890
Views
24
CrossRef citations to date
0
Altmetric
Review

Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update

, , ORCID Icon &
Pages 1203-1218 | Received 19 Aug 2019, Accepted 15 Oct 2019, Published online: 05 Nov 2019

References

  • Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967 Feb 16;276(7):374–379. PubMed PMID: 5334614; eng.
  • Luquin MR, Scipioni O, Vaamonde J, et al. Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord. 1992;7(2):117–124. PubMed PMID: 1350058; eng.
  • Fahn S. The spectrum of levodopa-induced dyskinesias. Ann Neurol. 2000 Apr;47(4 Suppl 1):S2–9. discussion S9–11. PubMed PMID: 10762127; eng.
  • Ruzicka E, Zarubova K, Nutt JG, et al. “Silly walks” in Parkinson’s disease: unusual presentation of dopaminergic-induced dyskinesias. Mov Disord. 2011 Aug 1;26(9):1782–1784. PubMed PMID: 21495073; PubMed Central PMCID: PMCPMC3139772. eng.
  • Hauser RA, Friedlander J, Zesiewicz TA, et al. A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clin Neuropharmacol. 2000 Mar–Apr;23(2):75–81. PubMed PMID: 10803796; eng.
  • Colosimo C, Martinez-Martin P, Fabbrini G, et al. Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Mov Disord. 2010 Jul 15;25(9):1131–1142. PubMed PMID: 20310033; eng.
  • Odin P, Chaudhuri KR, Volkmann J, et al. Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson’s disease. NPJ Parkinson’s Dis. 2018;4:14. PubMed PMID: 29761156; eng.
  • Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000 Nov;123(Pt 11):2297–2305. PubMed PMID: 11050029; eng.
  • Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001 May;16(3):448–458. PubMed PMID: 11391738; eng.
  • Titova N, Levin O, Katunina E, et al. ‘Levodopa Phobia’: a review of a not uncommon and consequential phenomenon. NPJ Parkinson’s Dis. 2018;4:31. PubMed PMID: 30302392; PubMed Central PMCID: PMCPMC6168519. eng.
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004 Dec 9;351(24):2498–2508. PubMed PMID: 15590952; eng.
  • Jenner P, McCreary AC, Scheller DK. Continuous drug delivery in early- and late-stage Parkinson’s disease as a strategy for avoiding dyskinesia induction and expression. J Neural Transm (Vienna, Austria: 1996). 2011 Dec;118(12):1691–1702. PubMed PMID: 21881838; eng.
  • Blanchet PJ, Calon F, Martel JC, et al. Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther. 1995 Feb;272(2):854–859. PubMed PMID: 7853204; eng.
  • Antonini A, Chaudhuri KR, Martinez-Martin P, et al. Oral and infusion levodopa-based strategies for managing motor complications in patients with Parkinson’s disease. CNS Drugs. 2010 Feb;24(2):119–129. PubMed PMID: 20088619; eng.
  • Stocchi F, Rascol O, Kieburtz K, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010 Jul;68(1):18–27. PubMed PMID: 20582993; eng.
  • Manson A, Stirpe P, Schrag A. Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J Parkinsons Dis. 2012;2(3):189–198. PubMed PMID: 23938226; eng.
  • Eusebi P, Romoli M, Paoletti FP, et al. Risk factors of levodopa-induced dyskinesia in Parkinson’s disease: results from the PPMI cohort. NPJ Parkinson’s Dis. 2018;4:33. PubMed PMID: 30480086; PubMed Central PMCID: PMCPMC6240081. eng.
  • Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol. 2006 Dec;63(12):1756–1760. PubMed PMID: 17172616; eng.
  • Gray R, Ives N, Rick C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014 Sep 27;384(9949):1196–1205. PubMed PMID: 24928805; eng.
  • Parkinson Study Group CALM Cohort Investigators. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009 May;66(5):563–570. PubMed PMID: 19433655; eng.
  • Chaudhuri KR, Jenner P, Antonini A. Should there be less emphasis on levodopa-induced dyskinesia in Parkinson’s disease? Mov Disord. 2019 Jun;34(6):816–819. PubMed PMID: 30983023; eng.
