9,440
Views
33
CrossRef citations to date
0
Altmetric
Drug Safety Evaluation

Safety of sugammadex for reversal of neuromuscular block

, , , , , , ORCID Icon & ORCID Icon show all
Pages 883-891 | Received 07 Jun 2019, Accepted 25 Jul 2019, Published online: 07 Aug 2019

References

  • Bruintjes MH, van Helden EV, Braat AE, et al. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth. 2017 Jun 1;118(6):834–842.
  • Martini CH, Boon M, Bevers RF, et al. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth. 2014 Mar;112(3):498–505.
  • Mencke T, Echternach M, Kleinschmidt S, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology. 2003 May;98(5):1049–1056.
  • Beecher HK, Todd DP. A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948–1952, inclusive. Ann Surg. 1954 Jul;140(1):2–35.
  • Murphy GS, Szokol JW, Marymont JH, et al. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008 Jul;107(1):130–137.
  • Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997 Oct;41(9):1095–1103.
  • Eriksson LI. Evidence-based practice and neuromuscular monitoring: it’s time for routine quantitative assessment. Anesthesiology. 2003 May;98(5):1037–1039.
  • Beemer GH, Bjorksten AR, Dawson PJ, et al. Determinants of the reversal time of competitive neuromuscular block by anticholinesterases. Br J Anaesth. 1991 Apr;66(4):469–475.
  • Kopman AF, Kopman DJ, Ng J, et al. Antagonism of profound cisatracurium and rocuronium block: the role of objective assessment of neuromuscular function. J Clin Anesth. 2005 Feb;17(1):30–35.
  • Bom A, Epemolu O, Hope F, et al. Selective relaxant binding agents for reversal of neuromuscular blockade. Curr Opin Pharmacol. 2007 Jun;7(3):298–302.
  • Bom A, Bradley M, Cameron K, et al. A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem Int Ed Engl. 2002 Jan 18;41(2):266–270.
  • Blobner M, Eriksson LI, Scholz J, et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: results of a randomised, controlled trial. Eur J Anaesthesiol. 2010 Oct;27(10):874–881.
  • Groudine SB, Soto R, Lien C, et al. A randomized, dose-finding, phase II study of the selective relaxant binding drug, Sugammadex, capable of safely reversing profound rocuronium-induced neuromuscular block. Anesth Analg. 2007 Mar;104(3):555–562.
  • Jones RK, Caldwell JE, Brull SJ, et al. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology. 2008 Nov;109(5):816–824.
  • Puhringer FK, Rex C, Sielenkamper AW, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology. 2008 Aug;109(2):188–197.
  • Sacan O, White PF, Tufanogullari B, et al. Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg. 2007 Mar;104(3):569–574.
  • Sparr HJ, Vermeyen KM, Beaufort AM, et al. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. Anesthesiology. 2007 May;106(5):935–943.
  • Suy K, Morias K, Cammu G, et al. Effective reversal of moderate rocuronium- or vecuronium-induced neuromuscular block with sugammadex, a selective relaxant binding agent. Anesthesiology. 2007 Feb;106(2):283–288.
  • de Boer HD, Driessen JJ, Marcus MA, et al. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: a multicenter, dose-finding and safety study. Anesthesiology. 2007 Aug;107(2):239–244.
  • Saokham P, Muankaew C, Jansook P, et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018 May 11;23(5).
  • Adam JM, Bennett DJ, Bom A, et al. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: synthesis and structure-activity relationships. J Med Chem. 2002 Apr 25;45(9):1806–1816.
  • Decoopman M, Cammu G, Suy K, et al. Reversal of pancuronium-induced block by the selective relaxant binding agent sugammadex: 9AP2-1. 2007;24:110.
  • Tassonyi E, Pongracz A, Nemes R, et al. Reversal of pipecuronium-induced moderate neuromuscular block with sugammadex in the presence of a sevoflurane anesthetic: a randomized trial. Anesth Analg. 2015 Aug;121(2):373–380.
  • Albuquerque EX, Pereira EF, Alkondon M, et al. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009 Jan;89(1):73–120.
  • Jonsson M, Gurley D, Dabrowski M, et al. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006 Sep;105(3):521–533.
