121
Views
0
CrossRef citations to date
0
Altmetric
Review

TBC and COVID: an interplay between two infections

, , , &
Pages 303-311 | Received 28 Feb 2023, Accepted 18 Apr 2023, Published online: 23 Apr 2023

References

  • Dara M, Sotgiu G, Reichler MR, et al. New diseases and old threats: lessons from tuberculosis for the COVID-19 response. Int J Tubercul Lung Dis. 2020 May 1;24(5):544–545. DOI:10.5588/ijtld.20.0151.
  • Azkur AK, Akdis M, Azkur D, et al. Immune response to Sars-Cov-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–1581. DOI:10.1111/all.14364
  • Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021 Jan 1;11(1):316–329. PMID: 33391477; PMCID: PMC7681075. DOI:10.7150/thno.49713
  • Agrati C, Carsetti R, Bordoni V, et al. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology. 2022 Nov;167(3):287–302. Epub 2022 Sep 5. PMID: 35971810; PMCID: PMC9538066. DOI:10.1111/imm.13564
  • Murdaca G, Di Gioacchino M, Greco M, et al. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells. 2021 Oct 14;10(10):2754. PMID: 34685733; PMCID: PMC8534912. DOI:10.3390/cells10102754
  • Liu Q, Chi S, Dmytruk K, et al. Coronaviral infection and interferon response: the virus-host arms race and COVID-19. Viruses. 14(7): PMID: 35891331; PMCID: PMC9325157:1349. 2022 Jun 21. DOI:10.3390/v14071349
  • Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev. 2021 May 12;34(3):e00299. Erratum in: Clin Microbiol Rev. 2021 Dec 15;34(4):e0016321. PMID: 33980688; PMCID: PMC8142516. Parthasarathy U, Martinelli R, Vollmann EH, et Al. The impact of DAMP(4):e0016321. PMID: 33980688; PMCID: PMC8142516. Parthasarathy U, Martinelli R, Vollmann EH, et Al. The impact of DAMPmediated inflammation in severe COVID19 and related disorders. Biochem Pharmacol. 2022 Jan;195:114847. inflammation in severe COVID19 and related disorders. Biochem Pharmacol. 2022 Jan;195:114847. doi: 10.1016/j.bcp.2021.114847. Epub 2021 Nov 18. PMID: 34801526; PMCID: PMC8600760. DOI:10.1128/CMR.00299-20
  • Parthasarathy U, Martinelli R, Vollmann EH, et al. The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochem Pharmacol. 2022 Jan;195:114847. Epub 2021 Nov 18. PMID: 34801526; PMCID: PMC8600760. DOI:10.1016/j.bcp.2021.114847.
  • Gil-Etayo FJ, Garcinuño S, Utrero-Rico A, et al. An Early Th1 Response is a Key Factor for a Favorable COVID-19 Evolution. Biomedicines. 2022 Jan 27;10(2):296. PMID: 35203509; PMCID: PMC8869678. DOI:10.3390/biomedicines10020296
  • Shivshankar P, Karmouty-Quintana H, Mills T, et al. Sars-Cov-2 Infection: host Response, Immunity, and Therapeutic Targets. Inflammation. 2022 Aug;45(4):1430–1449. Epub 2022 Mar 23. PMID: 35320469; PMCID: PMC8940980. DOI:10.1007/s10753-022-01656-7
  • Parackova Z, Bloomfield M, Klocperk A, et al. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukocyte Biol. 2021 Jan;109(1):73–76. Epub 2020 Dec 2. PMID: 33289169; PMCID: PMC7753339. DOI:10.1002/JLB.4COVCRA0820-481RRR.
  • Wang F, Nie J, Wang H, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020;221(11):1762–1769.
