Ito Y, et al. Involvement of the thalamus, hippocampus, and brainstem in Hypsarrhythmia of west syndrome: simultaneous recordings of electroencephalography and fMRI study. Am J Neuroradiol. 2022;43(10):1502–1507. doi: 10.3174/ajnr.A7646
  • Millichap JJ, Miceli F, De Maria M, et al. Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia. 2017;58(1):e10–e15. doi: 10.1111/epi.13601
  • Zhou Z, Yu W, Fukuyama Y, et al. Clinical analysis of West syndrome associated with phenylketonuria. Brain Dev. 2001;23(7):552–557. doi: 10.1016/S0387-7604(01)00260-1
  • Baldassari S, Ribierre T, Marsan E, et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 2019;138(6):885–900. doi: 10.1007/s00401-019-02061-5
  • Sheidley BR, Malinowski J, Bergner AL, et al. Genetic testing for the epilepsies: a systematic review. Epilepsia. 2022;63(2):375–387. doi: 10.1111/epi.17141
  • Chourasia N, Yuskaitis C, Zhang B, et al. Etiology of Infantile spasms and yield of genetic testing: A tertiary center study (2825). Neurology. 2021;96(15_supplement):2825. doi: 10.1212/WNL.96.15_supplement.2825
  • D’Gama AM, Mulhern S, Sheidley BR, et al. Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (gene-STEPS): an international, multicentre, pilot cohort study. Lancet Neurol. 2023;22(9):812–825. doi: 10.1016/S1474-4422(23)00246-6
  • Boonsimma P, Ittiwut C, Kamolvisit W, et al. Exome sequencing as first-tier genetic testing in infantile-onset pharmacoresistant epilepsy: diagnostic yield and treatment impact. Eur J Hum Genet. 2023;31(2):179–187. doi: 10.1038/s41431-022-01202-x
  • Palmer EE, Sachdev R, Macintosh R, et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology. 2021;96:e1770–e1782. doi: 10.1212/WNL.0000000000011655
  • Wirrell EC, Shellhaas RA, Joshi C, et al. How should children with West syndrome be efficiently and accurately investigated? Results from the National Infantile spasms consortium. Epilepsia. 2015;56(4):617–625. doi: 10.1111/epi.12951
  • Krey I, Platzer K, Esterhuizen A, et al. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord. 2022;24(5):765–786. doi: 10.1684/epd.2022.1448
  • Riikonen R. A long-term follow-up study of 214 children with the syndrome of infantile spasms. Neuropediatrics. 1982;13(1):14–23. doi: 10.1055/s-2008-1059590
  • Autry AR, Trevathan E, Van Naarden Braun K, et al. Increased risk of death among children with lennox-gastaut syndrome and infantile spasms. J Child Neurol. 2010;25(4):441–447. doi: 10.1177/0883073809348355
  • Matsumoto A, Watanabe K, Negoro T, et al. Long‐term prognosis after infantile spasms: a statistical study of prognostic factors in 200 cases. Dev Med Child Neurol. 1981;23(1):51–65. doi: 10.1111/j.1469-8749.1981.tb08446.x
  • Sillanpää M, Jalava M, Kaleva O, et al. Long-term prognosis of seizures with onset in childhood. N Engl J Med. 1998;338(24):1715–1722. doi: 10.1056/NEJM199806113382402
  • Hrachovy RA, Frost JD Jr. Infantile epileptic encephalopathy with hypsarrhythmia (infantile spasms/West syndrome). J Clin Neurophysiol. 2003;20(6):408–425. doi: 10.1097/00004691-200311000-00004
  • Djuric M, Kravljanac R, Tadic B, et al. Long-term outcome in children with infantile spasms treated with vigabatrin: a cohort of 180 patients. Epilepsia. 2014;55(12):1918–1925. doi: 10.1111/epi.12847
  • Trevathan E, Murphy CC, Yeargin-Allsopp M. The descriptive epidemiology of infantile spasms among Atlanta children. Epilepsia. 1999;40(6):748–751. doi: 10.1111/j.1528-1157.1999.tb00773.x
  • Cusmai R, Ricci S, Pinard JM, et al. West syndrome due to perinatal insults. Epilepsia. 1993;34(4):738–742. doi: 10.1111/j.1528-1157.1993.tb00455.x
  • Riikonen R. Long‐term outcome of West syndrome: a study of adults with a history of infantile spasms. Epilepsia. 1996;37(4):367–372. doi: 10.1111/j.1528-1157.1996.tb00573.x
  • Karvelas G, Lortie A, Scantlebury MH, et al. A retrospective study on aetiology based outcome of infantile spasms. Seizure. 2009;18(3):197–201. doi: 10.1016/j.seizure.2008.09.006
  • Sher PK, Sheikh MR. Therapeutic efficacy of ACTH in symptomatic infantile spasms with hypsarrhythmia. Pediatr Neurol. 1993;9(6):451–456. doi: 10.1016/0887-8994(93)90024-7
  • Gulati S, Jain P, Kannan L, et al. The clinical characteristics and treatment response in children with west syndrome in a developing country: a retrospective case record analysis. J Child Neurol. 2015;30(11):1440–1447. doi: 10.1177/0883073815569304
