1,003
Views
28
CrossRef citations to date
0
Altmetric
Review

An update on the safety of tacrolimus in kidney transplant recipients, with a focus on tacrolimus minimization

, , &
Pages 285-294 | Received 09 Jan 2019, Accepted 22 Mar 2019, Published online: 01 Apr 2019

References

  • Venkat VL, Nick TG, Wang Y, et al. An objective measure to identify pediatric liver transplant recipients at risk for late allograft rejection related to non-adherence. Pediatr Transplant. 2008;12(1):67–72.
  • Sikma MA, Hunault CC, Kirkels JH, et al. Association of whole blood tacrolimus concentrations with kidney injury in heart transplantation patients. Eur J Drug Metab Pharmacokinet. 2018;43(3):311–320.
  • Sikma MA, Hunault CC, van de Graaf EA, et al. High tacrolimus blood concentrations early after lung transplantation and the risk of kidney injury. Eur J Clin Pharmacol. 2017;73(5):573–580.
  • Hao JC, Wang WT, Yan LN, et al. Effect of low-dose tacrolimus with mycophenolate mofetil on renal function following liver transplantation. World J Gastroenterol. 2014;20(32):11356–11362.
  • Hricik DE, Formica RN, Nickerson P, et al. Adverse outcomes of tacrolimus withdrawal in immune-quiescent kidney transplant recipients. J Am Soc Nephrol. 2015;26(12):3114–3122.
  • Dugast E, Soulillou JP, Foucher Y, et al. Failure of calcineurin inhibitor (Tacrolimus) weaning randomized trial in long-term stable kidney transplant recipients. Am J Transplant. 2016;16(11):3255–3261.
  • Sawinski D, Trofe-Clark J, Leas B, et al. Calcineurin inhibitor minimization, conversion, withdrawal, and avoidance strategies in renal transplantation: a systematic review and meta-analysis. Am J Transplant. 2016;16(7):2117–2138.
  • Davis S, Gralla J, Klem P, et al. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant. 2018;18(4):907–915.
  • Macdonald AS. Use of mTOR inhibitors in human organ transplantation. Expert Rev Clin Immunol. 2007;3(3):423–436.
  • Piao SG, Lim SW, Doh KC, et al. Combined treatment of tacrolimus and everolimus increases oxidative stress by pharmacological interactions. Transplantation. 2014;98(1):22–28.
  • Jouve T, Rostaing L, Malvezzi P. Place of mTOR inhibitors in management of BKV infection after kidney transplantation. J Nephropathol. 2016;5(1):1–7.
  • Malvezzi P, Jouve T, Rostaing L. Use of everolimus-based immunosuppression to decrease cytomegalovirus infection after kidney transplant. Exp Clin Transplant. 2016;14(4):361–366.
  • Pascual J, Royuela A, Fernández AM, et al. Role of mTOR inhibitors for the control of viral infection in solid organ transplant recipients. Transpl Infect Dis. 2016;18(6):819–831.
  • Gao L, Xu F, Cheng H, et al. Comparison of sirolimus combined with tacrolimus and mycophenolate mofetil combined with tacrolimus in kidney transplantation recipients: a meta-analysis. Transplant Proc. 2018 Dec;50(10):3306–3313.
  • Rummo OO, Carmellini M, Rostaing L, et al. ADHERE: randomized controlled trial comparing renal function in de novo kidney transplant recipients receiving prolonged-release tacrolimus plus mycophenolate mofetil or sirolimus. Transpl Int. 2017 Jan;30(1):83–95.
  • Qazi Y, Shaffer D, Kaplan B, et al. Efficacy and safety of everolimus plus low-dose tacrolimus versus mycophenolate mofetil plus standard-dose tacrolimus in de novo renal transplant recipients: 12-month data. Am J Transplant. 2017;17(5):1358–1369.
