122
Views
0
CrossRef citations to date
0
Altmetric
Review

Chemical-induced liver cancer: an adverse outcome pathway perspective

ORCID Icon, , , , &
Pages 425-438 | Received 15 Nov 2023, Accepted 29 Feb 2024, Published online: 13 Mar 2024

References

  • Alves VM, Muratov EN, Zakharov A, et al. Chemical toxicity prediction for major classes of industrial chemicals: is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem Toxicol. 2018;112:526–534. doi: 10.1016/j.fct.2017.04.008
  • Sayiner M, Golabi P, Younossi ZM. Disease burden of hepatocellular carcinoma: a global perspective. Dig Dis Sci. 2019;64(4):910–917. doi: 10.1007/s10620-019-05537-2
  • Yauk CL, Harrill AH, Ellinger-Ziegelbauer H, et al. A cross-sector call to improve carcinogenicity risk assessment through use of genomic methodologies. Reg Toxicol Pharm. 2020;110:104526. doi: 10.1016/j.yrtph.2019.104526
  • European Union (EU). EC directive 2003/15/EC amending directive 78/786/EEC on the approximation of the laws of the member states relating to cosmetic products. Off J Eur Union. 2003;66:26–35.
  • Bajard L, Adamovsky O, Audouze K, et al. Application of AOPs to assist regulatory assessment of chemical risks – case studies, needs and recommendations. Environ Res. 2023;217:114650. doi: 10.1016/j.envres.2022.114650
  • Estabrook RW, Birt D, Carlson GP, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6(1):1–42. doi: 10.1097/00008571-199602000-00002
  • Vinken M. Adverse outcome pathways as tools to assess drug-induced toxicity. In: Benfenati E, editor. Silico Methods For Predicting Drug Toxicity. Vol. 1425, Methods in Molecular Biology. New York, NY: Humana press; 2016. p. 325–337. doi: 10.1242/dmm.049010
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi: 10.1016/S0092-8674(00)81683-9
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059
  • Smith MT, Guyton KZ, Gibbons CF, et al. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect. 2016;124(6):713–721. doi: 10.1289/ehp.1509912
  • Smith MT, Guyton KZ, Kleinstreuer N, et al. The key characteristics of carcinogens: relationship to the hallmarks of cancer, relevant biomarkers, and assays to measure them. Cancer Epidemiol Biomarkers Prev. 2020;29(10):1887–1903. doi: 10.1158/1055-9965.EPI-19-1346
  • Brescia S, Alexander-White C, Li H, et al. Risk assessment in the 21st century: where are we heading? Toxicol Res. 2023;12(1):1–11. doi: 10.1093/toxres/tfac087
  • U.S. Environmental Protection Agency (EPA). U.S. EPA conference on the state of the science on development and use of New Approach Methods (NAMs); 2022. p. 1–31.
  • European Chemicals Agency (ECHA). New approach methodologies in regulatory science. 2016.
  • National Research Council. Toxicity testing in the 21st century. Washington, DC: National Academies Press; 2007.
  • Krewski D, Andersen ME, Tyshenko MG, et al. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol. 2020;94(1):1–58. doi: 10.1007/s00204-019-02613-4
  • Organisation for Economic Co-operation and Development (OECD). Revised guidance document on developing and assessing adverse outcome pathways. Paris, France: OECD; 2017. ENV/JM/MONO(2013)6.
  • Organisation for Economic Co-operation and Development (OECD). Draft guidance document for the scientific review of adverse outcome pathways. Paris, France: OECD; 2020.
  • Knapen D, Angrish MM, Fortin MC, et al. Adverse outcome pathway networks I: development and applications. Environ Toxicol Chem. 2018;37(6):1723–1733. doi: 10.1002/etc.4125
  • Organisation for Economic Co-operation and Development (OECD). AOP-Wiki [Internet]. [cited 2023 Aug 31]. Available from: https://aopwiki.org/
  • Babiker S, Lotfollahzadeh A, Recio-Boiles HM. Liver cancer. Treasure Island: StatPearls Publishing; 2023.