  • Martonik D, Parfieniuk-Kowerda A, Rogalska M, et al. The Role of Th17 Response in COVID-19. Cells. 2021 Jun 19;10(6):1550. PMID: 34205262; PMCID: PMC8235311. DOI:10.3390/cells10061550
  • Declercq J, De Leeuw E, Lambrecht BN. Inflammasomes and IL-1 family cytokines in Sars-Cov-2 infection: from prognostic marker to therapeutic agent. Cytokine. 2022 Sep;157:155934. Epub 2022 Jun 7. PMID: 35709568; PMCID: PMC9170572. doi:10.1016/j.cyto.2022.155934.
  • Jiang Y, Zhao T, Zhou X, et al. Inflammatory pathways in COVID-19: mechanism and therapeutic interventions. MedComm. 2022 Aug 1;3(3):e154. PMID: 35923762; PMCID: PMC9340488. DOI:10.1002/mco2.154
  • Farahani M, Niknam Z, Mohammadi Amirabad L, et al. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother. 2022 Jan;145:112420. Epub 2021 Nov 12. PMID: 34801852; PMCID: PMC8585639. DOI:10.1016/j.biopha.2021.112420.
  • https://www.who.int/news-room/fact-sheets/detail/Tuberculosis#:~:text=People%20with%20active%20TUBERCULOSIS%20can,people%20with%20TUBERCULOSIS%20will%20die
  • Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol. 2017 Aug;25(8):688–697. Epub 2017 Mar 30. PMID: 28366292; PMCID: PMC5522344. DOI:10.1016/j.tim.2017.03.007
  • Ahmad F, Rani A, Alam A, et al. Macrophage: a Cell with Many Faces and Functions in Tuberculosis. Front Immunol. 2022 May 6;13:747799. PMID: 35603185; PMCID: PMC9122124. DOI:10.3389/fimmu.2022.747799
  • Mayer-Barber KD, Barber DL. Innate and Adaptive Cellular Immune Responses to Mycobacterium Tuberculosis Infection. Cold Spring Harb Perspect Med. 2015 Jul 17;5(12):a018424. PMID: 26187873; PMCID: PMC4665043. DOI:10.1101/cshperspect.a018424
  • Flynn JL, Chan J. Immune evasion by Mycobacterium Tuberculosis: living with the enemy. Curr Opin Immunol. 2003 Aug;15(4):450–455. PMID: 12900278. DOI:10.1016/s0952-7915(03)00075-x
  • Taha RA, Kotsimbos TC, Song YL, et al. IFN-gamma and IL-12 are increased in active compared with inactive tuberculosis. Am J Respir Crit Care Med. 1997 Mar;155(3):1135–1139. PMID: 9116999. DOI:10.1164/ajrccm.155.3.9116999
  • Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis. 2002 Nov;2(Suppl 2):ii54–8. PMID: 12379623; PMCID: PMC1766701. DOI:10.1136/ard.61.suppl_2.ii54
  • Simmons JD, Stein CM, Seshadri C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol. 2018 Sep;18(9):575–589. PMID: 29895826; PMCID: PMC6278832. DOI:10.1038/s41577-018-0025-3
  • Karakousis PC, Bishai WR, Dorman SE. Mycobacterium Tuberculosis cell envelope lipids and the host immune response. Cell Microbiol. 2004 Feb;6(2):105–116. PMID: 14706097. DOI:10.1046/j.1462-5822.2003.00351.x
  • Lee J, Repasy T, Papavinasasundaram K, et al. Mycobacterium Tuberculosis induces an atypical cell death mode to escape from infected macrophages. PLoS ONE. 2011 Mar 31;6(3):e18367. PMID: 21483832; PMCID: PMC3069075. DOI:10.1371/journal.pone.0018367
  • Nisa A, Kipper FC, Panigrahy D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol. 2022 Nov 1;323(5):C1444–1474. Epub 2022 Oct 3. PMID: 36189975; PMCID: PMC9662802. DOI:10.1152/ajpcell.00246.2022
  • Miggiano R, Rizzi M, Ferraris DM. Mycobacterium Tuberculosis Pathogenesis, Infection Prevention and Treatment. Pathogens. 9(5): PMID: 32443469; PMCID: PMC7281116:385. 2020 May 18. 10.3390/pathogens9050385
  • Muefong CN, Sutherland JS. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front Immunol. 2020 May 27;11:962. PMID: 32536917; PMCID: PMC7266980. DOI:10.3389/fimmu.2020.00962
  • Algood HM, Lin PL, Flynn JL. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis. 2005 Aug 1;41(3):S189–93. PMID: 15983898. DOI:10.1086/429994
  • Larsen SE, Williams BD, Rais M, et al. It Takes a Village: the Multifaceted Immune Response to Mycobacterium Tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol. 2022 Mar 10;13:840225. PMID: 35359957; PMCID: PMC8960931. DOI:10.3389/fimmu.2022.840225
  • Henderson RA, Watkins SC, Flynn JL. Activation of human dendritic cells following infection with Mycobacterium Tuberculosis. J Immunol. 1997;159(2):635–643. PubMed: 9218578. DOI:10.4049/jimmunol.159.2.635.