  • Politis M, Wu K, Molloy S, et al. Parkinson’s disease symptoms: the patient’s perspective. Mov Disord. 2010 Aug 15;25(11):1646–1651. PubMed PMID: 20629164; eng.
  • Scott NW, Macleod AD, Counsell CE. Motor complications in an incident Parkinson’s disease cohort. Eur J Neurol. 2016 Feb;23(2):304–312. PubMed PMID: 26074125; eng.
  • Bjornestad A, Forsaa EB, Pedersen KF, et al. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat Disord. 2016 Jan;22:48–53. PubMed PMID: 26585090; eng.
  • Antonini A, Fung VS, Boyd JT, et al. Effect of levodopa-carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord. 2016 Apr;31(4):530–537. PubMed PMID: 26817533; PubMed Central PMCID: PMCPMC5066747. eng.
  • Biundo R, Weis L, Abbruzzese G, et al. Impulse control disorders in advanced Parkinson’s disease with dyskinesia: the ALTHEA study. Mov Disord. 2017 Nov;32(11):1557–1565. PubMed PMID: 28960475; eng.
  • Hota S, Podlewska A, Rizos A, et al. FM2-2 Exploratory analysis whether wearable sensor data can correlate with aspects of non-motor symptoms in parkinson’s: a real life study with the parkinson’s kinetigraphTM. J Neurol Neurosurg. 2019;90:e24.
  • Turcano P, Mielke MM, Bower JH, et al. Levodopa-induced dyskinesia in Parkinson disease: a population-based cohort study. Neurology. 2018 Dec 11;91(24):e2238–e2243. PubMed PMID: 30404780; PubMed Central PMCID: PMCPMC6329327. eng.
  • Oertel W, Eggert K, Pahwa R, et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov Disord. 2017 Dec;32(12):1701–1709. PubMed PMID: 28833562; PubMed Central PMCID: PMCPMC5763269. eng.
  • Kumar R, Hauser RA, Mostillo J, et al. Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int J Neurosci. 2016;126(1):20–24. PubMed PMID: 24007304; eng.
  • Antonini A, Poewe W, Chaudhuri KR, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s: final results of the GLORIA registry. Parkinsonism Relat Disord. 2017 Dec;45:13–20. PubMed PMID: 29037498; eng.
  • Martinez-Martin P, Reddy P, Katzenschlager R, et al. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov Disord. 2015 Apr;30(4):510–516. PubMed PMID: 25382161; eng.
  • Dafsari HS, Martinez-Martin P, Rizos A, et al. EuroInf 2: subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson’s disease. Mov Disord. 2019 Mar;34(3):353–365. PubMed PMID: 30719763; eng.
  • Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008 Sep;9(9):665–677. PubMed PMID: 18714325; eng.
  • Cilia R, Akpalu A, Sarfo FS, et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain. 2014 Oct;137(Pt 10):2731–2742. PubMed PMID: 25034897; PubMed Central PMCID: PMCPMC4163032. eng.
  • Langston JW. The MPTP story. J Parkinsons Dis. 2017;7(s1):S11–S19. PubMed PMID: 28282815; PubMed Central PMCID: PMCPMC5345642. eng.
  • Winkler C, Kirik D, Bjorklund A, et al. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2002 Jul;10(2):165–186. PubMed PMID: 12127155; eng.
  • Di Monte DA, McCormack A, Petzinger G, et al. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord. 2000 May;15(3):459–466. PubMed PMID: 10830409; eng.
  • Cenci MA. Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol. 2014;5:242. PubMed PMID: 25566170; PubMed Central PMCID: PMCPMC4266027. eng.
  • Abercrombie ED, Bonatz AE, Zigmond MJ. Effects of L-dopa on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. 1990 Aug 13;525(1):36–44. PubMed PMID: 2123121; eng.
  • Ray Chaudhuri K, Qamar MA, Rajah T, et al. Non-oral dopaminergic therapies for Parkinson’s disease: current treatments and the future. NPJ Parkinson’s Dis. 2016;2:16023. PubMed PMID: 28725704; eng.
  • Poewe W, Antonini A. Novel formulations and modes of delivery of levodopa. Mov Disord. 2015 Jan;30(1):114–120. PubMed PMID: 25476691; eng.