  • Burden N, Sewell F, Andersen ME, et al. Adverse outcome pathways can drive non‐animal approaches for safety assessment. J Appl Toxicol. 2015;35(9):971–975. doi: 10.1002/jat.3165
  • Green T, Toghill A, Lee R, et al. Thiamethoxam induced mouse liver tumors and their relevance to humans. Toxicol Sci. 2005;86(1):36–47. doi: 10.1093/toxsci/kfi124
  • National Institutes of Health. Thiamethoxam (CAS#153719-23-4) GreenScreen® for safer chemicals assessment. 2015.
  • Calvisi DF, Pinna F, Ladu S, et al. Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis. 2008;29(8):1639–1647. doi: 10.1093/carcin/bgn155
  • European Chemicals Agency (ECHA). Thiamethoxam. Helsinki, Finland: ECHA; 2018. CLH-O-0000006724-70-01/F.
  • Pest management regulatory agency health Canada. Evaluation report - Thiamethoxam. 2007. p. 1–96.
  • Pascale RM, Frau M, Feo F. Prognostic significance of iNOS in hepatocellular carcinoma. In: Bonavida B, editor. Nitric Oxide (NO) and cancer. Cancer Drug Discovery and Development. New York, NY: Springer; 2010. p. 309–328. doi: 10.1007/978-1-4419-1432-3_17
  • Wang R, Geller DA, Wink DA, et al. NO and hepatocellular cancer. Br J Pharmacol. 2020;177(24):5459–5466. doi: 10.1111/bph.14838
  • Dios-Barbeito S, González R, Cadenas M, et al. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide. 2022;128:1–11. doi: 10.1016/j.niox.2022.07.006
  • Pastoor T, Rose P, Lloyd S, et al. Case study: weight of evidence evaluation of the human health relevance of thiamethoxam-related mouse liver tumors. Toxicol Sci. 2005;86(1):56–60. doi: 10.1093/toxsci/kfi126
  • Dubois V, Eeckhoute J, Lefebvre P, et al. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest. 2017;127(4):1202–1214. doi: 10.1172/JCI88894
  • Wang Y, Nakajima T, Gonzalez FJ, et al. Ppars as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci. 2020;21(6):2061. doi: 10.3390/ijms21062061
  • Hays T. Role of peroxisome proliferator-activated receptor- (PPAR) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis. 2004;26(1):219–227. doi: 10.1093/carcin/bgh285
  • Yang Q, Ito S, Gonzalez FJ. Hepatocyte-restricted constitutive activation of PPAR induces hepatoproliferation but not hepatocarcinogenesis. Carcinogenesis. 2007;28(6):1171–1177. doi: 10.1093/carcin/bgm046
  • Corton JC, Peters JM, Klaunig JE. The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol. 2018;92(1):83–119. doi: 10.1007/s00204-017-2094-7
  • Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol. 2021;51(5):373–394. doi: 10.1080/10408444.2021.1939654
  • Xiao Y, Cai S, Liu L, et al. Decreased expression of peroxisome proliferator-activated receptor alpha indicates unfavorable outcomes in hepatocellular carcinoma. Cancer Manag Res. 2018;10:1781–1789. doi: 10.2147/CMAR.S166971
  • Meng F-G, Zhang X-N, Liu S-X, et al. Roles of peroxisome proliferator-activated receptor α in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact. 2020;327:109176. doi: 10.1016/j.cbi.2020.109176
  • Keshamouni VG, Han S, Roman J. Peroxisome proliferator-activated receptors in lung cancer. PPAR Res. 2007;2007:1–10. doi: 10.1155/2007/90289
  • Wang C-Y, Chao Y-J, Chen Y-L, et al. Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer. Int J Med Sci. 2021;18(1):256–269. doi: 10.7150/ijms.48123
  • Filgo AJ, Quist EM, Hoenerhoff MJ, et al. Perfluorooctanoic acid (PFOA)–induced liver lesions in two strains of mice following developmental exposures. Toxicol Pathol. 2015;43(4):558–568. doi: 10.1177/0192623314558463
  • Budinsky RA, Schrenk D, Simon T, et al. Mode of action and dose–response framework analysis for receptor-mediated toxicity: the aryl hydrocarbon receptor as a case study. Crit Rev Toxicol. 2014;44(1):83–119. doi: 10.3109/10408444.2013.835787