  • Sia JK, Rengarajan J, Fischetti VA. Immunology of Mycobacterium Tuberculosis Infections. Microbiol Spectr. 2019 Jul;7(4). PMID: 31298204; PMCID: PMC6636855. DOI:10.1128/microbiolspec.GPP3-0022-2018
  • Smith I. Mycobacterium Tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003 Jul;16(3):463–496. PMID: 12857778; PMCID: PMC164219. DOI:10.1128/CMR.16.3.463-496.2003
  • Roach DR, Bean AG, Demangel C, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002 May 1;168(9):4620–4627. PMID: 11971010. DOI:10.4049/jimmunol.168.9.4620
  • McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol. 2022 Feb;23(2):318–329. Epub 2022 Jan 20. Erratum in: Nat Immunol. 2022 May;23(5):814. PMID: 35058616; PMCID: PMC8810384. DOI:10.1038/s41590-021-01121-x
  • Saunders BM, Britton WJ. Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol. 2007 Feb;85(2):103–111. Epub 2007 Jan 9. PMID: 17213830. DOI:10.1038/sj.icb.7100027
  • Fatima S, Kumari A, Das G, et al. Tuberculosis vaccine: a journey from BCG to present. Life Sci. 2020 Jul 1;252:117594. Epub 2020 Apr 16. PMID: 32305522. DOI:10.1016/j.lfs.2020.117594
  • Mousquer GT, Peres A, Fiegenbaum M. Pathology of tuberculosis/COVID-19 Co-Infection: the phantom menace. Tuberculosis (Edinb). 2021 Jan;126:102020. Epub 2020 Nov 17. PMID: 33246269; PMCID: PMC7669479. DOI:10.1016/j.tube.2020.102020.
  • Tapela K, Ochieng’ Olwal C, Quaye O. Parallels in the pathogenesis of Sars-Cov-2 and M. Tuberculosis: a synergistic or antagonistic alliance? Future Microbiol. 2020 Dec;15:1691–1695. Epub 2021 Jan 6. PMID: 33404259; PMCID: PMC7789731. DOI:10.2217/fmb-2020-0179.