  • Lombroso CT. A prospective study of infantile spasms: clinical and therapeutic correlations. Epilepsia. 1983;24(2):135–158. doi: 10.1111/j.1528-1157.1983.tb04874.x
  • Ramantani G, Bölsterli BK, Alber M, et al. Treatment of infantile spasm syndrome: update from the interdisciplinary guideline committee coordinated by the German-speaking society of neuropediatrics. Neuropediatrics. 2022;53(6):389–401. doi: 10.1055/a-1909-2977
  • O’Callaghan FJK, Lux AL, Darke K, et al. The effect of lead time to treatment and of age of onset on developmental outcome at 4 years in infantile spasms: evidence from the United Kingdom Infantile spasms study. Epilepsia. 2011;52(7):1359–1364. doi: 10.1111/j.1528-1167.2011.03127.x
  • Eisermann MM, DeLaraillere A, Dellatolas G, et al. Infantile spasms in down syndrome – effects of delayed anticonvulsive treatment. Epilepsy Res. 2003;55(1–2):21–27. doi: 10.1016/S0920-1211(03)00088-3
  • Surana P, Symonds JD, Srivastava P, et al. Infantile spasms: Etiology, lead time and treatment response in a resource limited setting. Epilepsy & Behavior Reports. 2020;14:100397. doi: 10.1016/j.ebr.2020.100397
  • Widjaja E, Go C, McCoy B, et al. Neurodevelopmental outcome of infantile spasms: A systematic review and meta-analysis. Epilepsy Res. 2015;109:155–162. doi: 10.1016/j.eplepsyres.2014.11.012
  • Lux AL, Edwards SW, Hancock E, et al. The United Kingdom infantile spasms study comparing vigabatrin with prednisolone or tetracosactide at 14 days: a multicentre, randomised controlled trial. Lancet. 2004;364(9447):1773–1778. doi: 10.1016/S0140-6736(04)17400-X
  • Darke K, Edwards SW, Hancock E, et al. Developmental and epilepsy outcomes at age 4 years in the UKISS trial comparing hormonal treatments to vigabatrin for infantile spasms: a multi-centre randomised trial. Arch Dischildhood. 2010;95(5):382–386. doi: 10.1136/adc.2009.160606
  • Lux AL, Edwards SW, Hancock E, et al. The United Kingdom infantile spasms study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial. Lancet Neurol. 2005;4(11):712–717. doi: 10.1016/S1474-4422(05)70199-X
  • Knupp KG, Coryell J, Singh RK, et al. Comparison of Cosyntropin, vigabatrin, and combination therapy in new-onset infantile spasms in a prospective randomized trial. J Child Neurol. 2022;37(3):186–193. doi: 10.1177/08830738211073400
  • Dzau W, Cheng S, Snell P, et al. Response to sequential treatment with prednisolone and vigabatrin in infantile spasms. J Paediatr Child Health. 2022;58(12):2197–2202. doi: 10.1111/jpc.16181
  • Elterman RD, Shields WD, Mansfield KA, et al. Randomized trial of vigabatrin in patients with infantile spasms. Neurology. 2001;57(8):1416–1421. doi: 10.1212/WNL.57.8.1416
  • Xu Z, Gong P, Jiao X, et al. Efficacy of vigabatrin in the treatment of infantile epileptic spasms syndrome: a systematic review and meta-analysis. Epilepsia Open. 2023;8(2):268–277. doi: 10.1002/epi4.12703
  • Hancock E, Osborne JP. Topical review: vigabatrin in the treatment of infantile spasms in tuberous sclerosis: literature review. J Child Neurol. 1999;14(2):71–74. doi: 10.1177/088307389901400201
  • O’Callaghan FJ, Edwards SW, Alber FD, et al. Safety and effectiveness of hormonal treatment versus hormonal treatment with vigabatrin for infantile spasms (ICISS): a randomised, multicentre, open-label trial. Lancet Neurol. 2017;16(1):33–42. doi: 10.1016/S1474-4422(16)30294-0
  • O’Callaghan FJ, Edwards SW, Alber FD, et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. The Lancet Child & Adolescent Health. 2018;2(10):715–725. doi: 10.1016/S2352-4642(18)30244-X
  • Hussain SA, Tsao J, Li M, et al. Risk of vigabatrin‐associated brain abnormalities on MRI in the treatment of infantile spasms is dose‐dependent. Epilepsia. 2017;58(4):674–682. doi: 10.1111/epi.13712
  • Bhalla S, Skjei K. Fulminant vigabatrin toxicity during combination therapy with adrenocorticotropic hormone for infantile spasms: three cases and review of the literature. Epilepsia. 2020;61(10):e159–e164. doi: 10.1111/epi.16663
  • Song JM, Hahn J, Kim SH, et al. Efficacy of treatments for infantile spasms: a systematic review. Clin Neuropharmacol. 2017;40(2):63–84. doi: 10.1097/WNF.0000000000000200