  • Becker RA, Patlewicz G, Simon TW, et al. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Reg Toxicol Pharm. 2015;73(1):172–190. doi: 10.1016/j.yrtph.2015.06.015
  • Van den Berg M, Birnbaum LS, Denison M, et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93:223–241. doi: 10.1093/toxsci/kfl055
  • Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology. 2009;127(3):299–311. doi: 10.1111/j.1365-2567.2009.03054.x
  • Gasiewicz TA, Henry EC, Collins LL. Expression and activity of aryl hydrocarbon receptors in development and cancer. Crit Rev Eukaryot Gene Expr. 2008;18(4):279–321. doi: 10.1615/CritRevEukarGeneExpr.v18.i4.10
  • AOP 41 [Internet]. Available from: https://aopwiki.org/aops/41
  • Paku S, Schnur J, Nagy P, et al. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001;158(4):1313–1323. doi: 10.1016/S0002-9440(10)64082-5
  • Hailey JR, Walker NJ, Sells DM, et al. Classification of proliferative hepatocellular lesions in harlan sprague–dawley rats chronically exposed to dioxin-like compounds. Toxicol Pathol. 2005;33(1):165–174. doi: 10.1080/01926230590888324
  • Simon TW, Simons SS, Preston RJ, et al. The use of mode of action information in risk assessment: quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol. 2014;44(sup3):17–43. doi: 10.3109/10408444.2014.931925
  • Rushing BR, Selim MI. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol. 2019;124:81–100. doi: 10.1016/j.fct.2018.11.047
  • Moore MM, Schoeny RS, Becker RA, et al. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol. 2018;48(4):312–337. doi: 10.1080/10408444.2017.1423462
  • McCullough AK, Lloyd RS. Mechanisms underlying aflatoxin-associated mutagenesis – implications in carcinogenesis. DNA Repair. 2019;77:76–86. doi: 10.1016/j.dnarep.2019.03.004
  • Li J, Liu M. The carcinogenicity of Aflatoxin B1. In: Long X-D, editor. Aflatoxin B1 Occurrence, Detection and Toxicological Effects. London, UK: IntechOpen; 2020. p. 1–12. doi: 10.5772/intechopen.88353
  • Cao W, Yu P, Yang K, et al. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods. 2022;32(6):395–419. doi: 10.1080/15376516.2021.2021339
  • Owumi SE, Irozuru CE, Arunsi UO, et al. Caffeic acid protects against DNA damage, oxidative and inflammatory mediated toxicities, and upregulated caspases activation in the hepatorenal system of rats treated with aflatoxin B1. Toxicon. 2022;207:1–12. doi: 10.1016/j.toxicon.2021.12.021
  • Bedard LL, Massey TE. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett. 2006;241(2):174–183. doi: 10.1016/j.canlet.2005.11.018
  • Mace K. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450- expressing human liver cell lines. Carcinogenesis. 1997;18(7):1291–1297. doi: 10.1093/carcin/18.7.1291
  • Singh KB, Maurya BK, Trigun SK. Activation of oxidative stress and inflammatory factors could account for histopathological progression of aflatoxin-B1 induced hepatocarcinogenesis in rat. Mol Cell Biochem. 2015;401(1–2):185–196. doi: 10.1007/s11010-014-2306-x
  • Chawanthayatham S, Valentine CC, Fedeles BI, et al. Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma. Proc Natl Acad Sci USA. 2017;114(15):E3101–E3109. doi: 10.1073/pnas.1700759114
  • Smela ME, Hamm ML, Henderson PT, et al. The aflatoxin B1 formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. Proc Natl Acad Sci USA. 2002;99(10):6655–6660. doi: 10.1073/pnas.102167699
  • Engin AB, Engin A. DNA damage checkpoint response to aflatoxin B1. Environ Toxicol Pharmacol. 2019;65:90–96. doi: 10.1016/j.etap.2018.12.006
