88
Views
0
CrossRef citations to date
0
Altmetric
Review

The evolving role of disproportionality analysis in pharmacovigilance

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 981-994 | Received 31 Jan 2024, Accepted 12 Jun 2024, Published online: 24 Jun 2024

References

  • Stricker BH, Tijssen JG. Serum sickness-like reactions to cefaclor. J Clin Epidemiol. 1992;45(10):1177–1184. doi: 10.1016/0895-4356(92)90158-J
  • Fusaroli M, Salvo F, Bernardeau C, et al. Mapping strategies to assess and increase the validity of published disproportionality signals: a meta-research study. Drug Saf. 2023;46(9):857–866. doi: 10.1007/s40264-023-01329-w
  • Hauben M, Aronson JK. Defining ‘signal’ and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf. 2009;32(2):99–110. doi: 10.2165/00002018-200932020-00003
  • Faillie J-L, Petit P, Montastruc J-L, et al. Scientific evidence and controversies about pioglitazone and bladder cancer: which lessons can Be drawn? Drug Saf. 2013;36(9):693–707. doi: 10.1007/s40264-013-0086-y
  • Traversa G, Bianchi C, Cas RD, et al. Cohort study of hepatotoxicity associated with nimesulide and other non-steroidal anti-inflammatory drugs. BMJ. 2003;327(7405):18–22. doi: 10.1136/bmj.327.7405.18
  • Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54(4):315–321. doi: 10.1007/s002280050466
  • DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999;53(3):177–190. doi: 10.1080/00031305.1999.10474456
  • Council for International Organizations of Medical Sciences, editor. Practical aspects of signal detection in pharmacovigilance: report of CIOMS working group VIII. Geneva: CIOMS; 2010.
  • Wisniewski AFZ, Bate A, Bousquet C, et al. Good signal detection practices: evidence from IMI PROTECT. Drug Saf. 2016;39(6):469–490. doi: 10.1007/s40264-016-0405-1
  • Pierce CE, de Vries ST, Bodin-Parssinen S, et al. Recommendations on the use of mobile applications for the collection and communication of pharmaceutical product safety information: lessons from IMI WEB-RADR. Drug Saf. 2019;42(4):477–489. doi: 10.1007/s40264-019-00813-6
  • van Stekelenborg J, Ellenius J, Maskell S, et al. Recommendations for the use of social media in pharmacovigilance: lessons from IMI WEB-RADR. Drug Saf. 2019;42:1393–1407. doi: 10.1007/s40264-019-00858-7
  • Raschi E, Moretti U, Salvo F, et al. Evolving roles of spontaneous reporting systems to assess and monitor drug safety. Pharmacovigilance [Internet]. 2018 [cited 2019 Feb 3]. Available from: https://www.intechopen.com/online-first/evolving-roles-of-spontaneous-reporting-systems-to-assess-and-monitor-drug-safety
  • Bate A, Brown EG, Goldman SA, et al. Terminological challenges in safety surveillance. Drug Saf. 2012;35(1):79–84. doi: 10.2165/11598700-000000000-00000
  • Hill R, Hopstadius J, Lerch M, et al. An attempt to expedite signal detection by grouping related adverse reaction terms. Drug Saf. 2012;35:1194–1195.
  • Pearson RK, Hauben M, Goldsmith DI, et al. Influence of the MedDRA® hierarchy on pharmacovigilance data mining results. Int J Med Inf. 2009;78(12):e97–103. doi: 10.1016/j.ijmedinf.2009.01.001
  • Welcome to MedDRA [Internet]. MedDRA; [cited 2023 Jul 31]. Available from: https://www.meddra.org/
  • Souvignet J, Asfari H, Lardon J, et al. MedDRA® automated term groupings using OntoADR: evaluation with upper gastrointestinal bleedings. Expert Opin Drug Saf. 2016;15(9):1153–1161. doi: 10.1080/14740338.2016.1206075
  • Souvignet J, Declerck G, Trombert B, et al. Evaluation of automated term groupings for detecting anaphylactic shock signals for drugs. AMIA Annu Symp Proc. 2012;2012:882–890.
  • Orre R, Bate A, Norén GN, et al. A bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets. Int J Neural Syst. 2005;15(3):207–222. doi: 10.1142/S0129065705000219
  • Fusaroli M, Raschi E, Gatti M, et al. Development of a network-based signal detection tool: the COVID-19 adversome in the FDA adverse event reporting system. Front Pharmacol. 2021;12:3542. doi: 10.3389/fphar.2021.740707
  • Fusaroli M, Polizzi S, Menestrina L, et al. Unveiling the burden of drug-induced impulsivity: a network analysis of the fda adverse event reporting system [Internet]. 2023 [cited 2024 Apr 15]. doi: 10.1101/2023.11.17.23298635
  • Gattepaille L. Using the WHO database of spontaneous reports to build joint vector representations of drugs and adverse drug reactions, a promising avenue for pharmacovigilance. 2019. p. 1–6.
