55
Views
0
CrossRef citations to date
0
Altmetric
Review

Imaging protocols for non-traumatic spinal cord injury: current state of the art and future directions

, , &
Pages 691-709 | Received 13 Oct 2023, Accepted 31 May 2024, Published online: 16 Jun 2024

References

  • New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014;52(2):97–109. doi: 10.1038/sc.2012.165
  • Dawson DM, Potts F. Acute nontraumatic myelopathies. Neurol Clin. 1991;9(3):585–603. doi: 10.1016/S0733-8619(18)30269-X
  • Adams RD, Salam-Adams M. Chronic nontraumatic diseases of the spinal cord. Neurol Clin. 1991;9(3):605–623. doi: 10.1016/S0733-8619(18)30270-6
  • Noonan VK, Fingas M, Farry A, et al. Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology. 2012;38(4):219–226. doi: 10.1159/000336014
  • New PW, Wayne New P, Eriks-Hoogland I, et al. Important clinical rehabilitation principles unique to people with non-traumatic spinal cord dysfunction [Internet]. Top Spinal Cord Inj Rehab. 2017;23(4):299–312. doi: 10.1310/sci2304-299
  • New PW, Marshall R. International spinal cord injury data sets for non-traumatic spinal cord injury. Spinal Cord. 2014;52(2):123–132. doi: 10.1038/sc.2012.160
  • Guest J, Datta N, Jimsheleishvili G, et al. Pathophysiology, classification and comorbidities after traumatic spinal cord injury. JPM. 2022;12(7):1126. doi: 10.3390/jpm12071126
  • Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke [Internet]. AJNR Am J Neuroradiol. 2018;39(6):E61–E76. doi: 10.3174/ajnr.a5638
  • Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3(1):17018. doi: 10.1038/nrdp.2017.18
  • Fehlings MG, Tetreault LA, Riew KD, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression. Global Spine J. 2017;7(3_suppl):70S–83S. doi: 10.1177/2192568217701914
  • Fehlings MG, Martin AR, Tetreault LA, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role of baseline magnetic resonance imaging in clinical decision making and outcome prediction. Global Spine J. 2017;7(3_suppl):221S–230S. doi: 10.1177/2192568217703089
  • Tetreault L, Goldstein CL, Arnold P, et al. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery. 2015;77(Suppl 4):S51–S67. doi: 10.1227/NEU.0000000000000951
  • Nouri A, Tetreault L, Singh A, et al. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine. 2015;40(12):E675–E693. doi: 10.1097/BRS.0000000000000913
  • Tetreault L, Kalsi-Ryan S, Davies B, et al. Degenerative cervical myelopathy: a practical approach to diagnosis. Global Spine J. 2022;12(8):1881–1893. doi: 10.1177/21925682211072847
  • Martin AR, Tadokoro N, Tetreault L, et al. Imaging evaluation of degenerative cervical myelopathy: current state of the art and future directions. Neurosurg Clin N Am. 2018;29(1):33–45. doi: 10.1016/j.nec.2017.09.003
  • Fujiyoshi T, Yamazaki M, Kawabe J, et al. A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine. 2008;33(26):E990–E993. doi: 10.1097/BRS.0b013e318188b300
  • Peng CW, Chou BT, Bendo JA, et al. Vertebral artery injury in cervical spine surgery: anatomical considerations, management, and preventive measures. Spine J. 2009;9(1):70–76. doi: 10.1016/j.spinee.2008.03.006
  • Nagata K, Kiyonaga K, Ohashi T, et al. Clinical value of magnetic resonance imaging for cervical myelopathy. Spine. 1990;15(11):1088–1096. doi: 10.1097/00007632-199011010-00002
  • Sun Q, Hu H, Zhang Y, et al. Do intramedullary spinal cord changes in signal intensity on MRI affect surgical opportunity and approach for cervical myelopathy due to ossification of the posterior longitudinal ligament? Eur Spine J. 2011;20(9):1466–1473. doi: 10.1007/s00586-011-1813-7
  • Tracy JA, Bartleson JD. Cervical spondylotic myelopathy. Neurologist. 2010;16(3):176–187. doi: 10.1097/NRL.0b013e3181da3a29
  • Gutmann L. AAEM minimonograph #37: facial and limb myokymia. Muscle Nerve. 1991;14(11):1043–1049. doi: 10.1002/mus.880141102
  • Suzuki A, Daubs MD, Hayashi T, et al. Magnetic resonance classification system of cervical intervertebral disk degeneration. Clin Spine Surg. 2017;30(5):E547–E553. doi: 10.1097/BSD.0000000000000172