  • Wang H, Liao P, Zeng SX, et al. It takes a team: a gain-of-function story of p53-R249S. J Mol Cell Biol. 2019;11(4):277–283. doi: 10.1093/jmcb/mjy086
  • Ferreira RG, Cardoso MV, de Souza Furtado KM, et al. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res. 2019;204:51–71. doi: 10.1016/j.trsl.2018.09.001
  • Foley JF, Elgart B, Phadke D, et al. Whole exome and transcript profiling of liver following aflatoxin B1 exposure in rats. J Appl Toxicol. 2023;43(9):1293–1305. doi: 10.1002/jat.4463
  • Gramantieri L, Gnudi F, Vasuri F, et al. Aflatoxin B1 DNA-adducts in hepatocellular carcinoma from a low exposure area. Nutrients. 2022;14(8):1652. doi: 10.3390/nu14081652
  • Huang MN, Yu W, Teoh WW, et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017;27(9):1475–1486. doi: 10.1101/gr.220038.116
  • Swales K, Negishi M. CAR, driving into the future. Mol Endocrinol. 2004;18(7):1589–1598. doi: 10.1210/me.2003-0397
  • Peffer RC, Cowie DE, Currie RA, et al. Sedaxane—use of nuclear receptor transactivation assays, toxicogenomics, and toxicokinetics as part of a mode of action framework for rodent liver tumors. Toxicol Sci. 2018;162(2):582–598. doi: 10.1093/toxsci/kfx281
  • Columbano A, Ledda-Columbano GM, Pibiri M, et al. Gadd45β is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology. 2005;42(5):1118–1126. doi: 10.1002/hep.20883
  • Yoshinari K. Role of nuclear receptors PXR and CAR in xenobiotic-induced hepatocyte proliferation and chemical carcinogenesis. Biol Pharm Bull. 2019;42(8):1243–1252. doi: 10.1248/bpb.b19-00267
  • Oshida K, Vasani N, Jones C, et al. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium. Nucl Recept Signal. 2015;13(1):e002. doi: 10.1621/nrs.13002
  • Yamada T, Uwagawa S, Okuno Y, et al. Case study: an evaluation of the human relevance of the synthetic pyrethroid metofluthrin-induced liver tumors in rats based on mode of action. Toxicol Sci. 2009;108(1):59–68. doi: 10.1093/toxsci/kfp007
  • Omiecinski CJ, Coslo DM, Chen T, et al. Multi-species analyses of direct activators of the constitutive androstane receptor. Toxicol Sci. 2011;123(2):550–562. doi: 10.1093/toxsci/kfr191
  • La Vecchia C, Negri E. A review of epidemiological data on epilepsy, phenobarbital, and risk of liver cancer. Eur J Cancer Prev. 2014;23(1):1–7. doi: 10.1097/CEJ.0b013e32836014c8
  • Lake BG, Price RJ, Osimitz TG. Mode of action analysis for pesticide-induced rodent liver tumours involving activation of the constitutive androstane receptor: relevance to human cancer risk. Pest Manag Sci. 2015;71(6):829–834. doi: 10.1002/ps.3854
  • Li Z, Kwon SM, Li D, et al. Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. J Biol Chem. 2022;298(5):101885. doi: 10.1016/j.jbc.2022.101885
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. doi: 10.1038/nrc2981
  • Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark Rven Warburg did not anticipate. Cancer Cell. 2012;21(3):297–308. doi: 10.1016/j.ccr.2012.02.014
  • Sutendra G, Michelakis ED. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol. 2013;3:38. doi: 10.3389/fonc.2013.00038
  • Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71(14):2577–2604. doi: 10.1007/s00018-013-1539-2
  • Wang X, Shen X, Yan Y, et al. Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep. 2021;41(4):41. doi: 10.1042/BSR20204402
  • Gudi R, Melissa M-K, Kedishvili NY, et al. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem. 1995;270(48):28989–28994. doi: 10.1074/jbc.270.48.28989
  • U.S. Environmental Protection Agency (EPA). Toxicological review of dichloroacetic acid. Washington, DC: EPA; 2003. EPA/635/R-03/007.