  • Nishijima H, Arai A, Kimura T, et al. Drebrin immunoreactivity in the striatum of a rat model of levodopa-induced dyskinesia. Neuropathology. 2013 Aug;33(4):391–396. PubMed PMID: 23241013; eng.
  • Gagnon D, Petryszyn S, Sanchez MG, et al. Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep. 2017 Jan 27;7:41432. PubMed PMID: 28128287; PubMed Central PMCID: PMCPMC5269744. eng.
  • Ingham CA, Hood SH, van Maldegem B, et al. Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp Brain Res. 1993;93(1):17–27. PubMed PMID: 7682182; eng.
  • Suarez LM, Solis O, Carames JM, et al. L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice. Biol Psychiatry. 2014 May 1;75(9):711–722. PubMed PMID: 23769604; eng.
  • Villalba RM, Lee H, Smith Y. Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol. 2009 Feb;215(2):220–227. PubMed PMID: 18977221; PubMed Central PMCID: PMCPMC2680135. eng.
  • McNeill TH, Brown SA, Rafols JA, et al. Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res. 1988 Jul 5;455(1):148–152. PubMed PMID: 3416180; eng.
  • Toy WA, Petzinger GM, Leyshon BJ, et al. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol Dis. 2014 Mar;63:201–209. PubMed PMID: 24316165; PubMed Central PMCID: PMCPMC3940446. eng.
  • Spigolon G, Fisone G. Signal transduction in L-DOPA-induced dyskinesia: from receptor sensitization to abnormal gene expression. J Neural Transm. 2018 Aug;125(8):1171–1186. 10.1007/s00702-018-1847-7. PubMed PMID: 29396608; PubMed Central PMCID: PMCPMC6060907. eng.
  • Bezard E, Ferry S, Mach U, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med. 2003 Jun;9(6):762–767. PubMed PMID: 12740572; eng.
  • Fiorentini C, Busi C, Gorruso E, et al. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol. 2008 Jul;74(1):59–69. PubMed PMID: 18424554; eng.
  • Picconi B, De Leonibus E, Calabresi P. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. J Neural Transm. 2018 Aug;125(8):1263–1271. 10.1007/s00702-018-1864-6. PubMed PMID: 29492662; eng.
  • Calabresi P, Maj R, Mercuri NB, et al. Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett. 1992 Aug 3;142(1):95–99. PubMed PMID: 1357611; eng.
  • Centonze D, Gubellini P, Picconi B, et al. Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol. 1999 Dec;82(6):3575–3579. PubMed PMID: 10601483; eng.
  • Cerovic M, Bagetta V, Pendolino V, et al. Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in L-DOPA-induced dyskinesia. Biol Psychiatry. 2015 Jan 15;77(2):106–115. PubMed PMID: 24844602; eng.
  • Belujon P, Lodge DJ, Grace AA. Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Mov Disord. 2010 Aug 15;25(11):1568–1576. PubMed PMID: 20623773; PubMed Central PMCID: PMCPMC3224800. eng.
  • Morgante F, Espay AJ, Gunraj C, et al. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain. 2006 Apr;129(Pt 4):1059–1069. PubMed PMID: 16476674; eng.
  • Ueki Y, Mima T, Kotb MA, et al. Altered plasticity of the human motor cortex in Parkinson’s disease. Ann Neurol. 2006 Jan;59(1):60–71. PubMed PMID: 16240372; eng.
  • Prescott IA, Dostrovsky JO, Moro E, et al. Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain. 2009 Feb;132(Pt 2):309–318. PubMed PMID: 19050033; eng.
  • Picconi B, Centonze D, Hakansson K, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci. 2003 May;6(5):501–506. PubMed PMID: 12665799; eng.
  • Picconi B, Paille V, Ghiglieri V, et al. l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis. 2008 Feb;29(2):327–335. PubMed PMID: 17997101; eng.
  • Albin RL, Young AB, Penney JB. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995 Feb;18(2):63–64. PubMed PMID: 7537410; eng.
  • Kuhn AA, Kupsch A, Schneider GH, et al. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006 Apr;23(7):1956–1960. PubMed PMID: 16623853; eng.