  • Portanova J, Murray N, Mower J, et al. aer2vec: distributed representations of adverse event reporting system data as a means to identify drug/side-effect associations. AMIA Annu Symp Proc AMIA Symp. 2019;2019:717–726.
  • Norén GN, Meldau E-L, Chandler RE. Consensus clustering for case series identification and adverse event profiles in pharmacovigilance. Artif Intell Med. 2021;122:102199. doi: 10.1016/j.artmed.2021.102199
  • Wong CK, Ho SS, Saini B, et al. Standardisation of the FAERS database: a systematic approach to manually recoding drug name variants. Pharmacoepidemiol Drug Saf. 2015;24(7):731–737. doi: 10.1002/pds.3805
  • Fusaroli M, Giunchi V, Battini V, et al. Enhancing transparency in defining studied drugs: the open-source living DiAna dictionary for standardizing drug names in the FAERS. Drug Saf. 2024;47(3):271–284. doi: 10.1007/s40264-023-01391-4
  • Giunchi V, Fusaroli M, Hauben M, et al. Challenges and opportunities in accessing and analysing FAERS data: a call towards a collaborative approach. Drug Saf. 2023;46(10):921–926. doi: 10.1007/s40264-023-01345-w
  • WHO Collaborating Centre for Drug Statistics Methodology. ATC classification index with DDDs [Internet]. 2022 [cited 2022 Jul 2]. Available from: https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
  • Huang L, Guo T, Zalkikar JN, et al. A review of statistical methods for safety surveillance. Ther Innov Regul Sci. 2014;48(1):98–108. doi: 10.1177/2168479013514236
  • Noguchi Y, Tachi T, Teramachi H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source. Brief Bioinform. 2021;22(6):bbab347. doi: 10.1093/bib/bbab347
  • Doi SA, Furuya-Kanamori L, Xu C, et al. Controversy and debate: questionable utility of the relative risk in clinical research: paper 1: A call for change to practice. J Clin Epidemiol. 2022;142:271–279. doi: 10.1016/j.jclinepi.2020.08.019
  • Norén GN, Hopstadius J, Bate A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat Methods Med Res. 2013;22(1):57–69. doi: 10.1177/0962280211403604
  • Wang J, Ye X-F, Guo X-J, et al. Exploration of statistical shrinkage parameters of disproportionality methods in spontaneous reporting system of China. Pharmacoepidemiol Drug Saf. 2015;24:962–970. doi: 10.1002/pds.3811
  • Pierfitte C, Bégaud B, Lagnaoui R, et al. Is reporting rate a good predictor of risks associated with drugs? Br J Clin Pharmacol. 1999;47(3):329–331. doi: 10.1046/j.1365-2125.1999.00881.x
  • Park G, Jung H, Heo S-J, et al. Comparison of Data Mining Methods for the Signal Detection of Adverse Drug Events with a Hierarchical Structure in Postmarketing Surveillance. Life Basel Switz. 2020;10(8):138. doi: 10.3390/life10080138
  • Banks D, Woo EJ, Burwen DR, et al. Comparing data mining methods on the VAERS database. Pharmacoepidemiol Drug Saf. 2005;14:601–609. doi: 10.1002/pds.1107
  • Chen Y, Guo JJ, Steinbuch M, et al. Comparison of sensitivity and timing of early signal detection of four frequently used signal detection methods. Pharm Med. 2008;22(6):359–365. doi: 10.1007/BF03256733
  • Pham M, Cheng F, Ramachandran K. A comparison study of algorithms to detect drug–adverse event associations: frequentist, Bayesian, and machine-learning approaches. Drug Saf. 2019;42(6):743–750. doi: 10.1007/s40264-018-00792-0
  • Dijkstra L, Garling M, Foraita R, et al. Adverse drug reaction or innocent bystander? A systematic comparison of statistical discovery methods for spontaneous reporting systems. Pharmacoepidemiol Drug Saf. 2020;29:396–403. doi: 10.1002/pds.4970
  • Candore G, Juhlin K, Manlik K, et al. Comparison of statistical signal detection methods within and across spontaneous reporting databases. Drug Saf. 2015;38(6):577–587. doi: 10.1007/s40264-015-0289-5
  • Khouri C, Fusaroli M, Salvo F, et al. Transparency and robustness of safety signals. BMJ. 2022;379:o2588. doi: 10.1136/bmj.o2588
  • Harpaz R, DuMouchel W, LePendu P, et al. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539–546. doi: 10.1038/clpt.2013.24
  • Khouri C, Nguyen T, Revol B, et al. Leveraging the variability of pharmacovigilance disproportionality analyses to improve signal detection performances. Front Pharmacol. 2021;12:668765. doi: 10.3389/fphar.2021.668765