  • Grinspan ZM, Knupp KG, Patel AD, et al. Comparative effectiveness of initial treatment for infantile spasms in a contemporary US Cohort. Neurology. 2021;97:e1217–e1228. doi: 10.1212/WNL.0000000000012511
  • Prezioso G, Carlone G, Zaccara G, et al. Efficacy of ketogenic diet for infantile spasms: a systematic review. Acta Neurol Scand. 2018;137(1):4–11. doi: 10.1111/ane.12830
  • Chugani HT, Ilyas M, Kumar A, et al. Surgical treatment for refractory epileptic spasms: the Detroit series. Epilepsia. 2015;56(12):1941–1949. doi: 10.1111/epi.13221
  • Chipaux M, Dorfmüller G, Fohlen M, et al. Refractory spasms of focal onset-A potentially curable disease that should lead to rapid surgical evaluation. Seizure. 2017;51:163–170. doi: 10.1016/j.seizure.2017.08.010
  • Erdemir G, Pestana-Knight E, Honomichl R, et al. Surgical candidates in children with epileptic spasms can be selected without invasive monitoring: a report of 70 cases. Epilepsy Res. 2021;176:106731. doi: 10.1016/j.eplepsyres.2021.106731
  • Barba C, Mai R, Grisotto L, et al. Unilobar surgery for symptomatic epileptic spasms. Ann Clin Transl Neurol. 2017;4(1):36–45. doi: 10.1002/acn3.373
  • Dwivedi R, Ramanujam B, Chandra PS, et al. Surgery for drug-resistant epilepsy in children. N Engl J Med. 2017;377(17):1639–1647. doi: 10.1056/NEJMoa1615335
  • Liu Y, Zhou W, Hong B, et al. Analysis of surgical strategies for children with epileptic spasms. Epileptic Disord. 2021;23(1):85–93. doi: 10.1684/epd.2021.1237
  • Jonas R, Nguyen S, Hu B, et al. Cerebral hemispherectomy. hospital course, seizure, developmental, language, and motor outcomes. 2004;62(10):1712–1721. doi: 10.1212/01.WNL.0000127109.14569.C3
  • Iwatani Y, Kagitani-Shimono K, Tominaga K, et al. Long-term developmental outcome in patients with west syndrome after epilepsy surgery. Brain Dev. 2012;34(9):731–738. doi: 10.1016/j.braindev.2012.01.008
  • Kang JW, Rhie SK, Yu R, et al. Seizure outcome of infantile spasms with focal cortical dysplasia. Brain Dev. 2013;35(8):816–820. doi: 10.1016/j.braindev.2013.06.013
  • Janszky J, Jokeit H, Schulz R, et al. EEG predicts surgical outcome in lesional frontal lobe epilepsy. Neurology. 2000;54(7):1470–1476. doi: 10.1212/WNL.54.7.1470
  • Jeha LE, Najm I, Bingaman W, et al. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130(2):574–584. doi: 10.1093/brain/awl364
  • Braun KPJ. Influence of epilepsy surgery on developmental outcomes in children. Eur J Paediatr Neurol. 2020;24:40–42. doi: 10.1016/j.ejpn.2019.12.014
  • Tsou AY, Kessler SK, Wu M, et al. Surgical Treatments for epilepsies in children aged 1–36 Months. Neurology. 2023;100(1):e1–e15. doi: 10.1212/WNL.0000000000201012
  • Yum MS, Ko TS, Lee JK, et al. Surgical treatment for localization-related infantile spasms: excellent long-term outcomes. Clin Neurol Neurosur. 2011;113(3):213–217. doi: 10.1016/j.clineuro.2010.11.010
  • Specchio N, Pavia GC, de Palma L, et al. Current role of surgery for tuberous sclerosis complex-associated epilepsy. Pediatric Investigation. 2022;6(1):16–22. doi: 10.1002/ped4.12312
  • Archer JS, Warren AE, Jackson GD, et al. Conceptualizing Lennox–Gastaut syndrome as a secondary network epilepsy. Front Neurol. 2014;5:225. doi: 10.3389/fneur.2014.00225
  • Archer JS, Warren AE, Stagnitti MR, et al. Lennox‐Gastaut syndrome and phenotype: secondary network epilepsies. Epilepsia. 2014;55(8):1245–1254. doi: 10.1111/epi.12682
  • Warren AE, Harvey AS, Vogrin SJ, et al. The epileptic network of Lennox-Gastaut syndrome: cortically driven and reproducible across age. Neurology. 2019;93(3):e215–e226. doi: 10.1212/WNL.0000000000007775
  • Braun KPJ, Cross JH. Pediatric epilepsy surgery: the earlier the better. Expert Rev Neurother. 2018;18(4):261–263. doi: 10.1080/14737175.2018.1455503
  • Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21(1):23–48. doi: 10.1016/j.ejpn.2016.07.007
  • Boshuisen K, Arzimanoglou A, Cross JH, et al. Timing of antiepileptic drug withdrawal and long-term seizure outcome after paediatric epilepsy surgery (TimeTostop): a retrospective observational study. Lancet Neurol. 2012;11(9):784–791. doi: 10.1016/S1474-4422(12)70165-5
  • Boshuisen K, van Schooneveld MM, Uiterwaal CS, et al. Intelligence quotient improves after antiepileptic drug withdrawal following pediatric epilepsy surgery. Ann Neurol. 2015;78(1):104–114. doi: 10.1002/ana.24427