  • Chen CC, Kuhn AA, Hoffmann KT, et al. Oscillatory pallidal local field potential activity correlates with involuntary EMG in dystonia. Neurology. 2006 Feb 14;66(3):418–420. PubMed PMID: 16476944; eng.
  • Kuhn AA, Kempf F, Brucke C, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008 Jun 11;28(24):6165–6173. PubMed PMID: 18550758; eng.
  • Rosa M, Arlotti M, Ardolino G, et al. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov Disord. 2015 Jun;30(7):1003–1005. PubMed PMID: 25999288; PubMed Central PMCID: PMCPMC5032989. eng.
  • Swann NC, de Hemptinne C, Miocinovic S, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci. 2016 Jun 15;36(24):6445–6458. PubMed PMID: 27307233; PubMed Central PMCID: PMCPMC5015781. eng.
  • Zheng Z, Li Y, Li J, et al. Stimulation-induced dyskinesia in the early stage after subthalamic deep brain stimulation. Stereotact Funct Neurosurg. 2010;88(1):29–34. PubMed PMID: 19940547; eng.
  • Sriram A, Foote KD, Oyama G, et al. Brittle dyskinesia following STN but not GPi deep brain stimulation. Tremor Other Hyperkinet Mov. 2014;4:242. PubMed PMID: 24932426; PubMed Central PMCID: PMCPMC4050173. eng.
  • Lane EL. Clinical and experimental experiences of graft-induced dyskinesia. Int Rev Neurobiol. 2011;98:173–186. PubMed PMID: 21907087; eng.
  • Carlsson T, Winkler C, Lundblad M, et al. Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol Dis. 2006 Mar;21(3):657–668. PubMed PMID: 16256359; eng.
  • Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005 Aug;20(8):919–931. PubMed PMID: 16007614; eng.
  • Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson’s disease. Prog Neurobiol. 2011 Oct;95(2):163–212. PubMed PMID: 21878363; eng.
  • Jenner P. The treatment of levodopa-induced dyskinesias: surfing the serotoninergic wave. Mov Disord. 2018 Nov;33(11):1670–1672. PubMed PMID: 30485909; eng.
  • Meadows SM, Conti MM, Gross L, et al. Diverse serotonin actions of vilazodone reduce l-3,4-dihidroxyphenylalanine-induced dyskinesia in hemi-parkinsonian rats. Mov Disord. 2018 Nov;33(11):1740–1749. PubMed PMID: 30485908; eng.
  • Carlsson T, Carta M, Winkler C, et al. Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci. 2007 Jul 25;27(30):8011–8022. PubMed PMID: 17652591; eng.
  • Goetz CG, Damier P, Hicking C, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord. 2007 Jan 15;22(2):179–186. PubMed PMID: 17094088; eng.
  • Goetz CG, Laska E, Hicking C, et al. Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord. 2008 Apr 15;23(5):700–707. PubMed PMID: 18175337; PubMed Central PMCID: PMCPMC2689363. eng.
  • Cenci MA. Glutamatergic pathways as a target for the treatment of dyskinesias in Parkinson’s disease. Biochem Soc Trans. 2014 Apr;42(2):600–604. PubMed PMID: 24646284; eng.
  • Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012 Apr 3;78(14):1096–1099. PubMed PMID: 22474298; eng.
  • Mellone M, Stanic J, Hernandez LF, et al. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci. 2015;9:245. PubMed PMID: 26217176; PubMed Central PMCID: PMCPMC4491616. eng.
  • Stanic J, Mellone M, Napolitano F, et al. Rabphilin 3A: a novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis. 2017 Dec;108:54–64. PubMed PMID: 28823933; eng.
  • Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008 Oct 15;23(13):1860–1866. PubMed PMID: 18759356; PubMed Central PMCID: PMCPMC3390310. eng.
  • Berg D, Godau J, Trenkwalder C, et al. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord. 2011 Jun;26(7):1243–1250. PubMed PMID: 21484867; eng.
  • Stocchi F, Rascol O, Destee A, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. 2013 Nov;28(13):1838–1846. PubMed PMID: 23853029; eng.
  • Tison F, Keywood C, Wakefield M, et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2016 Sep;31(9):1373–1380. PubMed PMID: 27214664; eng.