  • Modic MT, Masaryk TJ, Ross JS, et al. Imaging of degenerative disk disease [Internet]. Radiology. 1988;168(1):177–186. doi: 10.1148/radiology.168.1.3289089
  • Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1):193–199. doi: 10.1148/radiology.166.1.3336678
  • Mallik A, Weir AI. Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 2):ii23–ii31. doi: 10.1136/jnnp.2005.069138
  • Restuccia D, Di Lazzaro V, Valeriani M, et al. Segmental dysfunction of the cervical cord revealed by abnormalities of the spinal N13 potential in cervical spondylotic myelopathy. Neurology. 1992;42(5):1054–1054. doi: 10.1212/WNL.42.5.1054
  • Stroman PW, Wheeler-Kingshott C, Bacon M, et al. The current state-of-the-art of spinal cord imaging: methods [Internet]. Neuroimage. 2014:1070–1081. doi: 10.1016/j.neuroimage.2013.04.124
  • Wheeler-Kingshott CA, Stroman PW, Schwab JM, et al. The current state-of-the-art of spinal cord imaging: applications [Internet]. Neuroimage. 2014;84:1082–1093. doi: 10.1016/j.neuroimage.2013.07.014
  • Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin. 2016;10:192–238. doi: 10.1016/j.nicl.2015.11.019
  • Demir A, Ries M, Moonen CTW, et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology. 2003;229(1):37–43. doi: 10.1148/radiol.2291020658
  • Facon D, Ozanne A, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26(6):1587–1594.
  • Mamata H, Jolesz FA, Maier SE. Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis–related changes. Magn Reson Imaging. 2005;22(1):38–43. doi: 10.1002/jmri.20357
  • Uda T, Takami T, Tsuyuguchi N, et al. Assessment of cervical spondylotic myelopathy using diffusion tensor magnetic resonance imaging parameter at 3.0 tesla. Spine. 2013;38(5):407–414. doi: 10.1097/BRS.0b013e31826f25a3
  • Holly LT, Freitas B, McArthur DL, et al. Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine. 2009;10(3):194–200. doi: 10.3171/2008.12.SPINE08367
  • Xiangshui M, Xiangjun C, Xiaoming Z, et al. 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy. Clin Radiol. 2010;65(6):465–473. doi: 10.1016/j.crad.2010.01.019
  • Budzik J-F, Balbi V, Le Thuc V, et al. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol. 2011;21(2):426–433. doi: 10.1007/s00330-010-1927-z
  • Song T, Chen W-J, Yang B, et al. Diffusion tensor imaging in the cervical spinal cord. Eur Spine J. 2011;20(3):422–428. doi: 10.1007/s00586-010-1587-3
  • Hori M, Fukunaga I, Masutani Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11(4):221–233. doi: 10.2463/mrms.11.221
  • Kerkovský M, Bednarík J, Dušek L, et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression [Internet]. Spine. 2012;37(1):48–56. doi: 10.1097/brs.0b013e31820e6c35
  • Lindberg PG, Feydy A, Sanchez K, et al. Measures of spinal canal stenosis and relationship to spinal cord structure in patients with cervical spondylosis. J Neuroradiol. 2012;39(4):236–242. doi: 10.1016/j.neurad.2011.09.004
  • Nakamura M, Fujiyoshi K, Tsuji O, et al. Clinical significance of diffusion tensor tractography as a predictor of functional recovery after laminoplasty in patients with cervical compressive myelopathy. J Neurosurg Spine. 2012;17(2):147–152. doi: 10.3171/2012.5.SPINE1196
  • Gao S-J, Yuan X, Jiang X-Y, et al. Correlation study of 3T-MR-DTI measurements and clinical symptoms of cervical spondylotic myelopathy. Eur J Radiol. 2013;82(11):1940–1945. doi: 10.1016/j.ejrad.2013.06.011
  • Jones JGA, Cen SY, Lebel RM, et al. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol. 2013;34(2):471–478. doi: 10.3174/ajnr.A3199
  • Salamon N, Ellingson BM, Nagarajan R, et al. Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord. 2013;51(7):558–563. doi: 10.1038/sc.2013.31
  • Banaszek A, Bladowska J, Szewczyk P, et al. Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur Spine J. 2014;23(7):1523–1530. doi: 10.1007/s00586-014-3323-x
  • Ali TFT, Taha Ali TF, Badawy AE. Feasibility of 1H-MR Spectroscopy in evaluation of cervical spondylotic myelopathy [Internet]. Egypt J Radiol Nucl Med. 2013;44(1):93–99. doi: 10.1016/j.ejrnm.2012.11.001
  • Ellingson BM, Salamon N, Grinstead JW, et al. Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J. 2014;14(11):2589–2597. doi: 10.1016/j.spinee.2014.02.027