  • Tadolini M, García-García JM, Blanc FX, et al. On Tuberculosis and COVID-19 co-infection. Eur Respir J. 2020 Aug 20;56(2):2002328. PMID: 32586888; PMCID: PMC7315815. DOI:10.1183/13993003.02328-2020
  • Mertaniasih NM, Soedarsono S, Pakasi TT, et al. Proposed Algorithm for Integrated Management of tuberculosis-Sars-Cov-2 Co-Infection in a Tuberculosis-Endemic Country. Trop Med Infect Dis. 2022 Nov 10;7(11):367. DOI:10.3390/tropicalmed7110367
  • Kumar DR, Bhattacharya DB, Meena DVet A. COVID-19 and tuberculosis co-infection - ‘Finishing touch’’ in perfect recipe to ‘severity’ or ‘death’. J Infect. 2020 Sep;81(3):e39–40. Epub 2020 Jun 29. PMID: 32610112; PMCID: PMC7322446. DOI:10.1016/j.jinf.2020.06.062
  • Pinheiro DO, Pessoa MSL, Lima CFC, et al. Tuberculosis and coronavirus disease 2019 coinfection. Rev Soc Bras Med Trop. 2020 Nov 6;53:e20200671. PMID: 33174965; PMCID: PMC7670739. DOI:10.1590/0037-8682-0671-2020
  • Amelio P, Portevin D, Hella J, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019 Feb 19;93(5):e01728. PMID: 30541853; PMCID: PMC6384080. DOI:10.1128/JVI.01728-18
  • Day CL, Abrahams DA, Harris LD, et al. HIV-1 Infection is Associated with Depletion and Functional Impairment of Mycobacterium tuberculosis-Specific CD4 T Cells in Individuals with Latent Tuberculosis Infection. J Immunol. 2017 Sep 15;199(6):2069–2080. Epub 2017 Jul 31. PMID: 28760884; PMCID: PMC5624214. DOI:10.4049/jimmunol.1700558
  • Shariq M, Sheikh JA, Quadir N, et al. COVID-19 and Tuberculosis: the double whammy of respiratory pathogens. Eur Respir Rev. 2022 Apr 13;31(164):210264. PMID: 35418488; PMCID: PMC9488123. DOI:10.1183/16000617.0264-2021
  • Alyasin S, Kanannejad Z, Esmaeilzadeh H, et al. Relationship between Bacillus Calmette Guerin Vaccination Policy and Coronavirus Disease-2019 (COVID-19) Incidence. Iran J Allergy Asthma Immunol. 2021 Feb 11;20(1):106–113. doi:10.18502/ijaai.v20i1.5417. PMID: 33639625.
  • Visca D, Ong CWM, Tiberi S, et al. Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. Pulmonology. 2021 Mar;27(2):151–165. Epub 2021 Jan 22. PMID: 33547029; PMCID: PMC7825946. DOI:10.1016/j.pulmoe.2020.12.012
  • Canetti D, Antonello RM, Saderi L, et al. Impact of Sars-Cov-2 infection on Tuberculosis outcome and follow-up in Italy during the first COVID-19 pandemic wave: a nationwide online survey. Infez Med. 2022 Sep 1;30(3):418–426. doi: 10.53854/liim-3003-10. PMID: 36148161; PMCID: PMC9448321.
  • Rajamanickam A, Pavan Kumar N, Chandrasekaran P, et al. Effect of SARS-CoV-2 seropositivity on antigen - specific cytokine and chemokine responses in latent tuberculosis. Cytokine. Feb 2022;150:155785. Epub 2021 Dec 14. PMID: 34933240; PMCID: PMC8668379. DOI:10.1016/j.cyto.2021.155785.
  • Luke E, Swafford K, Shirazi G, et al.TB and COVID-19: an Exploration of the Characteristics and Resulting Complications of Co-infectionFront BiosciSchol2022 Mar 1Vol. 141p. 610.31083/j.fbs1401006 PMID: 35320917; PMCID: PMC9005765
  • Ochani R, Asad A, Yasmin F, et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med. 2021 Mar 1;29(1):20–36. PMID: 33664170.
  • Lyon SM, Rossman MD, Schlossberg D. Pulmonary Tuberculosis. Microbiol Spectr. 2017 Jan;5(1). PMID: 28185620. DOI:10.1128/microbiolspec.TNMI7-0032-2016
  • Bostanghadiri N, Jazi FM, Razavi S, et al. Mycobacterium tuberculosis and SARS-CoV-2 Coinfections: a Review. Front Microbiol. 2022 Feb 3;12:747827. PMID: 35185809; PMCID: PMC8851160. DOI:10.3389/fmicb.2021.747827
  • Peresi E, Silva SM, Calvi SA, et al. Cytokines and acute phase serum proteins as markers of inflammatory regression during the treatment of pulmonary tuberculosis. J Bras Pneumol. 2008;34(11):942–949.