  • Trenkwalder C, Stocchi F, Poewe W, et al. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord. 2016 Jul;31(7):1054–1058. PubMed PMID: 27214258; eng.
  • Corvol JC, Durif F, Meissner WG, et al. Naftazone in advanced Parkinson’s disease: an acute L-DOPA challenge randomized controlled trial. Parkinsonism Relat Disord. 2019 Mar;60:51–56. PubMed PMID: 30297210; eng.
  • Kosillo P, Zhang YF, Threlfell S, et al. Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb Cortex. 2016 Aug 27 PubMed PMID: 27566978; PubMed Central PMCID: PMCPMC5066833. eng. DOI:10.1093/cercor/bhw252.
  • Bordia T, Campos C, Huang L, et al. Continuous and intermittent nicotine treatment reduces L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther. 2008 Oct;327(1):239–247. PubMed PMID: 18650244; eng.
  • Quik M, Mallela A, Ly J, et al. Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord. 2013 Sep;28(10):1398–1406. PubMed PMID: 23836409; PubMed Central PMCID: PMCPMC3787977. eng.
  • Bordia T, Campos C, McIntosh JM, et al. Nicotinic receptor-mediated reduction in L-DOPA-induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther. 2010 Jun;333(3):929–938. PubMed PMID: 20200117; PubMed Central PMCID: PMCPMC2879940. eng.
  • Villafane G, Thiriez C, Audureau E, et al. High-dose transdermal nicotine in Parkinson’s disease patients: a randomized, open-label, blinded-endpoint evaluation phase 2 study. Eur J Neurol. 2018 Jan;25(1):120–127. PubMed PMID: 28960663; eng.
  • Trenkwalder C, Berg D, Rascol O, et al. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov Disord. 2016 Jul;31(7):1049–1054. PubMed PMID: 26990766; eng.
  • Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008 Jul;88(3):1183–1241. PubMed PMID: 18626069; eng.
  • Lim SAO, Xia R, Ding Y, et al. Enhanced histamine H2 excitation of striatal cholinergic interneurons in L-DOPA-induced dyskinesia. Neurobiol Dis. 2015 Apr;76:67–76. PubMed PMID: 25661301; eng.
  • Johnston TH, van der Meij A, Brotchie JM, et al. Effect of histamine H2 receptor antagonism on levodopa-induced dyskinesia in the MPTP-macaque model of Parkinson’s disease. Mov Disord. 2010 Jul 30;25(10):1379–1390. PubMed PMID: 20310030; eng.
  • Mestre TA, Shah BB, Connolly BS, et al. Famotidine, a histamine H2 receptor antagonist, does not reduce levodopa-induced dyskinesia in Parkinson’s disease: a proof-of-concept study. Mov Disord Clin Pract. 2014 Sep;1(3):219–224. PubMed PMID: 30363717; PubMed Central PMCID: PMCPMC6182979. eng.
  • Barnum CJ, Bhide N, Lindenbach D, et al. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by alpha- and beta-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacol Biochem Behav. 2012 Jan;100(3):607–615. PubMed PMID: 21978941; PubMed Central PMCID: PMCPMC3242909. eng.
  • Rascol O, Arnulf I, Peyro-Saint Paul H, et al. Idazoxan, an alpha-2 antagonist, and L-DOPA-induced dyskinesias in patients with Parkinson’s disease. Mov Disord. 2001 Jul;16(4):708–713. PubMed PMID: 11481696; eng.
  • Manson AJ, Iakovidou E, Lees AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000 Mar;15(2):336–337. PubMed PMID: 10752589; eng.
  • Lewitt PA, Hauser RA, Lu M, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012 Jul 10;79(2):163–169. PubMed PMID: 22744665; eng.
  • Garcia C, Palomo-Garo C, Gomez-Galvez Y, et al. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol. 2016 Jul;173(13):2069–2079. PubMed PMID: 26059564; PubMed Central PMCID: PMCPMC4908199. eng.
  • van der Stelt M, Fox SH, Hill M, et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J. 2005 Jul;19(9):1140–1142. PubMed PMID: 15894565; eng.
  • Hadjiconstantinou M, Neff NH. Nicotine and endogenous opioids: neurochemical and pharmacological evidence. Neuropharmacology. 2011 Jun;60(7–8):1209–1220. PubMed PMID: 21108953; eng.