  • Li X, Cui J-L, Mak K-C, et al. Potential use of diffusion tensor imaging in level diagnosis of multilevel cervical spondylotic myelopathy. Spine. 2014;39(10):E615–E622. doi: 10.1097/BRS.0000000000000288
  • Wen CY, Cui JL, Liu HS, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology. 2014;270(1):197–204. doi: 10.1148/radiol.13121885
  • Wen C-Y, Cui J-L, Mak K-C, et al. Diffusion tensor imaging of somatosensory tract in cervical spondylotic myelopathy and its link with electrophysiological evaluation [Internet]. Spine J. 2014;14(8):1493–1500. doi: 10.1016/j.spinee.2013.08.052
  • Zhou F, Gong H, Liu X, et al. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy [Internet]. PLOS ONE. 2014;9(8):e104442. doi: 10.1371/journal.pone.0104442
  • Cui J-L, Li X, Chan T-Y, et al. Quantitative assessment of column-specific degeneration in cervical spondylotic myelopathy based on diffusion tensor tractography. Eur Spine J. 2015;24(1):41–47. doi: 10.1007/s00586-014-3522-5
  • Maki S, Koda M, Ota M, et al. Reduced field-of-view diffusion tensor imaging of the spinal cord shows motor dysfunction of the lower extremities in patients with cervical compression myelopathy. Spine. 2018;43(2):89–96. doi: 10.1097/BRS.0000000000001123
  • Martin AR, De Leener B, Cohen-Adad J, et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am J Neuroradiol. 2017;38(6):1266–1273. doi: 10.3174/ajnr.A5162
  • Cohen-Adad J. What can we learn from T2* maps of the cortex? Neuroimage. 2014;93(Pt 2):189–200. doi: 10.1016/j.neuroimage.2013.01.023
  • Cohen-Adad J, Gauthier CJ, Brooks JCW, et al. BOLD signal responses to controlled hypercapnia in human spinal cord. Neuroimage. 2010;50(3):1074–1084. doi: 10.1016/j.neuroimage.2009.12.122
  • Martin AR, De Leener B, Cohen-Adad J, et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open. 2018;8(4):e019809. doi: 10.1136/bmjopen-2017-019809
  • Martin AR, De Leener B, Cohen-Adad J, et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLOS ONE. 2018;13(4):e0195733. doi: 10.1371/journal.pone.0195733
  • Martin AR, Tetreault L, Nouri A, et al. Imaging and electrophysiology for degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine J. 2022;12(1_suppl):130S–146S. doi: 10.1177/21925682211057484
  • Liu X, Qian W, Jin R, et al. Amplitude of Low Frequency Fluctuation (ALFF) in the cervical spinal cord with stenosis: a resting state fMRI study. PLOS ONE. 2016;11(12):e0167279. doi: 10.1371/journal.pone.0167279
  • Marcus ML, Heistad DD, Ehrhardt JC, et al. Regulation of total and regional spinal cord blood flow. Circ Res. 1977;41(1):128–134. doi: 10.1161/01.RES.41.1.128
  • Ellingson BM, Woodworth DC, Leu K, et al. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis. World Neurosurg. 2019;128:e773–e781. doi: 10.1016/j.wneu.2019.04.253
  • Uemura K, Matsumura A, Isobe T, et al. Perfusion-weighted magnetic resonance imaging of the spinal cord in cervical spondylotic myelopathy [Internet]. Neurol Med Chir (Tokyo). 2006;46(12):581–588. doi: 10.2176/nmc.46.581
  • Hurst RW, Kenyon LC, Lavi E, et al. Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology. 1995;45(7):1309–1313. doi: 10.1212/WNL.45.7.1309
  • Küker W, Weller M, Klose U, et al. Diffusion-weighted MRI of spinal cord infarction–high resolution imaging and time course of diffusion abnormality. J Neurol. 2004;251:818–824. doi: 10.1007/s00415-004-0434-z
  • Krings T, Lasjaunias PL, Hans FJ, et al. Imaging in spinal vascular disease. Neuro Clinical N Am. 2007;17(1):57–72. doi: 10.1016/j.nic.2007.01.001
  • Pattany PM, Saraf-Lavi E, Bowen BC. MR angiography of the spine and spinal cord. Top Magn Reson Imaging. 2003;14(6):444–460. doi: 10.1097/00002142-200312000-00003
  • Mull M, Nijenhuis RJ, Backes WH, et al. Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am J Neuroradiol. 2007;28(7):1249–1258. doi: 10.3174/ajnr.A0612
  • Nielsen YW, Thomsen HS. Contrast-enhanced peripheral MRA: technique and contrast agents. Acta Radiol. 2012;53(7):769–777. doi: 10.1258/ar.2012.120008