  • Samanta D, Ostendorf AP, Willis E, et al. Underutilization of epilepsy surgery: Part I: a scoping review of barriers. Epilepsy Behav. 2021;117:107837. doi: 10.1016/j.yebeh.2021.107837
  • Catchpool M, Dalziel K, Mahardya RTK, et al. Cost-effectiveness of epileptic surgery compared with medical treatment in children with drug-resistant epilepsy. Epilepsy Behav. 2019;97:253–259. doi: 10.1016/j.yebeh.2019.04.004
  • Nabbout R, Belousova E, Benedik MP, et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA study. Epilepsia Open. 2019;4(1):73–84. doi: 10.1002/epi4.12286
  • Cross JH, Reilly C, Delicado EG, et al. Epilepsy surgery for children and adolescents: evidence-based but underused. The Lancet Child Adol Health. 2022;6(7):484–494. doi: 10.1016/S2352-4642(22)00098-0
  • Kadish NE, Bast T, Reuner G, et al. Epilepsy Surgery in the First 3 years of life: predictors of seizure freedom and cognitive development. Neurosurgery. 2019;84(6):E368–e377. doi: 10.1093/neuros/nyy376
  • Macdonald-Laurs E, Maixner WJ, Bailey CA, et al. One-stage, limited-resection epilepsy surgery for bottom-of-sulcus dysplasia. Neurology. 2021;97(2):e178–e190. doi: 10.1212/WNL.0000000000012147
  • Jetté N, Sander JW, Keezer MR. Surgical treatment for epilepsy: the potential gap between evidence and practice. Lancet Neurol. 2016;15(9):982–994. doi: 10.1016/S1474-4422(16)30127-2
  • Prideaux L, Barton S, Maixner W, et al. Potential delays in referral and assessment for epilepsy surgery in children with drug-resistant, early-onset epilepsy. Epilepsy Res. 2018;143:20–26. doi: 10.1016/j.eplepsyres.2018.04.001
  • Briscoe Abath C, Gupta N, Hadjinicolaou A, et al. Delays to care in infantile epileptic spasms syndrome: racial and ethnic inequities. Epilepsia. 2024 Jan;65(1):107–114. doi: 10.1111/epi.17827. Epub 2023 Dec 7.
  • Baumer FM, Mytinger JR, Neville K, et al. Inequities in therapy for infantile spasms: a call to action. Ann Neurol. 2022;92(1):32–44. doi: 10.1002/ana.26363
  • Cihan E, Hesdorffer DC, Brandsoy M, et al. Socioeconomic disparities in SUDEP in the US. Neurology. 2020;94(24):e2555–e2566. doi: 10.1212/WNL.0000000000009463
  • Sánchez Fernández I, Stephen C, Loddenkemper T. Disparities in epilepsy surgery in the United States of America. J Neurol. 2017;264(8):1735–1745. doi: 10.1007/s00415-017-8560-6
  • Eltze CM, Chong WK, Cox T, et al. A population‐based study of newly diagnosed epilepsy in infants. Epilepsia. 2013;54(3):437–445. doi: 10.1111/epi.12046
  • Gaily E, Lommi M, Lapatto R, et al. Incidence and outcome of epilepsy syndromes with onset in the first year of life: a retrospective population-based study. Epilepsia. 2016;57(10):1594–1601. doi: 10.1111/epi.13514
  • Cowan LD, Hudson LS. The epidemiology and natural history of infantile spasms. J Child Neurol. 1991;6(4):355–364. doi: 10.1177/088307389100600412
  • Demarest ST, Shellhaas RA, Gaillard WD, et al. The impact of hypsarrhythmia on infantile spasms treatment response: observational cohort study from the National Infantile Spasms Consortium. Epilepsia. 2017;58(12):2098–2103. doi: 10.1111/epi.13937
  • Bonduelle T, Hartlieb T, Baldassari S, et al. Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Acta Neuropathol Commun. 2021;9(1):3. doi: 10.1186/s40478-020-01085-3
  • Eltze CM, Chong WK, Bhate S, et al. Taylor‐type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Epilepsia. 2005;46(12):1988–1992. doi: 10.1111/j.1528-1167.2005.00339.x
  • Jehi L. The epileptogenic zone: concept and definition. Epilepsy Curr. 2018;18(1):12–16. doi: 10.5698/1535-7597.18.1.12
  • Uribe-Cardenas R, Boyke AE, Schwarz JT, et al. Utility of invasive electroencephalography in children 3 years old and younger with refractory epilepsy. J Neurosurg Pediatr. 2020;26(6):648–653. doi: 10.3171/2020.6.PEDS19504
  • Lockrow JP, Wright JN, Saneto RP, et al. Epileptic spasms predict poor epilepsy outcomes after perinatal stroke. J Child Neurol. 2019;34(13):830–836. doi: 10.1177/0883073819863278
  • Srivastava R, Shaw OEF, Armstrong E, et al. Patterns of brain injury in perinatal arterial ischemic stroke and the development of infantile spasms. J Child Neurol. 2021;36(7):583–588. doi: 10.1177/0883073820986056