  • Tönshoff B, Ettenger R, Dello Strologo L, et al. Early conversion of pediatric kidney transplant patients to everolimus with reduced tacrolimus and steroid elimination: results of a randomized trial. Am J Transplant. 2018 Aug 20. DOI:10.1111/ajt.15081
  • Pascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol. 2018;29(7):1979–1991.
  • Pollock‐BarZiv SM, Finkelstein Y, Manlhiot C, et al. Variability in tacrolimus blood levels increases the risk of late rejection and graft loss after solid organ transplantation in older children. Pediatr Transplant. 2010;14(8):968–975.
  • Borra LCP, Roodnat JI, Kal JA, et al. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol Dial Transplant. 2010;25(8):2757–2763.
  • Ro H, Min S-I, Yang J, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit. 2012;34(6):680–685.
  • Sapir-Pichhadze R, Wang Y, Famure O, et al. Time-dependent variability in tacrolimus trough blood levels is a risk factor for late kidney transplant failure. Kidney Int. 2014;85(6):1404–1411.
  • Shuker N, Shuker L, van Rosmalen J, et al. A high intrapatient variability in tacrolimus exposure is associated with poor long-term outcome of kidney transplantation. Transpl Int. 2016;29(11):1158–1167.
  • Whalen HR, Glen JA, Harkins V, et al. High intrapatient tacrolimus variability is associated with worse outcomes in renal transplantation using a low-dose tacrolimus immunosuppressive regime. Transplantation. 2017;101(2):430–436.
  • Vanhove T, Vermeulen T, Annaert P, et al. High intrapatient variability of tacrolimus concentrations predicts accelerated progression of chronic histologic lesions in renal recipients. Am J Transplant. 2016;16(10):2954–2963.
  • Taber DJ, Su Z, Fleming JN, et al. Tacrolimus trough concentration variability and disparities in African American kidney transplantation. Transplantation. 2017;101(12):2931–2938.
  • Sablik KA, Clahsen-van Groningen MC, Hesselink DA, et al. Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. PloS One. 2018;13(5):e0196552.
  • Seibert SR, Schladt DP, Wu B, et al. Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: effects on acute rejection and graft failure in European American and African American kidney transplant recipients. Clin Transplant. 2018;32(12):e13424.
  • Rozen-Zvi B, Schneider S, Lichtenberg S, et al. Association of the combination of time-weighted variability of tacrolimus blood level and exposure to low drug levels with graft survival after kidney transplantation. Nephrol Dial Transplant. 2017;32(2):393–399.
  • Leino AD, King EC, Jiang W, et al. Assessment of tacrolimus intrapatient variability in stable adherent transplant recipients: establishing baseline values. Am J Transplant [Internet]. DOI:10.1111/ajt.15199
  • Thölking G, Fortmann C, Koch R, et al. The tacrolimus metabolism rate influences renal function after kidney transplantation. PloS One. 2014;9(10):e111128.
  • Egeland EJ, Robertsen I, Hermann M, et al. High tacrolimus clearance is a risk factor for acute rejection in the early phase after renal transplantation. Transplantation. 2017;101(8):e273–e279.
  • Trofe-Clark J, Brennan DC, West-Thielke P, et al. Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate-release versus extended-release tacrolimus in African American kidney transplant recipients. Am J Kidney Dis. 2018;71(3):315–326.
  • Niioka T, Kagaya H, Saito M, et al. Impact of the CYP3A5 genotype on the distributions of dose-adjusted trough concentrations and incidence of rejection in Japanese renal transplant recipients receiving different tacrolimus formulations. Clin Exp Nephrol. 2017 Oct;21(5):787–796.
  • Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose for transplant pediatrics: a systematic review and meta-analysis. Pediatr Transplant. 2018;22(6):e13248.
  • Genvigir FDV, Salgado PC, Felipe CR, et al. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients. Pharmacogenet Genomics. 2016;26(10):462–472.