  • Lindenholz A, TerBrugge KG, van Dijk JMC, et al. The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur Radiol. 2014;24(11):2885–2894. doi: 10.1007/s00330-014-3307-6
  • Vargas MI, Barnaure I, Gariani J, et al. Vascular imaging techniques of the spinal cord. Semin Ultrasound CT MR. 2017;38(2):143–152. doi: 10.1053/j.sult.2016.07.004
  • Krings T, Thron AK, Geibprasert S, et al. Endovascular management of spinal vascular malformations. Neurosurg Rev. 2010;33(1):1–9. doi: 10.1007/s10143-009-0204-6
  • Heary RF, Bono CM. Metastatic spinal tumors. Neurosurg Focus. 2001;11(6):1–9. doi: 10.3171/foc.2001.11.6.2
  • Smith AB, Soderlund KA, Rushing EJ, et al. Radiologic-pathologic correlation of pediatric and adolescent spinal neoplasms: part 1, intramedullary spinal neoplasms. AJR Am J Roentgenol. 2012;198(1):34–43. doi: 10.2214/AJR.10.7311
  • Koeller KK, Shih RY. Intradural extramedullary spinal neoplasms: radiologic-pathologic correlation. Radiographics. 2019;39(2):468–490. doi: 10.1148/rg.2019180200
  • Gibbs WN, Rasouli JJ. Advances in spine tumor imaging and intervention. Adv Clin Radiol. 2020;2:325–339. doi: 10.1016/j.yacr.2020.06.005
  • Stradiotti P, Curti A, Castellazzi G, et al. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009;Suppl 18(S1):102–108. doi: 10.1007/s00586-009-0998-5
  • Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7(1):91–101. doi: 10.1002/jmri.1880070113
  • Chu S, Karimi S, Peck KK, et al. Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy. Spine. 2013;38(22):E1418–E1424. doi: 10.1097/BRS.0b013e3182a40838
  • Saha A, Peck KK, Lis E, et al. Magnetic resonance perfusion characteristics of hypervascular renal and hypovascular prostate spinal metastases: clinical utilities and implications. Spine. 2014;39(24):E1433–E1440. doi: 10.1097/BRS.0000000000000570
  • Kumar KA, Peck KK, Karimi S, et al. A Pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases. Technol Cancer Res Treat. 2017;16(6):857–865. doi: 10.1177/1533034617705715
  • Baur A, Stäbler A, Brüning R, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207(2):349–356. doi: 10.1148/radiology.207.2.9577479
  • Castillo M, Arbelaez A, Smith JK, et al. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol. 2000;21(5):948–953.
  • Baur A, Huber A, Ertl-Wagner B, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol. 2001;22(2):366–372.
  • Thawait SK, Marcus MA, Morrison WB, et al. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine. 2012;37(12):E736–E744. doi: 10.1097/BRS.0b013e3182458cac
  • Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am. 2013;21(2):299–320. doi: 10.1016/j.mric.2012.12.002
  • Sung JK, Jee W-H, Jung J-Y, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–498. doi: 10.1148/radiol.13130399
  • Herneth AM, Philipp MO, Naude J, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225(3):889–894. doi: 10.1148/radiol.2253011707
  • Choudhri AF, Whitehead MT, Klimo P Jr, et al. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology. 2014;56:169–174. doi: 10.1007/s00234-013-1316-9
  • Kosmala A, Weng AM, Heidemeier A, et al. Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and Pelvis. Radiology. 2018;286(1):205–213. doi: 10.1148/radiol.2017170281
  • Gibbs WN, Nael K, Doshi AH, et al. Spine oncology: imaging and intervention. Radiol Clin North Am. 2019;57(2):377–395. doi: 10.1016/j.rcl.2018.10.002
  • McLellan AM, Daniel S, Corcuera-Solano I, et al. Optimized imaging of the postoperative spine. Neuro Clinical N Am. 2014;24(2):349–364. doi: 10.1016/j.nic.2014.01.005
  • Cho W-I, Chang U-K. Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures: clinical article. J Neurosurg Spine. 2011;14(2):177–183. doi: 10.3171/2010.10.SPINE10175
  • Baur-Melnyk A. Malignant versus benign vertebral collapse: are new imaging techniques useful? Cancer Imaging. 2009;9 Spec No A:S49–S51. doi: 10.1102/1470-7330.2009.9013
  • Mahajan A, Azad GK, Cook GJ. PET imaging of skeletal metastases and its role in personalizing further management. PET Clin. 2016;11(3):305–318. doi: 10.1016/j.cpet.2016.02.003
  • Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–297.