  • Pan J, Cai H. Opioid system in L-DOPA-induced dyskinesia. Transl Neurodegener. 2017;6:1. PubMed PMID: 28105331; PubMed Central PMCID: PMCPMC5240307. eng.
  • Henry B, Fox SH, Crossman AR, et al. Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol. 2001 Sep;171(1):139–146. PubMed PMID: 11520128; eng.
  • Koprich JB, Fox SH, Johnston TH, et al. The selective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in MPTP-lesioned macaque model of Parkinson’s disease. Mov Disord. 2011 Jun;26(7):1225–1233. PubMed PMID: 21465551; eng.
  • Cox H, Togasaki DM, Chen L, et al. The selective kappa-opioid receptor agonist U50,488 reduces L-dopa-induced dyskinesias but worsens parkinsonism in MPTP-treated primates. Exp Neurol. 2007 May;205(1):101–107. PubMed PMID: 17335811; PubMed Central PMCID: PMCPMC2001245. eng.
  • Potts LF, Park ES, Woo JM, et al. Dual kappa-agonist/mu-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson disease. Ann Neurol. 2015 Jun;77(6):930–941. PubMed PMID: 25820831; PubMed Central PMCID: PMCPMC6235675. eng.
  • Fox S, Silverdale M, Kellett M, et al. Non-subtype-selective opioid receptor antagonism in treatment of levodopa-induced motor complications in Parkinson’s disease. Mov Disord. 2004 May;19(5):554–560. PubMed PMID: 15133820; eng.
  • Rascol O, Fabre N, Blin O, et al. Naltrexone, an opiate antagonist, fails to modify motor symptoms in patients with Parkinson’s disease. Mov Disord. 1994 Jul;9(4):437–440. PubMed PMID: 7969211; eng.
  • Beggiato S, Tomasini MC, Borelli AC, et al. Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission. J Neurochem. 2016 Jul;138(2):254–264. PubMed PMID: 27127992; eng.
  • Wang WW, Zhang MM, Zhang XR, et al. A meta-analysis of adenosine A2A receptor antagonists on levodopa-induced dyskinesia in vivo. Front Neurol. 2017;8:702. PubMed PMID: 29375464; PubMed Central PMCID: PMCPMC5770694. eng.
  • Hauser RA, Shulman LM, Trugman JM, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord. 2008 Nov 15;23(15):2177–2185. PubMed PMID: 18831530; eng.
  • Mizuno Y, Hasegawa K, Kondo T, et al. Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord. 2010 Jul 30;25(10):1437–1443. PubMed PMID: 20629136; eng.
  • Factor S, Mark MH, Watts R, et al. A long-term study of istradefylline in subjects with fluctuating Parkinson’s disease. Parkinsonism Relat Disord. 2010 Jul;16(6):423–426. PubMed PMID: 20338800; eng.
  • Fox SH, Katzenschlager R, Lim SY, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018 Aug;33(8):1248–1266. PubMed PMID: 29570866; eng.
  • Fox SH, Brotchie JM. Viewpoint: developing drugs for levodopa-induced dyskinesia in PD: lessons learnt, what does the future hold? Eur J Neurosci. 2019 Feb;49(3):399–409. PubMed PMID: 30269407; eng.
  • Huot P, Johnston TH, Koprich JB, et al. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev. 2013 Jan;65(1):171–222. PubMed PMID: 23319549; eng.
  • Katzenschlager R, Head J, Schrag A, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008 Aug 12;71(7):474–480. PubMed PMID: 18579806; eng.
  • Giladi N, Ghys L, Surmann E, et al. Effects of long-term treatment with rotigotine transdermal system on dyskinesia in patients with early-stage Parkinson’s disease. Parkinsonism Relat Disord. 2014 Dec;20(12):1345–1351. PubMed PMID: 25444083; eng.
  • Vorovenci RJ, Antonini A. The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother. 2015;1512:1383–1390. PubMed PMID: 26630457; eng.
  • Bibbiani F, Oh JD, Petzer JP, et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol. 2003 Nov;184(1):285–294. PubMed PMID: 14637099; eng.