  • Wyon N, Joensen H, Yamamoto Y, et al. Carotid body chemoreceptor function is impaired by vecuronium during hypoxia. Anesthesiology. 1998 Dec;89(6):1471–1479.
  • Fanelli V, Morita Y, Cappello P, et al. Neuromuscular blocking agent cisatracurium attenuates lung injury by inhibition of nicotinic acetylcholine receptor-alpha1. Anesthesiology. 2016 Jan;124(1):132–140.
  • Eriksson LI, Sato M, Severinghaus JW. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology. 1993 Apr;78(4):693–699.
  • Eriksson LI. Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand. 1996 May;40(5):520–523.
  • Broens SJL, Boon M, Martini CH, et al. Influence of reversal of a partial neuromuscular block on the ventilatory response to hypoxia: a randomized controlled trial in healthy volunteers. Anesthesiology. 2019 Apr 29. doi: 10.1097/ALN.0000000000002711.
  • Naguib M, Brull SJ, Kopman AF, et al. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg. 2018 Jul;127(1):71–80.
  • Hristovska AM, Duch P, Allingstrup M, et al. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults.A Cochrane systematic review with meta-analysis and trial sequential analysis. Anaesthesia. 2018 May;73(5):631–641.
  • Srivastava A, Hunter JM. Reversal of neuromuscular block. Br J Anaesth. 2009 Jul;103(1):115–129.
  • Drobnik L, Sparr HJ, Thorn SE, et al. A randomized simultaneous comparison of acceleromyography with a peripheral nerve stimulator for assessing reversal of rocuronium-induced neuromuscular blockade with sugammadex. Eur J Anaesthesiol. 2010 Oct;27(10):866–873.
  • Eleveld DJ, Kuizenga K, Proost JH, et al. A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth Analg. 2007 Mar;104(3):582–584.
  • Le Corre F, Nejmeddine S, Fatahine C, et al. Recurarization after sugammadex reversal in an obese patient. Can J Anaesth. 2011 Oct;58(10):944–947.
  • Murata T, Kubodera T, Ohbayashi M, et al. Recurarization after sugammadex following a prolonged rocuronium infusion for induced hypothermia. Can J Anaesth. 2013 May;60(5):508–509.
  • Boon M, Martini C, Broens S, et al. Improved postoperative oxygenation after antagonism of moderate neuromuscular block with sugammadex versus neostigmine after extubation in ‘blinded’ conditions. Br J Anaesth. 2016 Sep;117(3):410–411.
  • Kotake Y, Ochiai R, Suzuki T, et al. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg. 2013 Aug;117(2):345–351.
  • Nemes R, Fulesdi B, Pongracz A, et al. Impact of reversal strategies on the incidence of postoperative residual paralysis after rocuronium relaxation without neuromuscular monitoring: A partially randomised placebo controlled trial. Eur J Anaesthesiol. 2017 Sep;34(9):609–616.
  • Schaller SJ, Fink H, Ulm K, et al. Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block. Anesthesiology. 2010 Nov;113(5):1054–1060.
  • Kaufhold N, Schaller SJ, Stauble CG, et al. Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20)dagger. Br J Anaesth. 2016 Feb;116(2):233–240.
  • Bevan DR, Fiset P, Balendran P, et al. Pharmacodynamic behaviour of rocuronium in the elderly. Can J Anaesth. 1993 Feb;40(2):127–132.
  • Matteo RS, Ornstein E, Schwartz AE, et al. Pharmacokinetics and pharmacodynamics of rocuronium (Org 9426) in elderly surgical patients. Anesth Analg. 1993 Dec;77(6):1193–1197.
  • Murphy GS, Szokol JW, Avram MJ, et al. Residual neuromuscular block in the elderly: incidence and clinical implications. Anesthesiology. 2015 Dec;123(6):1322–1336.
  • McDonagh DL, Benedict PE, Kovac AL, et al. Efficacy, safety, and pharmacokinetics of sugammadex for the reversal of rocuronium-induced neuromuscular blockade in elderly patients. Anesthesiology. 2011 Feb;114(2):318–329.
  • Plaud B, Meretoja O, Hofmockel R, et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology. 2009 Feb;110(2):284–294.
  • Alonso A, de Boer HD, Booij L. Reversal of rocuronium-induced neuromuscular block by sugammadex in neonates. Eur J Anaesth. 2014 Jun;31:163.