  • Shah AR, Desai KN, Maru AM. Evaluation of hematological parameters in pulmonary tuberculosis patients. J Family Med Prim Care. 2022 Aug;11(8):4424–4428. Epub 2022 Aug 30. PMID: 36353004; PMCID: PMC9638606. DOI:10.4103/jfmpc.jfmpc_2451_21
  • Pasco ST, Anguita J. Lessons from Bacillus Calmette-Guérin: harnessing Trained Immunity for Vaccine Development. Cells. 9(9): PMID: 32948003; PMCID: PMC7564904:2109. 2020 Sep 16. 10.3390/cells9092109
  • Parmar K, Siddiqui A, Nugent K. Bacillus Calmette-Guerin Vaccine and Nonspecific Immunity. Am J Med Sci. 2021 Jun;361(6):683–689. Epub 2021 Mar 8. PMID: 33705721; PMCID: PMC7938189. DOI:10.1016/j.amjms.2021.03.003
  • Hollm-Delgado MG, Elizabeth AS, Black RE, Acute Lower Respiratory Infection Among Bacille Calmette-Guérin (Bcg)–vaccinated Children. Pediatrics. 2014;133(1):e73.
  • Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. (2020) Mar 4;20(6):375–388.
  • Samuels THA, Wyss R, Ongarello S, et al. Evaluation of the diagnostic performance of laboratory-based c-reactive protein as a triage test for active pulmonary tuberculosis. PLoS ONE. 2021 Jul 12;16(7):e0254002. PMID: 34252128; PMCID: PMC8274836. DOI:10.1371/journal.pone.0254002
  • Rohini K, Surekha Bhat M, Srikumar PS, et al. Assessment of Hematological Parameters in Pulmonary Tuberculosis Patients. Indian J Clin Biochem. 2016 Jul;31(3):332–335. Epub 2015 Nov 17. PMID: 27382206; PMCID: PMC4910852. DOI:10.1007/s12291-015-0535-8
  • Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005 Mar 10;352(10):1011–1023. PMID: 15758012. DOI:10.1056/NEJMra041809
  • Madan M, Pahuja S, Mohan A, et al. TB infection and BCG vaccination: are we protected from COVID-19? Public Health. 2020 Aug;185:91–92. Epub 2020 May 30. PMID: 32590235; PMCID: PMC7260483. DOI:10.1016/j.puhe.2020.05.042.
  • Madan M, Baldwa B, Raja A, et al. Impact of Latent Tuberculosis on Severity and Outcomes in Admitted COVID-19 Patients. Cureus. 2021 Nov 25;13(11):e19882. DOI:10.7759/cureus.19882. PMID: 34966601; PMCID: PMC8709920.
  • Rajamanickam A, Kumar NP, Padmapriyadarsini C, et al. Latent tuberculosis co-infection is associated with heightened levels of humoral, cytokine and acute phase responses in seropositive SARS-CoV-2 infection. J Infect. 2021 Sep;83(3):339–346. Epub 2021 Jul 28. PMID: 34329676; PMCID: PMC8316716. DOI:10.1016/j.jinf.2021.07.029
  • Ramos-Martinez E, Falfán-Valencia, Et Al R, et al. Effect of BCG revaccination on occupationally exposed medical personnel vaccinated against SARS-CoV-2. Cells. 2021;10(11):3179.
  • Petrone L, Petruccioli E, Vanini V et al, Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. Int J Infect Dis. 2021;113(Suppl 1):S82–87. DOI:10.1016/j.ijid.2021.02.090
  • Boppana TK, Mittal S, Madan K, et al. Tuberculosis endemicity and BCG vaccination: protection against COVID-19. Monaldi Arch Chest Dis. 2022 Jun 24;93(1). DOI:10.4081/monaldi.2022.2281 PMID: 35754393.