  • Fusaroli M, Isgrò V, Cutroneo PM, et al. Post-marketing surveillance of CAR-T-Cell therapies: analysis of the FDA adverse event reporting system (FAERS) database. Drug Saf. 2022;45(8):891–908. doi: 10.1007/s40264-022-01194-z
  • Caster O, Aoki Y, Gattepaille LM, et al. Disproportionality analysis for pharmacovigilance signal detection in small databases or subsets: recommendations for limiting false-positive associations. Drug Saf. 2020;43(5):479–487. doi: 10.1007/s40264-020-00911-w
  • Hamada K, Abe T, Kouda K, et al. Estimating culprit drugs for adverse drug reactions based on bayesian inference. Clin Pharmacol Ther. 2023;113(5):1117–1124. doi: 10.1002/cpt.2867
  • Seabroke S, Candore G, Juhlin K, et al. Performance of stratified and subgrouped disproportionality analyses in spontaneous databases. Drug Saf. 2016;39(4):355–364. doi: 10.1007/s40264-015-0388-3
  • Dauner DG, Zhang R, Adam TJ, et al. Performance of subgrouped proportional reporting ratios in the US food and drug administration (FDA) adverse event reporting system. Expert Opin Drug Saf. 2023;22(7):589–597. doi: 10.1080/14740338.2023.2182289
  • Sandberg L, Taavola H, Aoki Y, et al. Risk factor considerations in statistical signal detection: using subgroup disproportionality to uncover risk groups for adverse drug reactions in VigiBase. Drug Saf. 2020;43(10):999–1009. doi: 10.1007/s40264-020-00957-w
  • Blake KV, Saint-Raymond A, Zaccaria C, et al. Enhanced paediatric pharmacovigilance at the European Medicines Agency: a novel query applied to adverse drug reaction reports. Pediatr Drugs. 2016;18(1):55–63. doi: 10.1007/s40272-015-0154-0
  • Star K, Sandberg L, Bergvall T, et al. Paediatric safety signals identified in VigiBase: methods and results from Uppsala monitoring centre. Pharmacoepidemiol Drug Saf. 2019;28:680–689. doi: 10.1002/pds.4734
  • Iwasa E, Fujiyoshi Y, Kubota Y, et al. Interstitial lung disease as an adverse drug reaction in Japan: exploration of regulatory actions as a basis for high reporting. Drug Saf. 2020;43(11):1121–1131. doi: 10.1007/s40264-020-00968-7
  • Wakao R, Taavola H, Sandberg L, et al. Data-driven identification of adverse event reporting patterns for Japan in VigiBase, the WHO global database of individual case safety reports. Drug Saf. 2019;42(12):1487–1498. doi: 10.1007/s40264-019-00861-y
  • Chandler RE. Increased risk for aseptic meningitis after amoxicillin or amoxicillin-clavulanic acid in males: a signal revealed by subset disproportionality analysis within a global database of suspected adverse drug reactions. Pharmacoepidemiol Drug Saf. 2019;28:389–395. doi: 10.1002/pds.4707
  • Fusaroli M, Mitchell J, Rudolph A, et al. Causal inference tools for pharmacovigilance: using causal graphs to systematize biases, plan disproportionality analyses, and reduce the risk of spin. [Internet]. OSF Preprints; 2024. Available from: https://osf.io/h5w9u
  • Grundmark B, Holmberg L, Garmo H, et al. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area. Eur J Clin Pharmacol. 2014;70(5):627–635. doi: 10.1007/s00228-014-1658-1
  • Baksh SN, McAdams-DeMarco M, Segal JB, et al. Cardiovascular safety signals with dipeptidyl peptidase-4 inhibitors: a disproportionality analysis among high-risk patients. Pharmacoepidemiol Drug Saf. 2018;27:660–667. doi: 10.1002/pds.4437
  • Raschi E, Piccinni C, Poluzzi E, et al. The association of pancreatitis with antidiabetic drug use: gaining insight through the FDA pharmacovigilance database. Acta Diabetol. 2013;50(4):569–577. doi: 10.1007/s00592-011-0340-7
  • Alkabbani W, Gamble J-M. Active-comparator restricted disproportionality analysis for pharmacovigilance signal detection studies of chronic disease medications: an example using sodium/glucose cotransporter 2 inhibitors. Br J Clin Pharmacol. 2023;89(2):431–439. doi: 10.1111/bcp.15178
  • Hauben M, Hung E, Wood J, et al. The impact of database restriction on pharmacovigilance signal detection of selected cancer therapies. Ther Adv Drug Saf. 2017;8(5):145–156. doi: 10.1177/2042098616685010