  • Liu G, Wang R, Yan Y, et al. The efficacy and safety of sugammadex for reversing postoperative residual neuromuscular blockade in pediatric patients: A systematic review. Sci Rep. 2017 Jul 18;7(1):5724.
  • Gaver RS, Brenn BR, Gartley A, et al. Retrospective analysis of the safety and efficacy of sugammadex versus neostigmine for the reversal of neuromuscular blockade in children. 2019; Publish Ahead of Print
  • Gijsenbergh F, Ramael S, Houwing N, et al. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology. 2005 Oct;103(4):695–703.
  • Van Lancker P, Dillemans B, Bogaert T, et al. Ideal versus corrected body weight for dosage of sugammadex in morbidly obese patients. Anaesthesia. 2011 Aug;66(8):721–725.
  • Duarte N, Caetano AMM, Neto S, et al. Sugammadex by ideal body weight versus 20% and 40% corrected weight in bariatric surgery - double-blind randomized clinical trial. Rev Bras Anestesiol. 2018 May - Jun;68(3):219–224.
  • Sanfilippo M, Alessandri F, Wefki Abdelgawwad Shousha AA, et al. Sugammadex and ideal body weight in bariatric surgery. Anesthesiol Res Pract. 2013;2013:389782.
  • Llaurado S, Sabate A, Ferreres E, et al. Sugammadex ideal body weight dose adjusted by level of neuromuscular blockade in laparoscopic bariatric surgery. Anesthesiology. 2012 Jul;117(1):93–98.
  • Schmartz D, Guerci P, Fuchs-Buder T. Sugammadex dosing in bariatric patients. Anesthesiology. 2013 Mar;118(3):754.
  • Loupec T, Frasca D, Rousseau N, et al. Appropriate dosing of sugammadex to reverse deep rocuronium-induced neuromuscular blockade in morbidly obese patients. Anaesthesia. 2016 Mar;71(3):265–272.
  • Staals LM, Snoeck MM, Driessen JJ, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010 Jan;104(1):31–39.
  • Staals LM, Snoeck MM, Driessen JJ, et al. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth. 2008 Oct;101(4):492–497.
  • Cammu G, Van Vlem B, van Den Heuvel M, et al. Dialysability of sugammadex and its complex with rocuronium in intensive care patients with severe renal impairment. Br J Anaesth. 2012 Sep;109(3):382–390.
  • de Souza CM, Tardelli MA, Tedesco H, et al. Efficacy and safety of sugammadex in the reversal of deep neuromuscular blockade induced by rocuronium in patients with end-stage renal disease: A comparative prospective clinical trial. Eur J Anaesthesiol. 2015 Oct;32(10):681–686.
  • Panhuizen IF, Gold SJ, Buerkle C, et al. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth. 2015 May;114(5):777–784.
  • EMEA/H/C/000885-T/0030 Bridion EPAR Product information. First published 26/09/2008. Last update: 2018 Nov 05. [cited 2019 May 22]. Available from https://www.ema.europa.eu/en/medicines/human/EPAR/bridion
  • Cammu G, de Kam PJ, De Graeve K, et al. Repeat dosing of rocuronium 1.2 mg kg-1 after reversal of neuromuscular block by sugammadex 4.0 mg kg-1 in anaesthetized healthy volunteers: a modelling-based pilot study. Br J Anaesth. 2010 Oct;105(4):487–492.
  • Zwiers A, van den Heuvel M, Smeets J, et al. Assessment of the potential for displacement interactions with sugammadex: a pharmacokinetic-pharmacodynamic modelling approach. Clin Drug Investig. 2011;31(2):101–111.
  • Kam PJ, Heuvel MW, Grobara P, et al. Flucloxacillin and diclofenac do not cause recurrence of neuromuscular blockade after reversal with sugammadex. Clin Drug Investig. 2012 Mar 1;32(3):203–212.
  • Rezonja K, Sostaric M, Vidmar G, et al. Dexamethasone produces dose-dependent inhibition of sugammadex reversal in in vitro innervated primary human muscle cells. Anesth Analg. 2014 Apr;118(4):755–763.