  • Wang J, Zhang Q, Wang H, et al. The Potential Roles of BCG Vaccine in the Prevention or Treatment of COVID-19. Front BiosciLandmark2022 May 13;27(5):157. DOI:10.31083/j.fbl2705157. PMID: 35638424
  • Kulesza J, Kulesza E, Koziński P, et al. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel). 2022 Sep 30;10(10):1641. PMID: 36298506; PMCID: PMC9610589. DOI:10.3390/vaccines10101641
  • Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186–193.
  • Lee J, Park, Et Al S-S, et al. Lymphopenia as a biological predictor of outcomes in COVID-19 patients: a nationwide cohort study. Cancers (Basel). 2021;13(3):471.
  • Aspatwar A, Gong W, Wang S, et al. Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. Epub 2021 May 7. PMID: 33960271; PMCID: PMC8108189.[ Int Rev Immunol. 2022;41(2):283–296. DOI:10.1080/08830185.2021.1922685
  • Koneru G, Batiha, Et Al GES, et al. BCG vaccine-induced trained immunity and COVID-19: protective or bystander? infect Drug Resist. 2021;Volume 14:1169–1184.
  • Kaur G, Singh S, Nanda S, et al. Fiction and Facts about BCG Imparting Trained Immunity against COVID-19. Vaccines (Basel). 2022 Jun 23;10(7):1006. PMID: 35891168; PMCID: PMC9316941. DOI:10.3390/vaccines10071006
  • Leentjens J, Kox, Et Al M, et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: a randomized, placebo-controlled pilot study. J Infect Dis. 2015;212(12):1930–1938.
  • Netea MG, Quintin J, van der Meer, et al. Trained immunity: a memory for innate host defense. Cell Host & Microbe. 2011;9(5):355–361.
  • Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, et al. The BCG vaccine for COVID-19: first verdict and future directions. Front Immunol. 2021;12:632478. DOI:10.3389/fimmu.2021.632478.
  • McQuaid CF, McCreesh N, Read JM, et al. The potential impact of COVID-19-related disruption on Tuberculosis burden. Eur Respir J. 2020 Aug 13;56(2):2001718. PMID: 32513784; PMCID: PMC7278504. DOI:10.1183/13993003.01718-2020
  • Gopalaswamy R, Subbian S. Corticosteroids for COVID-19 Therapy: potential Implications on Tuberculosis. Int J Mol Sci. 2021 Apr 6;22(7):3773. DOI:10.3390/ijms22073773. PMID: 33917321; PMCID: PMC8038708.
  • Noori MAM, Younes I, Latif A, et al. Reactivation of Tuberculosis in the Setting of COVID-19 Infection. Cureus. 2022 Mar 23;14(3):e23417. PMID: 35481299; PMCID: PMC9033637. DOI:10.7759/cureus.23417
  • Friedman A, DeGeorge KC. Reactivation of latent Tuberculosis in a COVID-19 patient on corticosteroid treatment. BMJ Case Rep. 2022 May 11;15(5):e247562. PMID: 35545310; PMCID: PMC9096484. DOI:10.1136/bcr-2021-247562
  • Charoenlap S, Piromsopa K, Charoenlap C. Potential role of Bacillus Calmette-Guérin (BCG) vaccination in COVID-19 pandemic mortality: epidemiological and Immunological aspects. Asian Pac J Allergy Immunol. 2020 Sep;38(3):150–161. PMID: 32686943. DOI:10.12932/AP-310520-0863
  • Lorenzetti R, Zullo A, Ridola L, et al. Higher risk of Tuberculosis reactivation when anti-TNF is combined with immunosuppressive agents: a systematic review of randomized controlled trials. Ann Med. 2014 Nov;46(7):547–554. Epub 2014 Aug 8. PMID: 25105206. DOI:10.3109/07853890.2014.941919