  • Marras CE, Granata T, Franzini A, et al. Hemispherotomy and functional hemispherectomy: indications and outcome. Epilepsy Res. 2010;89(1):104–112. doi: 10.1016/j.eplepsyres.2009.09.006
  • RamachandranNair R, Ochi A, Akiyama T, et al. Partial seizures triggering infantile spasms in the presence of a basal ganglia glioma. Epileptic Disord. 2005;7(4):378–382. doi: 10.1684/j.1950-6945.2005.tb00143.x
  • Asanuma H, Wakai S, Tanaka T, et al. Brain tumors associated with infantile spasms. Pediatr Neurol. 1995;12(4):361–364. doi: 10.1016/0887-8994(95)00057-M
  • Chugani HT, Asano E, Sood S. Infantile spasms: who are the ideal surgical candidates? Epilepsia. 2010;51(s1):94–96. doi: 10.1111/j.1528-1167.2009.02460.x
  • Mühlebner A, van Scheppingen J, Hulshof HM, et al. Novel histopathological patterns in cortical tubers of epilepsy surgery patients with tuberous sclerosis complex. PLoS ONE. 2016;11(6):e0157396. doi: 10.1371/journal.pone.0157396
  • Stephenson SE, Maixner WJ, Barton SM, et al. Resection of tuber centers only for seizure control in tuberous sclerosis complex. Epilepsy Res. 2021;171:106572. doi: 10.1016/j.eplepsyres.2021.106572
  • Mohamed AR, Bailey CA, Freeman JL, et al. Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring. Neurology. 2012;79(23):2249–2257. doi: 10.1212/WNL.0b013e3182768923
  • Kannan L, Vogrin S, Bailey C, et al. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain. 2016;139(10):2653–2667. doi: 10.1093/brain/aww192
  • Ostrowsky-Coste K, Neal A, Guenot M, et al. Resective surgery in tuberous Sclerosis complex, from Penfield to 2018: A critical review. Rev Neurol (Paris). 2019;175(3):163–182. doi: 10.1016/j.neurol.2018.11.002
  • Najm I, Lal D, Alonso Vanegas M, et al. The ILAE consensus classification of focal cortical dysplasia: an update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia. 2022;63(8):1899–1919. doi: 10.1111/epi.17301
  • Schurr J, Coras R, Rössler K, et al. Mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy: a new clinico-pathological entity. Brain Pathol. 2017;27(1):26–35. doi: 10.1111/bpa.12347
  • Mendes Coelho VC, Morita-Sherman M, Yasuda CL, et al. Magnetic resonance imaging findings and clinical characteristics in mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy in a predominantly adult cohort. Epilepsia. 2021;62(6):1429–1441. doi: 10.1111/epi.16907
  • Barba C, Blumcke I, Winawer MR, et al. Clinical features, neuropathology, and surgical outcome in patients with refractory epilepsy and brain somatic variants in the SLC35A2 gene. Neurology. 2023;100(5):e528–e542. doi: 10.1212/WNL.0000000000201471
  • Ronzano N, Valvo G, Ferrari AR, et al. Late-onset epileptic spasms: clinical evidence and outcome in 34 patients. J Child Neurol. 2015;30(2):153–159. doi: 10.1177/0883073814532547
  • Koo B, Hwang P. Localization of focal cortical lesions influences age of onset of infantile spasms. Epilepsia. 1996;37(11):1068–1071. doi: 10.1111/j.1528-1157.1996.tb01026.x
  • Carvill GL, Crompton DE, Regan BM, et al. Epileptic spasms are a feature of DEPDC5 mToropathy. Neurol Genet. 2015;1(2):e17. doi: 10.1212/NXG.0000000000000016
  • Fusco L, Serino D, Santarone ME. Three different scenarios for epileptic spasms. Epilepsy Behav. 2020;113:107531. doi: 10.1016/j.yebeh.2020.107531
  • Asano E, Juhász C, Shah A, et al. Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia. 2005;46(7):1086–1097. doi: 10.1111/j.1528-1167.2005.05205.x
  • Gaily EK, Shewmon DA, Chugani HT, et al. Asymmetric and asynchronous infantile spasms. Epilepsia. 1995;36(9):873–882. doi: 10.1111/j.1528-1157.1995.tb01630.x
  • Nariai H, Beal J, Galanopoulou AS, et al. Scalp EEG Ictal gamma and beta activity during infantile spasms: evidence of focality. Epilepsia. 2017;58(5):882–892. doi: 10.1111/epi.13735
  • Drury I, Beydoun A, Garofalo EA, et al. Asymmetric hypsarrhythmia: clinical electroencephalographic and radiological findings. Epilepsia. 1995;36(1):41–47. doi: 10.1111/j.1528-1157.1995.tb01663.x
  • Pellock JM, Hrachovy R, Shinnar S, et al. Infantile spasms: A US consensus report. Epilepsia. 2010;51(10):2175–2189. doi: 10.1111/j.1528-1167.2010.02657.x
  • Chugani HT, Conti JR. Etiologic classification of infantile spasms in 140 cases: role of positron emission tomography. J Child Neurol. 1996;11(1):44–48. doi: 10.1177/088307389601100111