  • Hu R, Barratt DT, Coller JK, et al. CYP3A5*3 and ABCB1 61A>G significantly influence dose‐adjusted trough blood tacrolimus concentrations in the first three months post‐kidney transplantation. Basic Clin Pharmacol Toxicol. 2018 Sep 1;123(3):320–326.
  • Yu M, Liu M, Zhang W, et al. Pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr Drug Metab. 2018 mai;19(6):513–522.
  • Nankivell BJ, Borrows RJ, Fung CL-S, et al. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–2333.
  • Myers BD, Ross J, Newton L, et al. Cyclosporine-associated chronic nephropathy. N Engl J Med. 1984;311(11):699–705.
  • Mihatsch MJ, Kyo M, Morozumi K, et al. The side-effects of ciclosporine-A and tacrolimus. Clin Nephrol. 1998;49(6):356–363.
  • Nankivell BJ, PʼNg CH, OʼConnell PJ, et al. Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras. Transplantation. 2016;100(8):1723–1731.
  • Snanoudj R, Royal V, Elie CR, et al. Specificity of histological markers of long-term CNI nephrotoxicity in kidney-transplant recipients under low-dose cyclosporine therapy. Am J Transplant. 2011;11(12):2635–2646.
  • Naesens M, Kuypers DRJ, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481–508.
  • Gomes V, Ferreira F, Guerra J, et al. New-onset diabetes after kidney transplantation: incidence and associated factors. World J Diabetes. 2018;9(7):132–137.
  • Mourad G, Glyda M, Albano L, et al. Incidence of posttransplantation diabetes mellitus in de novo kidney transplant recipients receiving prolonged-release tacrolimus-based immunosuppression with 2 different corticosteroid minimization strategies: ADVANCE, a randomized controlled trial. Transplantation. 2017;101(8):1924–1934.
  • Montori VM, Basu A, Erwin PJ, et al. Posttransplantation diabetes: a systematic review of the literature. Diabetes Care. 2002;25(3):583–592.
  • Gupta S, Pollack T, Fulkerson C, et al. Hyperglycemia in the posttransplant period: NODAT vs posttransplant diabetes mellitus. J Endocr Soc. 2018;2(11):1314–1319.
  • Langsford D, Dwyer K. Dysglycemia after renal transplantation: definition, pathogenesis, outcomes and implications for management. World J Diabetes. 2015;6(10):1132–1151.
  • Heisel O, Heisel R, Balshaw R, et al. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant. 2004;4(4):583–595.
  • Torres A, Hernández D, Moreso F, et al. Randomized controlled trial assessing the impact of tacrolimus versus cyclosporine on the incidence of posttransplant diabetes mellitus. Kidney Int Rep. 2018;3(6):1304–1315.
  • Dedinská I, Ĺ L, Miklušica M, et al. Twelve-month and five-year analyses of risk factors for new-onset diabetes after transplantation in a group of patients homogeneous for immunosuppression. Transplant Proc. 2015;47(6):1831–1839.
  • Song J-L, Li M, Yan L-N, et al. Higher tacrolimus blood concentration is related to increased risk of post-transplantation diabetes mellitus after living donor liver transplantation. Int J Surg Lond Engl. 2018;51:17–23
  • Tillmann FP, Schmitz M, Rump LC, et al. Impact of low-dose steroids on HbA1c levels and development of pre-diabetes and NODAT in non-diabetic renal transplant recipients on long-term follow-up. Int Urol Nephrol. 2018;50(4):771–777.
  • Tufton N, Ahmad S, Rolfe C, et al. New-onset diabetes after renal transplantation. Diabet Med. 2014;31(11):1284–1292.
  • Palepu S, Prasad GVR. New-onset diabetes mellitus after kidney transplantation: current status and future directions. World J Diabetes. 2015;6(3):445–455.
  • Li D-W, Lu T-F, Hua X-W, et al. Risk factors for new onset diabetes mellitus after liver transplantation: a meta-analysis. World J Gastroenterol. 2015;21(20):6329–6340.