  • Fehily SR, Al-Ani AH, Abdelmalak J, et al. Review article: latent Tuberculosis in patients with inflammatory bowel diseases receiving immunosuppression-risks, screening, diagnosis and management. Aliment Pharmacol Ther. 2022 Jul;56(1):6–27. Epub 2022 May 20. PMID: 35596242; PMCID: PMC9325436. DOI:10.1111/apt.16952
  • Cantini F, Nannini C, Niccoli L, et al. SAFEBIO (Italian multidisciplinary task force for screening of Tuberculosis before and during biologic therapy). Guidance for the management of patients with latent Tuberculosis infection requiring biologic therapy in rheumatology and dermatology clinical practice. Autoimmun Rev. 2015 Jun;14(6):503–509. Epub 2015 Jan 21. PMID: 25617816. DOI:10.1016/j.autrev.2015.01.011
  • Jin BC, Moon HJ, Kim SW. Latent and Active Tuberculosis Infection in Patients with Inflammatory Bowel Disease. Korean J Gastroenterol. 2022 Aug 25;80(2):72–76. Korean PMID: 36004634. DOI:10.4166/kjg.2022.086
  • Xu Y, Yang Q, Zhou J, et al. Comparison of QuantiFERON-tuberculosi Gold In-Tube and QuantiFERON-tuberculosi Gold-Plus in the Diagnosis of Mycobacterium Tuberculosis Infections in Immunocompromised Patients: a Real-World Study. Microbiol Spectr. 2022 Apr 27;10(2):e0187021. Epub 2022 Mar 2. PMID: 35234509; PMCID: PMC9045206. DOI:10.1128/spectrum.01870-21
  • Calzada-Hernández J, Anton J, Martín de Carpi J, et al. Dual latent Tuberculosis screening with tuberculin skin tests and QuantiFERON-TUBERCULOSIS assays before TNF-α inhibitor initiation in children in Spain. Eur J Pediatr. 2023 Jan;182(1):307–317. Epub 2022 Nov 5. PMID: 36335186; PMCID: PMC9829583. DOI:10.1007/s00431-022-04640-3.
  • Murdaca G, Paladin F, Tonacci A, et al. Involvement of Il-33 in the Pathogenesis and Prognosis of Major Respiratory Viral Infections: future Perspectives for Personalized Therapy. Biomedicines. 10(3): PMID: 35327516; PMCID: PMC8944994:715. 2022 Mar 19. 10.3390/biomedicines10030715
  • Murdaca G, Paladin F, Tonacci A, et al. The Potential Role of Cytokine Storm Pathway in the Clinical Course of Viral Respiratory Pandemic. Biomedicines. 9(11): PMID: 34829918; PMCID: PMC8615478:1688. 2021 Nov 15. DOI:10.3390/biomedicines9111688
  • Megna M, Ferrillo M, Ruggiero A, et al. QuantiFERON tuberculosis-gold conversion rate among psoriasis patients under biologics: a 9-year retrospective study. Int J Dermatol. 2021 Mar;60(3):352–357. Epub 2020 Sep 29. PMID: 32989759. DOI:10.1111/ijd.15217
  • Winje BA, Oftung F, Korsvold GE, et al. Screening for Tuberculosis infection among newly arrived asylum seekers: comparison of QuantiFERON tuberculosis Gold with tuberculin skin test. BMC Infect Dis. 2008 May 14;8:65. PMID: 18479508; PMCID: PMC2405787. DOI:10.1186/1471-2334-8-65
  • Hsiao CY, Chiu HY, Wang TS, et al. Serial QuantiFERON-Tuberculosis Gold testing in patients with psoriasis treated with ustekinumab. PLoS ONE. 2017 Sep 8;12(9):e0184178. PMID: 28886099; PMCID: PMC5590912. DOI:10.1371/journal.pone.0184178
  • Akdogan N, Dogan S, Gulseren D, et al. Serial Quantiferon-tuberculosis Gold test results in 279 patients with psoriasis receiving biologic therapy. Dermatol Ther. 2021 Jan;34(1):e14699. Epub 2020 Dec 30. PMID: 33368959. DOI:10.1111/dth.14699

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.