  • Bergvall T, Norén GN, Lindquist M. vigiGrade: a tool to identify well-documented individual case reports and highlight systematic data quality issues. Drug Saf. 2014;37(1):65–77. doi: 10.1007/s40264-013-0131-x
  • Raschi E, Gatti M, Gelsomino F, et al. Lessons to be learnt from real-world studies on immune-related adverse events with checkpoint inhibitors: a clinical perspective from pharmacovigilance. Target Oncol. 2020;15(4):449–466. doi: 10.1007/s11523-020-00738-6
  • Mahaux O, Powell G, Haguinet F, et al. Identifying safety subgroups at risk: assessing the agreement between statistical alerting and patient subgroup risk. Drug Saf. 2023;46(6):601–614. doi: 10.1007/s40264-023-01306-3
  • Gravel CA, Douros A. Considerations on the use of different comparators in pharmacovigilance: a methodological review. Br J Clin Pharmacol. 2023;89(9):2671–2676. doi: 10.1111/bcp.15802
  • Khouri C, Revol B, Lepelley M, et al. A meta-epidemiological study found lack of transparency and poor reporting of disproportionality analyses for signal detection in pharmacovigilance databases. J Clin Epidemiol. 2021;139:191–198. doi: 10.1016/j.jclinepi.2021.07.014
  • Tennant PWG, Murray EJ, Arnold KF, et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations. Int J Epidemiol. 2021;50(2):620–632. doi: 10.1093/ije/dyaa213
  • Maignen F, Hauben M, Hung E, et al. Assessing the extent and impact of the masking effect of disproportionality analyses on two spontaneous reporting systems databases. Pharmacoepidemiol Drug Saf. 2014;23:195–207. doi: 10.1002/pds.3529
  • Wei J-X, Ding Y, Li M, et al. A stratification method based on clustering for the minimization of data masking effect in signal detection. BMC Med Inform Decis Mak. 2020;20(1):18. doi: 10.1186/s12911-020-1037-z
  • Wei J, Cheng L, Han P, et al. Decision tree-based data stratification method for the minimization of the masking effect in adverse drug reaction signal detection. Appl Sci. 2021;11(23):11380. doi: 10.3390/app112311380
  • Hauben M, Maignen F. Does serious consequential masking exist? An update. Pharmacoepidemiol Drug Saf. 2017;26(6):727–729. doi: 10.1002/pds.4209
  • Dodd C, Pacurariu A, Osokogu OU, et al. Masking by vaccines in pediatric drug safety signal detection in the EudraVigilance database. Pharmacoepidemiol Drug Saf. 2018;27:1249–1256. doi: 10.1002/pds.4623
  • Vidlin SH. Unmasking data in the COVID-19 vaccine era. Upps Rep. 2023;87:16–18.
  • Adjaï F, Fournier D, Dolladille C, et al. Impact of the vaccination against SARS-CoV-2 campaign on disproportionality indicator from the WHO pharmacovigilance database: A competition bias study from case/non-case analysis. Therapie. 2024;S0040-5957(24):00039–8. doi: 10.1016/j.therap.2024.03.002
  • Jokinen JD, Walley RJ, Colopy MW, et al. Pooling different safety data sources: impact of combining solicited and spontaneous reports on signal detection in Pharmacovigilance. Drug Saf. 2019;42(10):1191–1198. doi: 10.1007/s40264-019-00843-0
  • Klein K, Scholl JHG, De Bruin ML, et al. When more is less: an exploratory study of the precautionary reporting bias and its impact on safety signal detection. Clin Pharmacol Ther. 2018;103(2):296–303. doi: 10.1002/cpt.879
  • Juhlin K, Ye X, Star K, et al. Outlier removal to uncover patterns in adverse drug reaction surveillance – a simple unmasking strategy. Pharmacoepidemiol Drug Saf. 2013;22:1119–1129. doi: 10.1002/pds.3474
  • Maignen F, Hauben M, Hung E, et al. A conceptual approach to the masking effect of measures of disproportionality. Pharmacoepidemiol Drug Saf. 2014;23:208–217. doi: 10.1002/pds.3530
  • Maignen F, Hauben M, Dogné J-M. A mathematical framework to quantify the masking effect associated with the confidence intervals of measures of disproportionality. Ther Adv Drug Saf. 2017;8(7):231–244. doi: 10.1177/2042098617704143
  • Arnaud M, Salvo F, Ahmed I, et al. A method for the minimization of competition bias in signal detection from spontaneous reporting databases. Drug Saf. 2016;39(3):251–260. doi: 10.1007/s40264-015-0375-8