  • Mick CG, James T, Hill JD, et al. Molecular imaging in oncology: 18F-sodium fluoride PET imaging of osseous metastatic disease. Am J Roentgenol. 2014;203(2):263–271. doi: 10.2214/AJR.13.12158
  • Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488–495. doi: 10.2967/jnumed.118.222893
  • Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):36. doi: 10.1186/s41747-018-0068-z
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
  • Chianca V, Cuocolo R, Gitto S, et al. Radiomic machine learning classifiers in spine bone tumors: a multi-software, multi-scanner study. Eur J Radiol. 2021;137:109586. doi: 10.1016/j.ejrad.2021.109586
  • Gitto S, Bologna M, Corino VDA, et al. Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance. Radiol Med. 2022;127(5):518–525. doi: 10.1007/s11547-022-01468-7
  • Cheung J-Y, Wei WI, Luk K-K. Cervical spine complications after treatment of nasopharyngeal carcinoma. Eur Spine J. 2013;22(3):584–592. doi: 10.1007/s00586-012-2600-9
  • Khorsandi AS, Su HK, Mourad WF, et al. Osteoradionecrosis of the subaxial cervical spine following treatment for head and neck carcinomas. Br J Radiol. 2015;88(1045):20140436. doi: 10.1259/bjr.20140436
  • King AD, Griffith JF, Abrigo JM, et al. Osteoradionecrosis of the upper cervical spine: MR imaging following radiotherapy for nasopharyngeal carcinoma. Eur J Radiol. 2010;73(3):629–635. doi: 10.1016/j.ejrad.2008.12.016
  • Zhong X, Li L, Jiang H, et al. Cervical spine osteoradionecrosis or bone metastasis after radiotherapy for nasopharyngeal carcinoma? The MRI-based radiomics for characterization. BMC Med Imaging. 2020;20(1):104. doi: 10.1186/s12880-020-00502-2
  • Myrehaug S, Sahgal A, Hayashi M, et al. Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine. 2017;27(4):428–435. doi: 10.3171/2017.2.SPINE16976
  • Husain ZA, Sahgal A, De Salles A, et al. Stereotactic body radiotherapy for de novo spinal metastases: systematic review. J Neurosurg Spine. 2017;27(3):295–302. doi: 10.3171/2017.1.SPINE16684
  • Al-Omair A, Smith R, Kiehl T-R, et al. Radiation-induced vertebral compression fracture following spine stereotactic radiosurgery: clinicopathological correlation. J Neurosurg Spine. 2013;18(5):430–435. doi: 10.3171/2013.2.SPINE12739
  • O’Sullivan S, McDermott R, Keys M, et al. Imaging response assessment following stereotactic body radiotherapy for solid tumour metastases of the spine: current challenges and future directions. J Med Imaging Radiat Oncol. 2020;64(3):385–397. doi: 10.1111/1754-9485.13032
  • Yoda T, Maki S, Furuya T, et al. Automated differentiation between osteoporotic vertebral fracture and malignant vertebral fracture on MRI Using a Deep Convolutional Neural Network. Spine. 2022;47(8):E347–E352. doi: 10.1097/BRS.0000000000004307
  • Amini B, Beaman CB, Madewell JE, et al. Osseous pseudoprogression in vertebral bodies treated with stereotactic radiosurgery: a secondary analysis of prospective phase I/II clinical trials. AJNR Am J Neuroradiol. 2016;37(2):387–392. doi: 10.3174/ajnr.A4528
  • Bahig H, Simard D, Létourneau L, et al. A study of pseudoprogression after spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96(4):848–856. doi: 10.1016/j.ijrobp.2016.07.034