  • Wigfield SM, Winter SC, Giatromanolaki A, et al. PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer. 2008;98(12):1975–1984. doi: 10.1038/sj.bjc.6604356
  • Su D, Lin Z. Dichloroacetate attenuates the stemness of hepatocellular carcinoma cells via promoting nucleus‐cytoplasm translocation of YAP. Environ Toxicol. 2021;36(5):975–983. doi: 10.1002/tox.23098
  • Font-Díaz J, Jiménez-Panizo A, Caelles C, et al. Nuclear receptors: lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol. 2021;73:58–75. doi: 10.1016/j.semcancer.2020.12.007
  • Yeh S-H, Chen P-J. Gender disparity of hepatocellular carcinoma: the roles of sex hormones. Oncology. 2010;78(Suppl. 1):172–179. doi: 10.1159/000315247
  • Song H, Yu Z, Sun X, et al. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/β-catenin signaling. EBioMedicine. 2018;35:155–166. doi: 10.1016/j.ebiom.2018.08.043
  • Feitelson MA, Arzumanyan A, Kulathinal RJ, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–S54. doi: 10.1016/j.semcancer.2015.02.006
  • Schulte-Hermann R, Schuppler J, Timmermann-Trosiener I, et al. The role of growth of normal and preneoplastic cell populations for tumor promotion in rat liver. Environ Health Perspect. 1983;50:185–194. doi: 10.1289/ehp.8350185
  • Ma W, Hsu C, Wu M, et al. Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology. 2008;135(3):947–955.e5. doi: 10.1053/j.gastro.2008.05.046
  • Tian Y, Xie X, Lin Y, et al. Androgen receptor in hepatocarcinogenesis: recent developments and perspectives. Oncol Lett. 2015;9(5):1983–1988. doi: 10.3892/ol.2015.3025
  • Montgomery EJ, Xing E, Campbell MJ, et al. Constitutively active androgen receptor in hepatocellular carcinoma. Int J Mol Sci. 2022;23(22):13768. doi: 10.3390/ijms232213768
  • Banerjee A, De P, Kumar V, et al. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening endocrine disruptor chemicals using 2D-QSAR and chemical read-across. Chemosphere. 2022;309:136579. doi: 10.1016/j.chemosphere.2022.136579
  • Felter SP, Foreman JE, Boobis A, et al. Human relevance of rodent liver tumors: key insights from a toxicology forum workshop on nongenotoxic modes of action. Regul Toxicol Pharmacol. 2018;92:1–7. doi: 10.1016/j.yrtph.2017.11.003
  • Organisation for Economic Co-operation and Development (OECD). Adverse outcome pathway on Cyp2E1 activation leading to liver cancer. In: OECD Series On Adverse Outcome Pathways. Vol. 19. Paris, France: OECD Publishing; 2021. p. 1–65. doi: 10.1787/56e9bbf0-en
  • U.S. Environmental Protection Agency (EPA). Toxicological review of chloroform. Washington, DC: EPA; 2001. EPA/635/R-01/001.
  • Meek ME, Bucher JR, Cohen SM, et al. A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol. 2003;33(6):591–653. doi: 10.1080/713608373
  • Fukunaga S, Ogata K, Eguchi A, et al. Evaluation of the mode of action and human relevance of liver tumors in male mice treated with epyrifenacil. Regul Toxicol Pharmacol. 2022;136:105268. doi: 10.1016/j.yrtph.2022.105268
  • Brown E, Yedjou CG, Tchounwou PB. Cytotoxicity and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide (HepG(2)). Met Ions Biol Med. 2008;10:583–587.