  • Hult S, Sartori D, Bergvall T, et al. A feasibility study of drug–drug interaction signal detection in regular pharmacovigilance. Drug Saf. 2020;43(8):775–785. doi: 10.1007/s40264-020-00939-y
  • Norén GN, Sundberg R, Bate A, et al. A statistical methodology for drug–drug interaction surveillance. Stat Med. 2008;27(16):3057–3070. doi: 10.1002/sim.3247
  • Hauben M, Reich L, Gerrits CM, et al. Detection of spironolactone-associated hyperkalaemia following the randomized aldactone evaluation study (RALES). Drug Saf. 2007;30(12):1143–1149. doi: 10.2165/00002018-200730120-00006
  • Thakrar BT, Grundschober SB, Doessegger L. Detecting signals of drug–drug interactions in a spontaneous reports database. Br J Clin Pharmacol. 2007;64(4):489–495. doi: 10.1111/j.1365-2125.2007.02900.x
  • Noguchi Y, Tachi T, Teramachi H. Subset analysis for screening drug–drug interaction signal using pharmacovigilance database. Pharmaceutics. 2020;12(8):762. doi: 10.3390/pharmaceutics12080762
  • Du L, Chakraborty A, Chiang C-W, et al. Graphic mining of high-order drug interactions and their directional effects on myopathy using electronic medical records. CPT Pharmacom & Syst Pharma. 2015;4(8):481–488. doi: 10.1002/psp4.59
  • Ibrahim H, Saad A, Abdo A, et al. Mining association patterns of drug-interactions using post marketing FDA’s spontaneous reporting data. J Biomed Inform. 2016;60:294–308. doi: 10.1016/j.jbi.2016.02.009
  • Noguchi Y, Ueno A, Otsubo M, et al. A new search method using association rule mining for drug-drug interaction based on spontaneous report system. Front Pharmacol [Internet]. 2018 [cited 2024 May 29];9. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2018.00197/full
  • Vu K, Clark RA, Bellinger C, et al. The index lift in data mining has a close relationship with the association measure relative risk in epidemiological studies. BMC Med Inform Decis Mak. 2019;19(1):112. doi: 10.1186/s12911-019-0838-4
  • Hauben M. Artificial intelligence and data mining for the pharmacovigilance of drug–drug interactions. Clin Ther. 2023;45(2):117–133. doi: 10.1016/j.clinthera.2023.01.002
  • Van Puijenbroek EP, Egberts AC, Meyboom RH, et al. Signalling possible drug–drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole. Br J Clin Pharmacol. 1999;47(6):689–693. doi: 10.1046/j.1365-2125.1999.00957.x
  • Gosho M, Maruo K, Tada K, et al. Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems. Eur J Clin Pharmacol. 2017;73(6):779–786. doi: 10.1007/s00228-017-2233-3
  • Hauben M, Reich L, DeMicco J, et al. “Extreme duplication” in the US FDA adverse events reporting system database. Drug Saf. 2007;30(6):551–554. doi: 10.2165/00002018-200730060-00009
  • Hung E, Hauben M, Essex H, et al. More extreme duplication in FDA adverse event reporting system detected by literature reference normalization and fuzzy string matching. Pharmacoepidemiol Drug Saf. 2023;32:387–391. doi: 10.1002/pds.5555
  • Hauben M, Zou C, Bright S, et al. More extreme duplication in the U.S. FDA FAERS database and a suggested check point for disproportionality analysis. Pharmacoepidemiol Drug Saf. 2021;30:1140–1141. doi: 10.1002/pds.5265
  • Kiguba R, Isabirye G, Mayengo J, et al. Navigating duplication in pharmacovigilance databases: a scoping review. BMJ Open. 2024;14(4):e081990. doi: 10.1136/bmjopen-2023-081990
  • Tregunno PM, Fink DB, Fernandez-Fernandez C, et al. Performance of probabilistic method to detect duplicate individual case safety reports. Drug Saf. 2014;37(4):249–258. doi: 10.1007/s40264-014-0146-y
  • van Stekelenborg J, Kara V, Haack R, et al. Individual case safety report replication: an analysis of case reporting transmission networks. Drug Saf. 2023;46:39–52. doi: 10.1007/s40264-022-01251-7
  • Banda JM, Evans L, Vanguri RS, et al. A curated and standardized adverse drug event resource to accelerate drug safety research. Sci Data. 2016;3(1):160026. doi: 10.1038/sdata.2016.26
  • Poluzzi E, Raschi E, Piccinni C, et al. Data mining techniques in pharmacovigilance: analysis of the publicly accessible FDA adverse event reporting system (AERS). In: Karahoca A, editor. Data Mining Applications in Engineering and Medicine; 2012. p. 265–302. doi: 10.5772/2616