  • Taylor DR, Weaver JA. Tumor pseudoprogression of spinal metastasis after radiosurgery: a novel concept and case reports. J Neurosurg Spine. 2015;22(5):534–539. doi: 10.3171/2014.10.SPINE14444
  • Kim JY, Park JE, Jo Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 2019;21(3):404–414. doi: 10.1093/neuonc/noy133
  • Jang B-S, Jeon SH, Kim IH, et al. Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci Rep. 2018;8(1):12516. doi: 10.1038/s41598-018-31007-2
  • Laufer I, Rubin DG, Lis E, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncology. 2013;18(6):744–751. doi: 10.1634/theoncologist.2012-0293
  • Bilsky MH, Laufer I, Fourney DR, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–328. doi: 10.3171/2010.3.SPINE09459
  • Nickerson EK, Sinha R. Vertebral osteomyelitis in adults: an update. Br Med Bull. 2016;117(1):121–138. doi: 10.1093/bmb/ldw003
  • Calhoun JH, Manring MM. Adult osteomyelitis. Infect Dis Clin North Am. 2005;19(4):765–786. doi: 10.1016/j.idc.2005.07.009
  • Gouliouris T, Aliyu SH, Brown NM. Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother. 2010;65(Suppl 3):iii11–iii24. doi: 10.1093/jac/dkq303
  • Ratcliffe JF. Anatomic basis for the pathogenesis and radiologic features of vertebral osteomyelitis and its differentiation from childhood discitis. A microarteriographic investigation. Acta Radiol Diagn. 1985;26(2):137–143. doi: 10.1177/028418518502600204
  • Babinchak TJ, Riley DK, Eb R Jr. Pyogenic vertebral osteomyelitis of the posterior elements. Clin Infect Dis. 1997;25(2):221–224. doi: 10.1086/514529
  • Silber JS, Anderson DG, Vaccaro AR, et al. Management of postprocedural discitis. Spine J. 2002;2(4):279–287. doi: 10.1016/S1529-9430(02)00203-6
  • Jevtic V. Vertebral infection. Eur Radiol. 2004;14(Suppl 3):E43–E52.
  • Waldvogel FA, Papageorgiou PS. Osteomyelitis: the past decade. N Engl J Med. 1980;303(7):360–370. doi: 10.1056/NEJM198008143030703
  • Marco de Lucas, de Lucas Em A, Gutiérrez A, et al. CT-guided fine-needle aspiration in vertebral osteomyelitis: true usefulness of a common practice. Clin Rheumatol. 2009;28(3):315–320. doi: 10.1007/s10067-008-1051-5
  • Duarte RM, Vaccaro AR. Spinal infection: state of the art and management algorithm. Eur Spine J. 2013;22(12):2787–2799. doi: 10.1007/s00586-013-2850-1
  • Gemmel F, Rijk PC, Collins JMP, et al. Expanding role of 18F-fluoro-D-deoxyglucose PET and PET/CT in spinal infections. Eur Spine J. 2010;19(4):540–551. doi: 10.1007/s00586-009-1251-y
  • Bond A, Manian FA. Spinal epidural abscess: a review with special emphasis on earlier diagnosis. Biomed Res Int. 2016;2016:1614328. doi: 10.1155/2016/1614328
  • Davis DP, Wold RM, Patel RJ, et al. The clinical presentation and impact of diagnostic delays on emergency department patients with spinal epidural abscess. J Emerg Med. 2004;26(3):285–291. doi: 10.1016/j.jemermed.2003.11.013
  • Alerhand S, Wood S, Long B, et al. The time-sensitive challenge of diagnosing spinal epidural abscess in the emergency department. Intern Emerg Med. 2017;12(8):1179–1183. doi: 10.1007/s11739-017-1718-5
  • van Goethem JWM, van den Hauwe L, Parizel PM. Spinal Imaging: diagnostic imaging of the spine and spinal cord. Springer Science & Business Media; 2007.