  • Quteineh L, Wójtowicz A, Bochud P-Y, et al. Genetic immune and inflammatory markers associated with diabetes in solid organ transplant recipients. Am J Transplant. 2019;19(1):238–246.
  • Lancia P, Adam de Beaumais T, Jacqz-Aigrain E. Pharmacogenetics of posttransplant diabetes mellitus. Pharmacogenomics J. 2017;17(3):209–221.
  • Lancia P, Adam de Beaumais T, Elie V, et al. Pharmacogenetics of post-transplant diabetes mellitus in children with renal transplantation treated with tacrolimus. Pediatr Nephrol. 2018;33(6):1045–1055.
  • Shi D, Xie T, Deng J, et al. CYP3A4 and GCK genetic polymorphisms are the risk factors of tacrolimus-induced new-onset diabetes after transplantation in renal transplant recipients. Eur J Clin Pharmacol. 2018;74(6):723–729.
  • Lombardi A, Trimarco B, Iaccarino G, et al. Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. Cell Commun Signal. 2017;15(1):47.
  • Triñanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells. Am J Transplant. 2017;17(11):2829–2840.
  • Fonseca ACRG, Carvalho E, Eriksson JW, et al. Calcineurin is an important factor involved in glucose uptake in human adipocytes. Mol Cell Biochem. 2018;445(1–2):157–168.
  • Pereira MJ, Palming J, Rizell M, et al. Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents. J Clin Endocrinol Metab. 2014;99(10):E1885–E1894.
  • Li Z, Sun F, Zhang Y, et al. Tacrolimus induces insulin resistance and increases the glucose absorption in the jejunum: a potential mechanism of the diabetogenic effects. PloS One. 2015;10(11):e0143405.
  • Vincenti F, Friman S, Scheuermann E, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant. 2007;7(6):1506–1514.
  • Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007 déc 20;357(25):2562–2575.
  • Muduma G, Saunders R, Odeyemi I, et al. Systematic review and meta-analysis of tacrolimus versus ciclosporin as primary immunosuppression after liver transplant. PloS One. 2016;11(11):e0160421.
  • Rathi M, Rajkumar V, Rao N, et al. Conversion from tacrolimus to cyclosporine in patients with new-onset diabetes after renal transplant: an open-label randomized prospective pilot study. Transplant Proc. 2015;47(4):1158–1161.
  • Wissing KM, Abramowicz D, Weekers L, et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation. Am J Transplant. 2018;18(7):1726–1734.
  • Kälble F, Seckinger J, Schaier M, et al. Switch to an everolimus-facilitated cyclosporine A sparing immunosuppression improves glycemic control in selected kidney transplant recipients. Clin Transplant. 2017;31(8):e13024.
  • Song J-L, Gao W, Zhong Y, et al. Minimizing tacrolimus decreases the risk of new-onset diabetes mellitus after liver transplantation. World J Gastroenterol. 2016;22(6):2133–2141.
  • Wen X, Casey MJ, Santos AH, et al. Comparison of utilization and clinical outcomes for belatacept- and tacrolimus-based immunosuppression in renal transplant recipients. Am J Transplant. 2016;16(11):3202–3211.
  • Rostaing L, Bunnapradist S, Grinyó JM, et al. Novel once-daily extended-release tacrolimus versus twice-daily tacrolimus in de novo kidney transplant recipients: two-year results of phase 3, double-blind, randomized trial. Am J Kidney Dis. 2016;67(4):648–659.
  • Bayer ND, Cochetti PT, Anil Kumar MST, et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. Transplantation. 2010 Oct 27;90(8):861–866.
  • Israni AK, Snyder JJ, Skeans MA, et al. Clinical diagnosis of metabolic syndrome: predicting new-onset diabetes, coronary heart disease, and allograft failure late after kidney transplant. Transpl Int. 2012 Jul;25(7):748–757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.