  • Khaleel MA, Khan AH, Ghadzi SMS, et al. A standardized dataset of a spontaneous adverse event reporting system. Healthcare. 2022;10(3):420. doi: 10.3390/healthcare10030420
  • Kreimeyer K, Dang O, Spiker J, et al. Increased confidence in deduplication of drug safety reports with natural language processing of narratives at the US Food and Drug Administration. Front Drug Saf Regul [Internet]. 2022 [cited 2024 May 29];2. doi: 10.3389/fdsfr.2022.918897
  • Kreimeyer K, Menschik D, Winiecki S, et al. Using probabilistic record linkage of structured and unstructured data to identify duplicate cases in spontaneous adverse event reporting systems. Drug Saf. 2017;40(7):571–582. doi: 10.1007/s40264-017-0523-4
  • Montastruc J-L, Sommet A, Bagheri H, et al. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database. Br J Clin Pharmacol. 2011;72(6):905–908. doi: 10.1111/j.1365-2125.2011.04037.x
  • Haguinet F, Bate A, Stegmann J-U. The futility of adverse drug event reporting systems for monitoring known safety issues: a case study of myocardial infarction with rofecoxib and other drugs. Pharmacoepidemiol Drug Saf. 2024;33:e5719. doi: 10.1002/pds.5719
  • European Commission. A guideline on summary of product characteristics (SmPC) [Internet]. 2009 [cited 2023 Aug 21]. Available from: https://health.ec.europa.eu/system/files/2016-11/smpc_guideline_rev2_en_0.pdf
  • European Medicines Agency. SmPC Training Presentation. Section 4.8: Undesirable effects. Rev 1 [Internet]. 2013 [cited 2023 Aug 21]. Available from: https://www.ema.europa.eu/en/documents/presentation/presentation-section-48-undesirable-effects_en.pdf
  • Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(D1):D1075–9. doi: 10.1093/nar/gkv1075
  • Cai M-C, Xu Q, Pan Y-J, et al. ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms. Nucleic Acids Res. 2015;43(D1):D907–D913. doi: 10.1093/nar/gku1066
  • Mouffak A, Lepelley M, Revol B, et al. High prevalence of spin was found in pharmacovigilance studies using disproportionality analyses to detect safety signals: a meta-epidemiological study. J Clin Epidemiol. 2021;138:73–79. doi: 10.1016/j.jclinepi.2021.06.022
  • Maciá-Martínez M-A, de Abajo FJ, Roberts G, et al. An empirical approach to explore the relationship between measures of disproportionate reporting and relative risks from analytical studies. Drug Saf. 2016;39(1):29–43. doi: 10.1007/s40264-015-0351-3
  • Beau-Lejdstrom R, Crook S, Spanu A, et al. Adverse drug reaction risk measures: a comparison of estimates from drug surveillance and randomised trials. Pharm Med. 2019;33(4):331–339. doi: 10.1007/s40290-019-00287-y
  • Raschi E, Salvo F, Poluzzi E, et al. Safety meta-analysis: a call for appropriate use of disproportionality measures from spontaneous reporting systems. J Am Coll Cardiol. 2016;67(18):2193. doi: 10.1016/j.jacc.2016.01.082
  • Gastaldon C, Schoretsanitis G, Arzenton E, et al. Withdrawal syndrome following discontinuation of 28 antidepressants: pharmacovigilance analysis of 31,688 reports from the WHO spontaneous reporting database. Drug Saf. 2022;45(12):1539–1549. doi: 10.1007/s40264-022-01246-4
  • Gatti M, Antonazzo IC, Diemberger I, et al. Adverse events with sacubitril/valsartan in the real world: emerging signals to target preventive strategies from the FDA adverse event reporting system. Eur J Prev Cardiol. 2021;28(9):983–989. doi: 10.1177/2047487320915663
  • Hochberg AM, Pearson RK, O’Hara DJ, et al. Drug-versus-drug adverse event rate comparisons: a pilot study based on data from the US FDA adverse event reporting system. Drug Safety. 2009;32(2):137–146. doi: 10.2165/00002018-200932020-00006
  • Michel C, Scosyrev E, Petrin M, et al. Can disproportionality analysis of post-marketing case reports be used for comparison of drug safety profiles? Clin Drug Investig. 2017;37(5):415–422. doi: 10.1007/s40261-017-0503-6
  • Norén GN, Hopstadius J, Bate A, et al. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Discov. 2010;20(3):361–387. doi: 10.1007/s10618-009-0152-3