  • Chugani HT, Shields WD, Shewmon DA, et al. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol. 1990;27(4):406–413. doi: 10.1002/ana.410270408
  • Bernasconi A, Cendes F, Theodore WH, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia. 2019;60(6):1054–1068. doi: 10.1111/epi.15612
  • Larivière S, Federico P, Chinvarun Y, et al. ILAE neuroimaging task force highlight: harnessing optimized imaging protocols for drug-resistant childhood epilepsy. Epileptic Disord. 2021;23(5):675–681. doi: 10.1684/epd.2021.1312
  • Soares BP, Porter SG, Saindane AM, et al. Utility of double inversion recovery MRI in paediatric epilepsy. British J Radiol. 2016;89(1057):20150325. doi: 10.1259/bjr.20150325
  • Demerath T, Rubensdörfer L, Schwarzwald R, et al. Morphometric MRI analysis: improved detection of focal cortical dysplasia using the MP2RAGE sequence. Am J Neuroradiol. 2020;41(6):1009–1014. doi: 10.3174/ajnr.A6579
  • Urbach H, Kellner E, Kremers N, et al. MRI of focal cortical dysplasia. Neuroradiology. 2022;64(3):443–452. doi: 10.1007/s00234-021-02865-x
  • Holthausen H, Coras R, Tang Y, et al. Multilobar unilateral hypoplasia with emphasis on the posterior quadrant and severe epilepsy in children with FCD ILAE Type 1A. Epilepsia. 2022;63(1):42–60. doi: 10.1111/epi.17114
  • Macdonald-Laurs E, Warren AEL, Lee WS, et al. Intrinsic and secondary epileptogenicity in focal cortical dysplasia type II. Epilepsia. 2023;64(2):348–363. doi: 10.1111/epi.17495
  • Bronen RA, Spencer DD, Fulbright RK. Cerebrospinal fluid cleft with cortical dimple: MR imaging marker for focal cortical dysgenesis. Radiology. 2000;214(3):657–663. doi: 10.1148/radiology.214.3.r00mr40657
  • Macdonald-Laurs E, Warren AEL, Francis P, et al. The clinical, imaging, pathological and genetic landscape of bottom-of-sulcus dysplasia. Brain. 2023;147(4):1264–1277. doi: 10.1093/brain/awad379
  • Seetharam R, Nooraine J, Mhatre R, et al. Mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE): a widespread disease with an apparently focal epilepsy. Epileptic Disord. 2021;23(2):407–411. doi: 10.1684/epd.2021.1280
  • Hartlieb T, Winkler P, Coras R, et al. Age-related MR characteristics in mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE). Epilepsy Behav. 2019;91:68–74. doi: 10.1016/j.yebeh.2018.07.009
  • Gallagher A, Grant EP, Madan N, et al. MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol. 2010;257(8):1373–1381. doi: 10.1007/s00415-010-5535-2
  • Tóth M, Barsi P, Tóth Z, et al. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol. 2021;21(1):1–20. doi: 10.1186/s12883-021-02352-z
  • Chugani HT, Shewmon DA, Shields WD, et al. Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia. 1993;34(4):764–771. doi: 10.1111/j.1528-1157.1993.tb00459.x
  • Aslam S, Rajeshkannan R, Sandya C, et al. Statistical asymmetry analysis of volumetric MRI and FDG PET in temporal lobe epilepsy. Epilepsy Behav. 2022;134:108810. doi: 10.1016/j.yebeh.2022.108810
  • Chandra PS, Salamon N, Huang J, et al. FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia. 2006;47(9):1543–1549. doi: 10.1111/j.1528-1167.2006.00627.x
  • Wu JY, Salamon N, Kirsch HE, et al. Noninvasive testing, early surgery, and seizure freedom in tuberous sclerosis complex. Neurology. 2010;74(5):392–398. doi: 10.1212/WNL.0b013e3181ce5d9e
  • Chugani HT, Luat AF, Kumar A, et al. α-[11C]-Methyl-L-tryptophan–PET in 191 patients with tuberous sclerosis complex. Neurology. 2013;81(7):674–680. doi: 10.1212/WNL.0b013e3182a08f3f
  • Sakaguchi Y, Kidokoro H, Ogawa C, et al. Longitudinal findings of MRI and PET in west syndrome with subtle focal cortical dysplasia. AJNR Am J Neuroradiol. 2018;39(10):1932–1937. doi: 10.3174/ajnr.A5772
  • Ramachandrannair R, Ochi A, Imai K, et al. Epileptic spasms in older pediatric patients: MEG and ictal high-frequency oscillations suggest focal-onset seizures in a subset of epileptic spasms. Epilepsy Res. 2008;78(2–3):216–224. doi: 10.1016/j.eplepsyres.2007.12.007
  • Papadelis C. Chapter 15 – MEG systems for young children and recent developments of pediatric MEG. In: Huang H, Roberts T, editors. Advances in Magnetic Resonance Technology and Applications. Cambridge, Massachusetts: Academic Press; 2021. p. 329–342.