  • Cohen SM. Evaluation of possible carcinogenic risk to humans based on liver tumors in rodent assays. Toxicol Pathol. 2010;38(3):487–501. doi: 10.1177/0192623310363813
  • Wolf DC, Cohen SM, Boobis AR, et al. Chemical carcinogenicity revisited: a unified theory of carcinogenicity based on contemporary knowledge. Reg Toxicol Pharm. 2019;103:86–92. doi: 10.1016/j.yrtph.2019.01.021
  • Holsapple MP, Pitot HC, Cohen SH, et al. Mode of action in relevance of rodent liver tumors to human cancer risk. Toxicol Sci. 2006;89(1):51–56. doi: 10.1093/toxsci/kfj001
  • Park W-J, Kim S-Y, Kim Y-R, et al. Bortezomib alleviates drug-induced liver injury by regulating CYP2E1 gene transcription. Int J Mol Med. 2016;37(3):613–622. doi: 10.3892/ijmm.2016.2461
  • Shi Y, Liu Y, Wang S, et al. Endoplasmic reticulum-targeted inhibition of CYP2E1 with vitamin E nanoemulsions alleviates hepatocyte oxidative stress and reverses alcoholic liver disease. Biomaterials. 2022;288:121720. doi: 10.1016/j.biomaterials.2022.121720
  • Quintanilha JCF, de Sousa VM, Visacri MB, et al. Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity. Cancer Chemother Pharmacol. 2017;80(2):223–233. doi: 10.1007/s00280-017-3358-x
  • Xiang C, Teng Y, Yao C, et al. Antioxidant properties of flavonoid derivatives and their hepatoprotective effects on CCl4 induced acute liver injury in mice. RSC Adv. 2018;8(28):15366–15371. doi: 10.1039/C8RA02523A
  • Ankley GT, Bennett RS, Erickson RJ, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–741. doi: 10.1002/etc.34
  • Corton JC, Hill T, Sutherland JJ, et al. A set of six gene expression biomarkers identify rat liver tumorigens in short-term assays. Toxicol Sci. 2020;177(1):11–26. doi: 10.1093/toxsci/kfaa101
  • Rooney J, Hill T, Qin C, et al. Adverse outcome pathway-driven identification of rat liver tumorigens in short-term assays. Toxicol Appl Pharmacol. 2018;356:99–113. doi: 10.1016/j.taap.2018.07.023
  • Organisation for Economic Co-operation and Development (OECD). Users’ handbook supplement to the guidance document for developing and assessing adverse outcome pathways. In: OECD Series On Adverse Outcome Pathways. Vol. 1. Paris, France: OECD Publishing; 2018. p. 1–63. doi: 10.1787/5jlv1m9d1g32-en
  • Sewell F, Gellatly N, Beaumont M, et al. The future trajectory of adverse outcome pathways: a commentary. Arch Toxicol. 2018;92(4):1657–1661. doi: 10.1007/s00204-018-2183-2
  • Arnesdotter E, Spinu N, Firman J, et al. Derivation, characterisation and analysis of an adverse outcome pathway network for human hepatotoxicity. Toxicology. 2021;459:152856. doi: 10.1016/j.tox.2021.152856
  • Patlewicz G, Simon TW, Rowlands JC, et al. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Reg Toxicol Pharm. 2015;71(3):463–477. doi: 10.1016/j.yrtph.2015.02.011
  • Gijbels E, Vinken M. An update on adverse outcome pathways leading to liver injury. Appl In Vitro Toxicol. 2017;3(4):283–285. doi: 10.1089/aivt.2017.0027
  • Kurosaki K, Uesawa Y. Molecular initiating events associated with drug-induced liver malignant tumors: an integrated study of the FDA adverse event reporting system and toxicity predictions. Biomolecules. 2021;11(7):944. doi: 10.3390/biom11070944
  • Chen C. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015;7(15):1964. doi: 10.4254/wjh.v7.i15.1964