  • Choi N-K, Chang Y, Choi YK, et al. Signal detection of rosuvastatin compared to other statins: data-mining study using national health insurance claims database. Pharmacoepidemiol Drug Saf. 2010;19:238–246. doi: 10.1002/pds.1902
  • Dore DD, Seeger JD, Arnold Chan K. Use of a claims-based active drug safety surveillance system to assess the risk of acute pancreatitis with exenatide or sitagliptin compared to metformin or glyburide. Curr Med Res Opin. 2009;25(4):1019–1027. doi: 10.1185/03007990902820519
  • Curtis JR, Cheng H, Delzell E, et al. Adaptation of bayesian data mining algorithms to longitudinal claims data: coxib safety as an example. Med Care. 2008;46(9):969–975. doi: 10.1097/MLR.0b013e318179253b
  • Schuemie MJ. Methods for drug safety signal detection in longitudinal observational databases: LGPS and LEOPARD. Pharmacoepidemiol Drug Saf. 2011;20:292–299. doi: 10.1002/pds.2051
  • Jin HW, Chen J, He H, et al. Mining unexpected temporal associations: applications in detecting adverse drug reactions. IEEE Trans Inform Technol Biomed. 2008;12(4):488–500. doi: 10.1109/TITB.2007.900808
  • Moore TJ, Furberg CD. Electronic health data for postmarket surveillance: a vision not realized. Drug Saf. 2015;38(7):601–610. doi: 10.1007/s40264-015-0305-9
  • Cederholm S, Hill G, Asiimwe A, et al. Structured assessment for prospective identification of safety signals in electronic medical records: evaluation in the health improvement network. Drug Saf. 2015;38(1):87–100. doi: 10.1007/s40264-014-0251-y
  • Gagne JJ, Rassen JA, Walker AM, et al. Active safety monitoring of new medical products using electronic healthcare data: selecting Alerting Rules. Epidemiology. 2012;23(2):238. doi: 10.1097/EDE.0b013e3182459d7d
  • Trifirò G, Coloma PM, Rijnbeek PR, et al. Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: why and how? J Intern Med. 2014;275(6):551–561. doi: 10.1111/joim.12159
  • Volatier E, Salvo F, Pariente A, et al. High-dimensional propensity score-adjusted case-crossover for discovering adverse drug reactions from computerized administrative healthcare databases. Drug Saf. 2022;45(3):275–285. doi: 10.1007/s40264-022-01148-5
  • Trifirò G, Patadia V, Schuemie MJ, et al. EU-ADR healthcare database network vs. spontaneous reporting system database: preliminary comparison of signal detection. Patient Saf Inform. [Internet]. IOS Press; 2011 [cited 2024 Jan 29]:25–30. Available from: https://ebooks.iospress.nl/doi/10.3233/978-1-60750-740-6-25
  • King CE, Pratt NL, Craig N, et al. Detecting medicine safety signals using prescription sequence symmetry analysis of a national prescribing data set. Drug Saf. 2020;43(8):787–795. doi: 10.1007/s40264-020-00940-5
  • Durand J, Dogné J-M, Cohet C, et al. Safety monitoring of COVID-19 vaccines: perspective from the European Medicines Agency. Clin Pharmacol Ther. 2023;113(6):1223–1234. doi: 10.1002/cpt.2828
  • Gauffin O, Brand JS, Vidlin SH, et al. Supporting pharmacovigilance signal validation and prioritization with analyses of routinely collected health data: lessons learned from an EHDEN network study. Drug Saf. 2023;46(12):1335–1352. doi: 10.1007/s40264-023-01353-w
  • Signal identification in the sentinel system |sentinel initiative [Internet]. [cited 2024 Jan 22]. Available from: https://www.sentinelinitiative.org/methods-data-tools/signal-identification-sentinel-system
  • Wang L, Feng W, Duan J, et al. Pharmacovigilance bibliometrics: visualizing thematic development in the category of pharmacology and pharmacy in web of science. Front Pharmacol. 2021;12:731757. doi: 10.3389/fphar.2021.731757
  • Sa R, Xu Y, Pan X, et al. A bibliometric analysis of research progress on pharmacovigilance and cancer from 2002 to 2021. Front Oncol. 2023;13:1078254. doi: 10.3389/fonc.2023.1078254
  • Sartori D, Aronson JK, Norén GN, et al. Signals of adverse drug reactions communicated by pharmacovigilance stakeholders: a scoping review of the global literature. Drug Saf. 2023;46(2):109–120. doi: 10.1007/s40264-022-01258-0