  • Munoz A, Li Q, Gardoni F, et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain. 2008 Dec;131(Pt 12):3380–3394. PubMed PMID: 18952677; eng.
  • Visanji NP, Fox SH, Johnston T, et al. Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neurobiol Dis. 2009 Aug;35(2):184–192. PubMed PMID: 19118628; eng.
  • Kim A, Kim YE, Yun JY, et al. Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: an open-label, pragmatic trial. J Mov Disord. 2018 May;11(2):65–71. PubMed PMID: 29860788; PubMed Central PMCID: PMCPMC5990909. eng.
  • Titova N, Chaudhuri KR. Personalized medicine in Parkinson’s disease: time to be precise. Mov Disord. 2017 Aug;32(8):1147–1154. PubMed PMID: 28605054; PubMed Central PMCID: PMCPMC5575483. eng.
  • Antonini A, Stoessl AJ, Kleinman LS, et al. Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson’s disease: a multi-country Delphi-panel approach. Curr Med Res Opin. 2018 Dec;34(12):2063–2073. PubMed PMID: 30016901; eng.
  • Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord. 2005 Feb;20(2):151–157. PubMed PMID: 15390035; eng.
  • Mouradian MM, Juncos JL, Fabbrini G, et al. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, Part II. Ann Neurol. 1988 Sep;24(3):372–378. PubMed PMID: 3228271; eng.
  • Antonini A, Moro E, Godeiro C, et al. Medical and surgical management of advanced Parkinson’s disease. Mov Disord. 2018 Jul;33(6):900–908. PubMed PMID: 29570862; eng.
  • van Wamelen DJ, Grigoriou S, Chaudhuri KR, et al. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. J Parkinsons Dis. 2018;8(s1):S65–s72. PubMed PMID: 30584160; PubMed Central PMCID: PMCPMC6311379. eng.
  • Antonini A, Isaias IU, Rodolfi G, et al. A 5-year prospective assessment of advanced Parkinson disease patients treated with subcutaneous apomorphine infusion or deep brain stimulation. J Neurol. 2011 Apr;258(4):579–585. PubMed PMID: 20972684; eng.
  • Antonini A, Jenner P. Apomorphine infusion in advanced Parkinson disease. Nat Rev Neurol. 2018 Dec;14(12):693–694. 10.1038/s41582-018-0083-y. PubMed PMID: 30279608; eng.
  • Katzenschlager R, Poewe W, Rascol O, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018 Sep;17(9):749–759. PubMed PMID: 30055903; eng.
  • Durif F, Deffond D, Dordain G, et al. Apomorphine and diphasic dyskinesia. Clin Neuropharmacol. 1994 Feb;17(1):99–102. PubMed PMID: 8149366; eng.
  • Ostergaard L, Werdelin L, Odin P, et al. Pen injected apomorphine against off phenomena in late Parkinson’s disease: a double blind, placebo controlled study. J Neurol Neurosurg Psychiatry. 1995 Jun;58(6):681–687. PubMed PMID: 7608665; PubMed Central PMCID: PMCPMC1073544. eng.
  • Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014 Feb;13(2):141–149. PubMed PMID: 24361112; PubMed Central PMCID: PMCPMC4643396. eng.
  • Meloni M, Solla P, Mascia MM, et al. Diphasic dyskinesias during levodopa-carbidopa intestinal gel (LCIG) infusion in Parkinson’s disease. Parkinsonism Relat Disord. 2017 Apr;37:92–96. PubMed PMID: 28063683; eng.
  • Ramot Y, Nyska A, Maronpot RR, et al. Ninety-day local tolerability and toxicity study of ND0612, a novel formulation of levodopa/ carbidopa,administered by subcutaneous continuous infusion in minipigs. Toxicol Pathol. 2017 Aug;45(6):764–773. PubMed PMID: 28891435; eng.
  • Senek M, Nielsen EI, Nyholm D. Levodopa-entacapone-carbidopa intestinal gel in Parkinson’s disease: a randomized crossover study. Mov Disord. 2017 Feb;32(2):283–286. PubMed PMID: 27987231; eng.
  • Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain. 2015 Apr;138(Pt 4):963–973.
  • Fox SH, Metman LV, Nutt JG, et al. Trial of dextromethorphan/quinidine to treat levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2017 Jun;32(6):893–903.