  • Gunduz Gul G, Ozer AB, Demirel I, et al. The effect of sugammadex on steroid hormones: A randomized clinical study. J Clin Anesth. 2016;34:62–67.
  • Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981 Jul;53(1):58–68.
  • de Kam PJ, Nolte H, Good S, et al. Sugammadex hypersensitivity and underlying mechanisms: a randomised study of healthy non-anaesthetised volunteers. Br J Anaesth. 2018 Oct;121(4):758–767.
  • Min KC, Bondiskey P, Schulz V, et al. Hypersensitivity incidence after sugammadex administration in healthy subjects: a randomised controlled trial. Br J Anaesth. 2018 Oct;121(4):749–757.
  • Savic L, Savic S, Hopkins PM. Sugammadex: the sting in the tail? Br J Anaesth. 2018 Oct;121(4):694–697.
  • Takazawa T, Mitsuhata H, Mertes PM. Sugammadex and rocuronium-induced anaphylaxis. J Anesth. 2016 Apr;30(2):290–297.
  • Jabaley CS, Wolf FA, Lynde GC, et al. Crowdsourcing sugammadex adverse event rates using an in-app survey: feasibility assessment from an observational study. Ther Adv Drug Saf. 2018 Jul;9(7):331–342.
  • Miyazaki Y, Sunaga H, Kida K, et al. Incidence of anaphylaxis associated with sugammadex. Anesth Analg. 2018 May;126(5):1505–1508.
  • Sadleir PH, Russell T, Clarke RC, et al. Intraoperative anaphylaxis to sugammadex and a protocol for intradermal skin testing. Anaesth Intensive Care. 2014 Jan;42(1):93–96.
  • Okuno A, Matsuki Y, Tabata M, et al. A suspected case of coronary vasospasm induced by anaphylactic shock caused by rocuronium-sugammadex complex. J Clin Anesth. 2018;48:7.
  • Baldo BA, McDonnell NJ, Pham NH. The cyclodextrin sugammadex and anaphylaxis to rocuronium: is rocuronium still potentially allergenic in the inclusion complex form? Mini Rev Med Chem. 2012 Jul;12(8):701–712.
  • Platt PR, Clarke RC, Johnson GH, et al. Efficacy of sugammadex in rocuronium-induced or antibiotic-induced anaphylaxis.A case-control study. Anaesthesia. 2015 Nov;70(11):1264–1267.
  • McDonnell NJ, Pavy TJ, Green LK, et al. Sugammadex in the management of rocuronium-induced anaphylaxis. Br J Anaesth. 2011 Feb;106(2):199–201.
  • Clarke RC, Sadleir PH, Platt PR. The role of sugammadex in the development and modification of an allergic response to rocuronium: evidence from a cutaneous model. Anaesthesia. 2012 Mar;67(3):266–273.
  • Leysen J, Bridts CH, de Clerck LS, et al. Rocuronium-induced anaphylaxis is probably not mitigated by sugammadex: evidence from an in vitro experiment. Anaesthesia. 2011 Jun;66(6):526–527.
  • de Kam PJ, van Kuijk J, Smeets J, et al. Sugammadex is not associated with QT/QTc prolongation: methodology aspects of an intravenous moxifloxacin-controlled thorough QT study. Int J Clin Pharmacol Ther. 2012 Aug;50(8):595–604.
  • Cammu G, de Kam PJ, Demeyer I, et al. Safety and tolerability of single intravenous doses of sugammadex administered simultaneously with rocuronium or vecuronium in healthy volunteers. Br J Anaesth. 2008 Mar;100(3):373–379.
  • de Kam PJ, van Kuijk J, Prohn M, et al. Effects of sugammadex doses up to 32 mg/kg alone or in combination with rocuronium or vecuronium on QTc prolongation: a thorough QTc study. Clin Drug Investig. 2010;30(9):599–611.
  • Dahl V, Pendeville PE, Hollmann MW, et al. Safety and efficacy of sugammadex for the reversal of rocuronium-induced neuromuscular blockade in cardiac patients undergoing noncardiac surgery. Eur J Anaesthesiol. 2009 Oct;26(10):874–884.
  • Kizilay D, Dal D, Saracoglu KT, et al. Comparison of neostigmine and sugammadex for hemodynamic parameters in cardiac patients undergoing noncardiac surgery. J Clin Anesth. 2016;28:30–35.