  • Pittau F, Ferri L, Fahoum F, et al. Contributions of EEG-fMRI to assessing the epileptogenicity of focal cortical dysplasia. Front Comput Neurosci. 2017;11:8. doi: 10.3389/fncom.2017.00008
  • Tyvaert L, Hawco C, Kobayashi E, et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain. 2008;131(8):2042–2060. doi: 10.1093/brain/awn145
  • Kreilkamp BAK, Das K, Wieshmann UC, et al. Neuroradiological findings in patients with “non-lesional” focal epilepsy revealed by research protocol. Clin Radiol. 2019;74(1):.e78.71–.e78.11. doi: 10.1016/j.crad.2018.08.013
  • Von Oertzen J, Urbach H, Jungbluth S, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry. 2002;73(6):643–647. doi: 10.1136/jnnp.73.6.643
  • Jayakar P, Gaillard WD, Tripathi M, et al. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia. 2014;55(4):507–518. doi: 10.1111/epi.12544
  • Harini C, Sharda S, Bergin AM, et al. Detailed Magnetic Resonance Imaging (MRI) analysis in infantile spasms. J Child Neurol. 2018;33(6):405–412. doi: 10.1177/0883073818760424
  • Gaillard WD, Chiron C, Cross JH, et al. Guidelines for imaging infants and children with recent-onset epilepsy. Epilepsia. 2009;50(9):2147–2153. doi: 10.1111/j.1528-1167.2009.02075.x
  • Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(10):2844–2854. doi: 10.1093/brain/awr204
  • Bernasconi A, Antel SB, Collins DL, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra‐temporal partial epilepsy. Ann Neurol. 2001;49(6):770–775. doi: 10.1002/ana.1013
  • Gill RS, Lee H-M, Caldairou B, et al. Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia. Neurology. 2021;97:e1571–e1582. doi: 10.1212/WNL.0000000000012698
  • Adler S, Wagstyl K, Gunny R, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage Clin. 2017;14:18–27. doi: 10.1016/j.nicl.2016.12.030
  • Spitzer H, Ripart M, Whitaker K, et al. Interpretable surface-based detection of focal cortical dysplasias: a multi-centre Epilepsy Lesion detection study. Brain. 2022;145(11):3859–3871. doi: 10.1093/brain/awac224
  • Cascino GD. More Sensitive MRI techniques for detecting focal cortical dysplasia. Epilepsy Curr. 2003;3(1):29–30. doi: 10.1111/j.1535-7597.2003.03112.x
  • Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. doi: 10.1006/nimg.1998.0395
  • Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9(2):195–207. doi: 10.1006/nimg.1998.0396
  • Zöllei L, Iglesias JE, Ou Y, et al. Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. Neuroimage. 2020;218:116946. doi: 10.1016/j.neuroimage.2020.116946
  • Makropoulos A, Robinson EC, Schuh A, et al. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage. 2018;173:88–112. doi: 10.1016/j.neuroimage.2018.01.054
  • Gaillard WD, Jette N, Arnold ST, et al. Establishing criteria for pediatric epilepsy surgery center levels of care: Report from the ILAE Pediatric Epilepsy Surgery Task Force. Epilepsia. 2020;61(12):2629–2642. doi: 10.1111/epi.16698
  • Beare R, Alexander B, Warren A, et al. Karawun: a software package for assisting evaluation of advances in multimodal imaging for neurosurgical planning and intraoperative neuronavigation. Int J Comput Assist Radiol Surg. 2023;18(1):171–179. doi: 10.1007/s11548-022-02736-7
  • Palmini A, Gambardella A, Andermann F, et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol. 1995;37(4):476–487. doi: 10.1002/ana.410370410
  • Mohamed AR, Freeman JL, Maixner W, et al. Temporoparietooccipital disconnection in children with intractable epilepsy: Clinical article. J Neurosurg Pediatr PED. 2011;7(6):660–670. doi: 10.3171/2011.4.PEDS10454
  • Moloney PB, Dugan P, Widdess-Walsh P, et al. Genomics in the presurgical epilepsy evaluation. Epilepsy Res. 2022;184:106951.
  • Alsubhi S, Berrahmoune S, Dudley RWR, et al. Utility of genetic testing in the pre-surgical evaluation of children with drug-resistant epilepsy. J Neurol. 2024;271(5):2503–2508. doi: 10.1007/s00415-023-12174-3
  • Straka B, Splitkova B, Vlckova M, et al. Genetic testing in children enrolled in epilepsy surgery program. A real-life study. Eur J Paediatr Neurol. 2023;47:80–87. doi: 10.1016/j.ejpn.2023.09.009
  • Schobers G, Schieving JH, Yntema HG, et al. Reanalysis of exome negative patients with rare disease: a pragmatic workflow for diagnostic applications. Genome Med. 2022;14(1):66. doi: 10.1186/s13073-022-01069-z
  • Hong W, Haviland I, Pestana-Knight E, et al. CDKL5 deficiency disorder-related epilepsy: a review of current and emerging treatment. CNS Drugs. 2022;36(6):591–604. doi: 10.1007/s40263-022-00921-5
  • Wang H, Liu W, Zhang Y, et al. Seizure features and outcomes in 50 children with GATOR1 variants: a retrospective study, more favorable for epilepsy surgery. Epilepsia Open. 2023;8(3):969–979. doi: 10.1002/epi4.12770
  • D’Gama AM, Poduri A. Brain somatic mosaicism in epilepsy: bringing results back to the clinic. Neurobiol Dis. 2023;181:106104. doi: 10.1016/j.nbd.2023.106104
  • Ye Z, Chatterton Z, Pflueger J, et al. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain. Brain Comm. 2021;3(1):fcaa235. doi: 10.1093/braincomms/fcaa235