  • Sendi P, Bregenzer T, Zimmerli W. Spinal epidural abscess in clinical practice. QJM. 2008;101(1):1–12. doi: 10.1093/qjmed/hcm100
  • Palestro CJ. Radionuclide imaging of osteomyelitis. Semin Nucl Med. 2015;45(1):32–46. doi: 10.1053/j.semnuclmed.2014.07.005
  • Lazzeri E, Erba P, Perri M, et al. Scintigraphic imaging of vertebral osteomyelitis with 111in-biotin. Spine. 2008;33(7):E198–E204. doi: 10.1097/BRS.0b013e31816960c9
  • Stumpe KDM, Zanetti M, Weishaupt D, et al. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol. 2002;179(5):1151–1157. doi: 10.2214/ajr.179.5.1791151
  • Fuster D, Solà O, Soriano A, et al. A prospective study comparing whole-body FDG PET/CT to combined planar bone scan with 67Ga SPECT/CT in the diagnosis of Spondylodiskitis. Clin Nucl Med. 2012;37(9):827–832. doi: 10.1097/RLU.0b013e318262ae6c
  • Cui H, Wang Y, Li X, et al. Trial-to-trial latency variability of somatosensory evoked potentials as a prognostic indicator for surgical management of cervical spondylotic myelopathy. J Neuroeng Rehabil. 2015;12(1):49. doi: 10.1186/s12984-015-0042-4
  • Santamaria AJ, Benavides FD, Saraiva PM, et al. Neurophysiological changes in the first year after cell transplantation in sub-acute complete paraplegia. Front Neurol. 2020;11:514181. doi: 10.3389/fneur.2020.514181
  • Quraishi NA, Lewis SJ, Kelleher MO, et al. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine. 2009;34(14):1504–1512. doi: 10.1097/BRS.0b013e3181a87b66
  • Kerkovský M, Bednarík J, Dušek L, et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine. 2012;37(1):48–56. doi: 10.1097/BRS.0b013e31820e6c35
  • Lyu RK, Tang LM, Chen CJ, et al. The use of evoked potentials for clinical correlation and surgical outcome in cervical spondylotic myelopathy with intramedullary high signal intensity on MRI. J Neurol Neurosurg Psychiatry. 2004;75:256–261.
  • Vine R. Google Scholar. J Med Libr Assoc. 2006;94:97.
  • Mazur MD, White A, McEvoy S, et al. Transcranial magnetic stimulation of the motor cortex correlates with objective clinical measures in patients with cervical spondylotic myelopathy. Spine. 2014;39(14):1113–1120. doi: 10.1097/BRS.0000000000000358
  • Nicotra A, King NKK, Catley M, et al. Evaluation of corticospinal excitability in cervical myelopathy, before and after surgery, with transcranial magnetic stimulation: a pilot study. Eur Spine J. 2013;22(1):189–196. doi: 10.1007/s00586-012-2554-y
  • Deftereos SN, Kechagias E, Ioakeimidou C, et al. Transcranial magnetic stimulation but not MRI predicts long-term clinical status in cervical spondylosis: a case series. Spinal Cord. 2015;53(Suppl 1):S16–S18. doi: 10.1038/sc.2014.220
  • Ulrich A, Haefeli J, Blum J, et al. Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology. 2013;80(15):1393–1399. doi: 10.1212/WNL.0b013e31828c2ed1
  • Jutzeler CR, Ulrich A, Huber B, et al. Improved diagnosis of cervical spondylotic myelopathy with contact heat evoked potentials. J Neurotrauma. 2017;34(12):2045–2053. doi: 10.1089/neu.2016.4891
  • Sumiya S, Kawabata S, Hoshino Y, et al. Magnetospinography visualizes electrophysiological activity in the cervical spinal cord. Sci Rep. 2017;7(1):2192. doi: 10.1038/s41598-017-02406-8
  • Ushio S, Hoshino Y, Kawabata S, et al. Visualization of the electrical activity of the cauda equina using a magnetospinography system in healthy subjects. Clin Neurophysiol. 2019;130(1):1–11. doi: 10.1016/j.clinph.2018.11.001
  • Ahn H, Fehlings MG. Prevention, identification, and treatment of perioperative spinal cord injury. Neurosurg Focus. 2008;25(5):E15. doi: 10.3171/FOC.2008.25.11.E15
  • Hilibrand AS, Schwartz DM, Sethuraman V, et al. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am. 2004;86(6):1248–1253. doi: 10.2106/00004623-200406000-00018
  • MacDonald DB, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2003;28(2):194–203. doi: 10.1097/00007632-200301150-00018
  • Gunnarsson T, Krassioukov AV, Sarjeant R, et al. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine. 2004;29(6):677–684. doi: 10.1097/01.BRS.0000115144.30607.E9
  • Fehlings MG, Brodke DS, Norvell DC, et al. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine. 2010;35(Supplement):S37. doi: 10.1097/BRS.0b013e3181d8338e
  • Nuwer MR, Dawson EG, Carlson LG, et al. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11. doi: 10.1016/0013-4694(94)00235-D