  • Desai RJ, Matheny ME, Johnson K, et al. Broadening the reach of the FDA Sentinel system: A roadmap for integrating electronic health record data in a causal analysis framework. npj Digit Med. 2021;4(1):170. doi: 10.1038/s41746-021-00542-0
  • Arnaud M, Bégaud B, Thurin N, et al. Methods for safety signal detection in healthcare databases: a literature review. Expert Opin Drug Saf. 2017;16(6):721–732. doi: 10.1080/14740338.2017.1325463
  • Scholl JHG, van Puijenbroek EP. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands. Pharmacoepidemiol Drug Saf. 2016;25:1361–1367. doi: 10.1002/pds.4115
  • Van Holle L, Zeinoun Z, Bauchau V, et al. Using time-to-onset for detecting safety signals in spontaneous reports of adverse events following immunization: a proof of concept study. Pharmacoepidemiol Drug Saf. 2012;21:603–610. doi: 10.1002/pds.3226
  • Zhang T, Ye X, Guo X, et al. Signal detection based on time to onset algorithm in spontaneous reporting system of China. Drug Saf. 2017;40:343–350. doi: 10.1007/s40264-016-0503-0
  • Park G, Jung I. A tree-based scan statistic for zero-inflated count data in post-market drug safety surveillance. Sci Rep. 2022;12(1):16299. doi: 10.1038/s41598-022-19998-5
  • Raschi E, Salvo F, Khouri C. Conceiving, conducting, reporting, interpreting, and publishing disproportionality analyses: a call to action. Br J Clin Pharmacol. 2022;88(7):3535–3536. doi: 10.1111/bcp.15269
  • Cutroneo PM, Sartori D, Tuccori M, et al. Conducting and interpreting disproportionality analyses derived from spontaneous reporting systems. Front Drug Saf Regul. 2023;3:3. doi: 10.3389/fdsfr.2023.1323057
  • Fusaroli M, Salvo F, Bégaud B, et al. The REporting of a Disproportionality analysis for drUg Safety signal detection using individual case safety reports in PharmacoVigilance (READUS-PV): development and statement. Drug Saf. 2024;47(6):575–584.
  • Fusaroli M, Salvo F, Bégaud B, et al. The REporting of a Disproportionality analysis for drUg Safety signal detection using individual case safety reports in PharmacoVigilance (READUS-PV): explanation and elaboration. Drug Saf. 2024;47(6):585–599.
  • Fusaroli M, Giunchi V, Ana D. An open access toolkit for DIsproportionality ANAlysis and other pharmacovigilance investigations in the FAERS. [Internet]. 2024. Available from: https://github.com/fusarolimichele/DiAna_package
  • Fusaroli M, Pelletti G, Giunchi V, et al. Deliberate self-poisoning: real-time characterization of suicidal habits and toxidromes in the food and drug administration adverse event reporting system. Drug Saf. 2023;46(3):283–295. doi: 10.1007/s40264-022-01269-x
  • Fusaroli M, Pelletti G, Giunchi V, et al. Authors’ reply to cappello et al. comment on: deliberate self-poisoning: real-time characterization of suicidal habits and toxidromes in the Food and Drug Administration Adverse Event Reporting System. Drug Saf. 2023;46(9):919–920. doi: 10.1007/s40264-023-01331-2
  • Hernán MA. The C-Word: scientific euphemisms do not improve causal inference from observational data. Am J Public Health. 2018;108(5):616–619. doi: 10.2105/AJPH.2018.304337
  • Lapeyre-Mestre M, Montastruc F. Interest of pharmacoepidemiology for pharmacodynamics and analysis of the mechanism of action of drugs. Therapie. 2019;74(2):209–214. doi: 10.1016/j.therap.2018.12.010
  • Feng Z, Zhao Q, Wu J, et al. Nonselective beta-adrenoceptor blocker use and risk of Parkinson’s disease: from multiple real-world evidence. BMC Med. 2023;21(1):437. doi: 10.1186/s12916-023-03122-z
  • Landes J, Osimani B, Poellinger R. Epistemology of causal inference in pharmacology. Eur J Philos Sci. 2018;8(1):3–49. doi: 10.1007/s13194-017-0169-1
  • De Pretis F, Landes J, Osimani B. E-Synthesis: a bayesian framework for causal assessment in pharmacosurveillance. Front Pharmacol [Internet]. 2019 [cited 2024 May 29];10. doi: 10.3389/fphar.2019.01317
  • Fusaroli M, Raschi E, Giunchi V, et al. Impulse control disorders by dopamine partial agonists: a pharmacovigilance-pharmacodynamic assessment through the FDA adverse event reporting system. Int J Neuropsychopharmacol. 2022;25(9):727–736. doi: 10.1093/ijnp/pyac031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.