  • Ye Z, Bennett MF, Neal A, et al. Somatic mosaic pathogenic variant gradient detected in trace brain tissue from stereo-EEG depth electrodes. Neurology. 2022;99(23):1036–1041. doi: 10.1212/WNL.0000000000201469
  • Abel TJ, Losito E, Ibrahim GM, et al. Multimodal localization and surgery for epileptic spasms of focal origin: a review. Neurosurg Focus. 2018;45(3):E4. doi: 10.3171/2018.6.FOCUS18217
  • Iida K, Otsubo H, Arita K, et al. Cortical resection with electrocorticography for intractable porencephaly-related partial epilepsy. Epilepsia. 2005;46(1):76–83. doi: 10.1111/j.0013-9580.2005.28704.x
  • Lee WS, Macdonald-Laurs E, Stephenson SEM, et al. Basal ganglia dysplasia and mToropathy: a potential cause of postoperative seizures in focal cortical dysplasia. Epilepsia Open. 2023;8(1):205–210. doi: 10.1002/epi4.12678
  • Chugani HT, Asano E, Juhász C, et al. “Subtotal” hemispherectomy in children with intractable focal epilepsy. Epilepsia. 2014;55(12):1926–1933. doi: 10.1111/epi.12845
  • Fallah A, Rodgers SD, Weil AG, et al. Resective epilepsy surgery for tuberous sclerosis in children: determining predictors of seizure outcomes in a multicenter retrospective cohort study. Neurosurgery. 2015;77(4):517–524; discussion 524. doi: 10.1227/NEU.0000000000000875
  • Wei Z, Fallah A, Wang Y, et al. Influence of resective extent of epileptogenic tuber on seizure outcome in patients with tuberous sclerosis complex-related epilepsy: a systematic review and meta-analysis. Seizure. 2023;108:81–88. doi: 10.1016/j.seizure.2023.04.002
  • Salanova V, Andermann F, Rasmussen T, et al. The running down phenomenon in temporal lobe epilepsy. Brain. 1996;119(3):989–996. doi: 10.1093/brain/119.3.989
  • Shaver EG, Harvey S, Morrison G, et al. Results and complications after reoperation for failed epilepsy surgery in children. Pediatr Neurosurg. 2008;27(4):194–202. doi: 10.1159/000121251
  • Sacino MF, Ho CY, Whitehead MT, et al. Repeat surgery for focal cortical dysplasias in children: indications and outcomes. J Neurosurg Pediatr. 2017;19(2):174–181. doi: 10.3171/2016.8.PEDS16149
  • Kotulska K, Kwiatkowski DJ, Curatolo P, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89(2):304–314. doi: 10.1002/ana.25956
  • Bebin EM, Peters JM, Porter BE, et al. Early Treatment with Vigabatrin does not decrease focal seizures or improve cognition in tuberous sclerosis complex: the PREVeNT trial. Ann Neurol. 2023 Aug 28;10.1002/ana.26778. doi: 10.1002/ana.26778.
  • Aledo-Serrano Á, Valls-Carbó A, Fenger CD, et al. D-galactose supplementation for the treatment of mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE): a Pilot trial of precision medicine after epilepsy surgery. Neurotherapeutics. 2023;20(5):1294–1304. doi: 10.1007/s13311-023-01395-z
  • Overwater IE, Rietman AB, van Eeghen AM, et al. Everolimus for the treatment of refractory seizures associated with tuberous sclerosis complex (TSC): current perspectives. Ther Clin Risk Manag. 2019;15:951–955. doi: 10.2147/TCRM.S145630
  • Okoh J, Mays J, Bacq A, et al. Targeted suppression of mTORC2 reduces seizures across models of epilepsy. Nat Commun. 2023;14(1):7364. doi: 10.1038/s41467-023-42922-y
  • Dibué M, Greco T, Spoor JKH, et al. Vagus nerve stimulation in patients with lennox-gastaut syndrome: a meta-analysis. Acta Neurol Scand. 2021;143(5):497–508. doi: 10.1111/ane.13375
  • Okanishi T, Fujimoto A, Nishimura M, et al. Insufficient efficacy of vagus nerve stimulation for epileptic spasms and tonic spasms in children with refractory epilepsy. Epilepsy Res. 2018;140:66–71. doi: 10.1016/j.eplepsyres.2017.12.010
  • Dalic LJ, Warren AE, Bulluss KJ, et al. DBS of thalamic centromedian nucleus for Lennox–Gastaut syndrome (ESTEL trial). Ann Neurol. 2022;91(2):253–267. doi: 10.1002/ana.26280
  • Kwon C-S, Schupper AJ, Fields MC, et al. Centromedian thalamic responsive neurostimulation for Lennox-Gastaut epilepsy and autism. Ann Clin Transl Neurol. 2020;7(10):2035–2040. doi: 10.1002/acn3.51173
  • Yan H, Toyota E, Anderson M, et al. A systematic review of deep brain stimulation for the treatment of drug-resistant epilepsy in childhood. J Neurosurg Pediatr. 2018;23(3):274–284. doi: 10.3171/2018.9.PEDS18417
  • Mertens A, Boon P, Vonck K. Neurostimulation for childhood epilepsy. Dev Med Child Neurol. 2024Apr;66(4):440–444. doi: 10.1111/dmcn.15692. Epub 2023 Jul 14.
  • Bubrick EJ, McDannold NJ, White PJ. Low intensity focused ultrasound for epilepsy – a new approach to neuromodulation. Epilepsy Curr. 2022;22(3):156–160. doi: 10.1177/15357597221086111
  • Lee YJ, Lee JS, Kang HC, et al. Outcomes of epilepsy surgery in childhood-onset epileptic encephalopathy. Brain Dev. 2014;36(6):496–504. doi: 10.1016/j.braindev.2013.06.010
  • Moseley BD, Nickels K, Wirrell EC. Surgical outcomes for intractable epilepsy in children with epileptic spasms. J Child Neurol. 2012;27(6):713–720. doi: 10.1177/0883073811424463
  • Lettori D, Battaglia D, Sacco A, et al. Early hemispherectomy in catastrophic epilepsy: a neuro-cognitive and epileptic long-term follow-up. Seizure. 2008;17(1):49–63. doi: 10.1016/j.seizure.2007.06.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.