  • Corradi MPF, de Haan AM, Staumont B, et al. Natural language processing in toxicology: delineating adverse outcome pathways and guiding the application of new approach methodologies. Biomater Byosyst. 2022;7:100061. doi: 10.1016/j.bbiosy.2022.100061
  • van Ertvelde J, Verhoeven A, Maerten A, et al. Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach. J Biomed Inform. 2023;145:104465. doi: 10.1016/j.jbi.2023.104465
  • Jiang J, van Ertvelde J, Ertaylan G, et al. Unraveling the mechanisms underlying drug-induced cholestatic liver injury: identifying key genes using machine learning techniques on human in vitro data sets. Arch Toxicol. 2023;97(11):2969–2981. doi: 10.1007/s00204-023-03583-4
  • Anstee QM, Reeves HL, Kotsiliti E, et al. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411–428. doi: 10.1038/s41575-019-0145-7
  • Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 2023;77(5):1773–1796. doi: 10.1002/hep.32740
  • Guo C, Tang Y, Yang Z, et al. Hallmark-guided subtypes of hepatocellular carcinoma for the identification of immune-related gene classifiers in the prediction of prognosis, treatment efficacy, and drug candidates. Front Immunol. 2022;13:958161. doi: 10.3389/fimmu.2022.958161
  • Becker RA, Ankley GT, Edwards SW, et al. Increasing scientific confidence in adverse outcome pathways: application of tailored bradford-hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol. 2015;72(3):514–537. doi: 10.1016/j.yrtph.2015.04.004
  • Villeneuve DL, Crump D, Garcia-Reyero N, et al. Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci. 2014;142(2):312–320. doi: 10.1093/toxsci/kfu199
  • Perkins EJ, Ashauer R, Burgoon L, et al. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment. Environ Toxicol Chem. 2019;38(9):1850–1865. doi: 10.1002/etc.4505
  • Chen H-J, Hu M-H, Xu F-G, et al. Understanding the inflammation-cancer transformation in the development of primary liver cancer. Hepatoma Res. 2018;4(7):29. doi: 10.20517/2394-5079.2018.18
  • Gao S, Jiang X, Wang L, et al. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances. Front Pharmacol. 2022;13:1029601. doi: 10.3389/fphar.2022.1029601
  • Zhou S, Yin D, Hu Z, et al. A positive feedback loop between cancer stem‐like cells and tumor‐associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 2019;70(4):1214–1230. doi: 10.1002/hep.30630
  • Nohmi T. Thresholds of genotoxic and non-genotoxic carcinogens. Toxicol Res. 2018;34(4):281–290. doi: 10.5487/TR.2018.34.4.281
  • Menz J, Götz ME, Gündel U, et al. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose–response data. Arch Toxicol. 2023;97(9):2303–2328. doi: 10.1007/s00204-023-03553-w
  • Clewell RA, Leonard JA, Nicolas CI, et al. Application of a combined aggregate exposure pathway and adverse outcome pathway (AEP-AOP) approach to inform a cumulative risk assessment: a case study with phthalates. Toxicol Vitro. 2020;66:104855. doi: 10.1016/j.tiv.2020.104855
  • Tan Y-M, Leonard JA, Edwards S, et al. Aggregate exposure pathways in support of risk assessment. Curr Opin Toxicol. 2018;9:8–13. doi: 10.1016/j.cotox.2018.03.006
  • International Agency for Research on Cancer (IARC), World Health Organization (WHO). Global cancer observatory (GCO) [Internet]. 2023. Available from: https://gco.iarc.fr/
  • Hulla JE, Navarro L, Kruger CL, et al. Toxicity, subchronic and chronic. In: Wexler P, editor. Encyclopedia of Toxicology. 3rd ed. Amsterdam, The Netherlands: Elsevier; 2014. p. 626–633. doi: 10.1016/B978-0-12-386454-3.00070-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.