  • Yamashita Y, Takasusuki T, Kimura Y, et al. Effects of neostigmine and sugammadex for reversal of neuromuscular blockade on QT dispersion under propofol anesthesia: a randomized controlled trial. Cardiol Ther. 2018 Dec;7(2):163–172.
  • de Kam PJ, Grobara P, Dennie J, et al. Effect of sugammadex on QT/QTc interval prolongation when combined with QTc-prolonging sevoflurane or propofol anaesthesia. Clin Drug Investig. 2013 Aug;33(8):545–551.
  • Hristovska AM, Duch P, Allingstrup M, et al. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017 Aug;14(8):CD012763.
  • de Kam PJ, Grobara P, Prohn M, et al. Effects of sugammadex on activated partial thromboplastin time and prothrombin time in healthy subjects. Int J Clin Pharmacol Ther. 2014 Mar;52(3):227–236.
  • Rahe-Meyer N, Fennema H, Schulman S, et al. Effect of reversal of neuromuscular blockade with sugammadex versus usual care on bleeding risk in a randomized study of surgical patients. Anesthesiology. 2014 Nov;121(5):969–977.
  • Dirkmann D, Britten MW, Pauling H, et al. Anticoagulant effect of sugammadex: just an in vitro artifact. Anesthesiology. 2016 Jun;124(6):1277–1285.
  • Tas N, Korkmaz H, Yagan O, et al. Effect of sugammadex on postoperative bleeding and coagulation parameters after septoplasty: a randomized prospective study. Med Sci Monit. 2015 Aug;14(21):2382–2386.
  • Hunter JM, Naguib M. Sugammadex-induced bradycardia and asystole: how great is the risk? Br J Anaesth. 2018 Jul;121(1):8–12.
  • Bhavani SS. Severe bradycardia and asystole after sugammadex. Br J Anaesth. 2018 Jul;121(1):95–96.
  • The Netherlands Pharmacovigilance Center Lareb. Bridion (sugammadex). [Cited 2019 May 22]. Available at: https://www.lareb.nl/nl/databank/Result?formGroup=&atc=V03AB35&drug=BRIDION+%28SUGAMMADEX%29
  • NDA 22225: sugammadex injection. Anesthetic and analgesic drug products advisory committee (AC) meeting November 6, 2015 sugammadex AC briefing document. [cited 2019 May 22]. Available from: https://www.fdanews.com/ext/resources/files/11-15/110615-merck.pdf?1515434323
  • Harper NJN, Cook TM, Garcez T, et al. Anaesthesia, surgery, and life-threatening allergic reactions: epidemiology and clinical features of perioperative anaphylaxis in the 6th National Audit Project (NAP6). Br J Anaesth. 2018 Jul;121(1):159–171.
  • Brueckmann B, Sasaki N, Grobara P, et al. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study. Br J Anaesth. 2015 Nov;115(5):743–751.
  • Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned.Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010 Jul;111(1):120–128.
  • Sasaki N, Meyer MJ, Malviya SA, et al. Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes: a prospective study. Anesthesiology. 2014 Nov;121(5):959–968.
  • Herbstreit F, Zigrahn D, Ochterbeck C, et al. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010 Dec;113(6):1280–1288.
  • Eikermann M, Fassbender P, Malhotra A, et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007 Oct;107(4):621–629.
  • Brull SJ, Kopman AF. Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology. 2017 Jan;126(1):173–190.
  • Ledowski T, Falke L, Johnston F, et al. Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade: sugammadex, neostigmine or no reversal. Eur J Anaesthesiol. 2014 Aug;31(8):423–429.
  • Kirmeier E, Eriksson LI, Lewald H, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med. 2019 Feb;7(2):129–140.
  • Plaud B, Gayat E, Nicolas P. Neuromuscular monitoring and reversal: responses to the POPULAR study. Lancet Respir Med. 2019 February 01;7(2):e5.
  • Fuchs-Buder T. Neuromuscular monitoring and reversal: responses to the POPULAR study. Lancet Respir Med. 2019 February 01;7(2):e3.
  • de Boer HD, Brull SJ, Naguib M, et al. Neuromuscular monitoring and reversal: responses to the POPULAR study. Lancet Respir Med. 2019 February 01;7(2):e4.