  • Minahan RE, Sepkuty JP, Lesser RP, et al. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol. 2001;112(8):1442–1450. doi: 10.1016/S1388-2457(01)00567-3
  • Sloan TB, Janik D, Jameson L. Multimodality monitoring of the central nervous system using motor-evoked potentials. Curr Opin Anaesthesiol. 2008;21(5):560–564. doi: 10.1097/ACO.0b013e32830f1fbd
  • Hsu B, Cree AK, Lagopoulos J, et al. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine. 2008;33(10):1100–1106. doi: 10.1097/BRS.0b013e31816f5f09
  • Park P, Wang AC, Sangala JR, et al. Impact of multimodal intraoperative monitoring during correction of symptomatic cervical or cervicothoracic kyphosis. J Neurosurg Spine. 2011;14(1):99–105. doi: 10.3171/2010.9.SPINE1085
  • Owen JH. The application of intraoperative monitoring during surgery for spinal deformity. Spine. 1999;24(24):2649–2662. doi: 10.1097/00007632-199912150-00012
  • Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–443. doi: 10.1097/00004691-200210000-00006
  • Hamilton DK, Smith JS, Sansur CA, et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine. 2011;36(15):1218–1228. doi: 10.1097/BRS.0b013e3181ec5fd9
  • Padberg AM, Thuet ED. Intraoperative electrophysiologic monitoring: considerations for complex spinal surgery. Neurosurg Clin N Am. 2006;17(v. 3):205–226. doi: 10.1016/j.nec.2006.05.008
  • Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine. 1994;19(24):2780–2785. doi: 10.1097/00007632-199412150-00008
  • Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15(9):549–560. doi: 10.5435/00124635-200709000-00005
  • Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–264. doi: 10.1016/j.clinph.2007.09.135
  • Plata Bello J, Pérez-Lorensu PJ, Roldán-Delgado H, et al. Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol. 2015;126(6):1264–1270. doi: 10.1016/j.clinph.2014.09.020
  • Zhou H, Miller D, Schulte DM, et al. Intraoperative ultrasound assistance in treatment of intradural spinal tumours. Clin Neurol Neurosur. 2011;113(7):531–537. doi: 10.1016/j.clineuro.2011.03.006
  • Friedman JA, Wetjen NM, Atkinson JLD. Utility of intraoperative ultrasound for tumors of the cauda equina. Spine. 2003;28(3):288–290; discussion 291. doi: 10.1097/01.BRS.0000042271.75392.E4
  • Quencer RM, Montalvo BM, Green BA, et al. Intraoperative spinal sonography of soft-tissue masses of the spinal cord and spinal canal. AJR Am J Roentgenol. 1984;143(6):1307–1315. doi: 10.2214/ajr.143.6.1307
  • Toktas ZO, Sahin S, Koban O, et al. Is intraoperative ultrasound required in cervical spinal tumors? A prospective study. Turk Neurosurg. 2013;23:600–606. doi: 10.5137/1019-5149.JTN.7199-12.1
  • Quencer RM, Montalvo BM, Eismont FJ, et al. Intraoperative spinal sonography in thoracic and lumbar fractures: evaluation of Harrington rod instrumentation. AJR Am J Roentgenol. 1985;145(2):343–349. doi: 10.2214/ajr.145.2.343
  • Soloukey S, Verhoef L, Generowicz BS, et al. Case report: High-resolution, intra-operative µDoppler-imaging of spinal cord hemangioblastoma. Front Surg. 2023;10:1153605. doi: 10.3389/fsurg.2023.1153605
  • Jeys L, Matharu GS, Nandra RS, et al. Can computer navigation-assisted surgery reduce the risk of an intralesional margin and reduce the rate of local recurrence in patients with a tumour of the pelvis or sacrum? Bone Joint J. 2013;95-B(10):1417–1424. doi: 10.1302/0301-620X.95B10.31734
  • Barzilai O, Laufer I, Robin A, et al. Hybrid therapy for metastatic epidural spinal cord compression: technique for separation surgery and spine radiosurgery. Oper Neurosurg. 2019;16(3):310–318. doi: 10.1093/ons/opy137
  • Nasser R, Drazin D, Nakhla J, et al. Resection of spinal column tumors utilizing image-guided navigation: a multicenter analysis. Neurosurg Focus. 2016;41(2):E15. doi: 10.3171/2016.5.FOCUS16136
  • Tat J, Tat J, Yoon S, et al. Intraoperative ultrasound in spine decompression surgery: a systematic review. Spine. 2022;47(2):E73–E85. doi: 10.1097/BRS.0000000000004111
  • Lund PJ, Fajardo LL. Lumbar disk herniation and canal stenosis value of intraoperative sonography in diagnosis and surgical management. Invest Radiol. 1991;26(7):696–697. doi: 10.1097/00004424-199107000-00017
  • Ganau M, Syrmos N, Martin AR, et al. Intraoperative ultrasound in spine surgery: history, current applications, future developments. Quant Imaging Med Surg. 2018 Apr;8(3):261–267. PMID: 29774179; PMCID: PMC5941206. doi: 10.21037/qims.2018.04.02

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.