  • Borgohain R, Szasz J, Stanzione P, et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord. 2014;29:229–237.
  • Schapira AH, Fox SH, Hauser RA, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 2017;74:216–224.
  • Borgohain R, Szasz J, Stanzione P, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014;29:1273–1280.
  • Kobylecki C, Burn DJ, Kass-Iliyya L, et al. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2014 Apr;20(4):452–455. Epub 2014 Jan 28.
  • Stathis P, Konitsiotis S, Tagaris G, et al. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26:264–270.
  • Wolz M, Lohle M, Strecker K, et al. Levetiracetam for levodopa induced dyskinesia in Parkinson’s disease: a randomized, double blind, placebo-controlled trial. J Neural Transm (Vienna). 2010;117:1279–1286.
  • Wong KK, Alty JE, Goy AG, et al. A randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia in Parkinson’s disease. Mov Disord. 2011 Jul;26(8):1552–1555. Epub 2011 Apr 29.
  • Pahwa R, Tanner CM, Hauser RA, et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study): a randomized clinical trial. JAMA Neurol. 2017 Aug 1;74(8):941–949. PubMed PMID: 28604926; PubMed Central PMCID: PMCPMC5710325. eng.
  • Hauser RA, Pahwa R, Tanner CM, et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 2 Study): interim results of an open-label safety study. J Parkinsons Dis. 2017;7(3):511–522. PubMed PMID: 28777755; PubMed Central PMCID: PMCPMC5611804. eng.
  • Isaacson SH, Fahn S, Pahwa R, et al. Parkinson’s patients with dyskinesia switched from immediate release amantadine to open-label ADS-5102. Mov Disord Clin Pract. 2018 Mar–Apr;5(2):183–190. PubMed PMID: 29780852; PubMed Central PMCID: PMCPMC5947645. eng.
  • Durif F, Debilly B, Galitzky M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology. 2004 Feb 10;62(3):381–388. PubMed PMID: 14872017; eng.
  • Volkmann J, Albanese A, Antonini A, et al. Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review. J Neurol. 2013 Nov;260(11):2701–2714. PubMed PMID: 23287972; PubMed Central PMCID: PMCPMC3825542. eng.
  • Liu Y, Li F, Luo H, et al. Improvement of deep brain stimulation in dyskinesia in Parkinson’s disease: a meta-analysis. Front Neurol. 2019;10:151. PubMed PMID: 30858823; PubMed Central PMCID: PMCPMC6397831. eng.
  • Kleiner-Fisman G, Herzog J, Fisman DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006 Jun;21(Suppl 14):S290–304. PubMed PMID: 16892449; eng.
  • Vitek JL, Bakay RA, Freeman A, et al. Randomized trial of pallidotomy versus medical therapy for Parkinson’s disease. Ann Neurol. 2003 May;53(5):558–569. PubMed PMID: 12730989; eng.
  • Esselink RA, de Bie RM, de Haan RJ, et al. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in Parkinson’s disease: one year follow-up of a randomised observer-blind multi centre trial. Acta Neurochir (Wien). 2006 Dec;148(12):1247–55. discussion 1255. PubMed PMID: 17072792; eng.
  • Esselink RA, de Bie RM, de Haan RJ, et al. Long-term superiority of subthalamic nucleus stimulation over pallidotomy in Parkinson disease. Neurology. 2009 Jul 14;73(2):151–153. PubMed PMID: 19597136; eng.
  • Beck G, Singh A, Zhang J, et al. Role of striatal deltaFosB in l-dopa-induced dyskinesias of parkinsonian nonhuman primates. Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18664–18672. PubMed PMID: 31455727; eng.
  • Zhang ZR, Zhang XR, Luan XQ, et al. Striatal overexpression of beta-arrestin2 counteracts L-dopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson’s disease rats. Neurochem Int. 2019 Sep 3;131:104543. PubMed PMID: 31491493; eng.
  • Titova N, Padmakumar C, Lewis SJG, et al. Parkinson’s: a syndrome rather than a disease? J Neural Transm. 2017 Aug;124(8):907–914. 10.1007/s00702-016-1667-6. PubMed PMID: 28028643; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.