582
Views
8
CrossRef citations to date
0
Altmetric
Research Article

His22 of TLXI plays a critical role in the inhibition of glycoside hydrolase family 11 xylanases

, , , , , , , , , , & show all
Pages 38-46 | Received 18 Jun 2007, Accepted 10 Nov 2007, Published online: 20 Oct 2008

References

  • CM Courtin, and JA Delcour. (1998). Physicochemical and bread-making properties of low molecular weight wheat derived arabinoxylans. J Agric Food Chem 46:4066–4073.
  • CM Courtin, and JA Delcour. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243.
  • JA Ingelbrecht, K Moers, J Abécassis, X Rouau, and JA Delcour. (2002). Influence of arabinoxylans and endoxylanases on pasta processing and quality. Production of high-quality pasta with increased levels of soluble fiber. Cereal Chem 78:721–729.
  • I Romanowska, J Polak, K Janowska, and S Bielecki. (2003). The application of fungal endoxylanase in bread-making. Commun Agric Appl Biol Sci 68:317–320.
  • ML Polizeli, AC Rizzatti, R Monti, HF Terenzi, JA Jorge, and DS Amorim. (2005). Xylanases from fungi: Properties and industrial applications. Appl Microbiol Biotechnol 67:577–591.
  • B Henrissat. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316.
  • N Brito, JJ Espino, and C Gonzalez. (2006). The endo-beta-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32.
  • DJ Simpson, GB Fincher, AHC Huang, and V Cameron-Mills. (2002). Structure and function of cereal and related higher plant (1 → 4)-β-xylan endohydrolases. J Cereal Sci 37:111–127.
  • W Debyser, G Derdelinckx, and JA Delcour. (1997). Arabinoxylan solubilisation and inhibition of the barley malt xylanolytic system by wheat during brewing with wheat wholemeal adjunct: Evidence for a new class of enzyme inhibitors. J Am Soc Brew Chem 55:153–156.
  • W Debyser, JA Delcour. Inhibitors and xylanolytic and β-glucanolytic enzymes, Eur Pat Filed April 1997, further matter added April 1998, published as WO 98/49278.
  • WR McLauchlan, MT Garcia-Conesa, G Williamson, M Roza, P Ravestein, and J Maat. (1999). A novel class of protein from wheat which inhibits xylanases. Biochem J 338:441–446.
  • E Fierens, S Rombouts, K Gebruers, CM Courtin, H Goesaert, K Brijs, J Beaugrand, G Volckaert, S Van Campenhout, P Proost, and JA Delcour. (2007). TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591.
  • JF Sørensen, KM Kragh, O Sibbesen, J Delcour, H Goesaert, B Svensson, TA Tahir, J Brufau, AM Perez-Vendrell, D Bellincampi, R D'Ovidio, L Camardella, A Giovane, E Bonnin, and N Juge. (2004). Potential role of glycosidase inhibitors in industrial biotechnological applications. Biochim Biophys Acta 1696:275–287.
  • B Henrissat. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316.
  • S Sansen, CJ De Ranter, K Gebruers, K Brijs, CM Courtin, JA Delcour, and A Rabijns. (2004). Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I. J Biol Chem 279:36022–36028.
  • K Fierens, A Gils, S Sansen, K Brijs, CM Courtin, PJ Declerck, CJ De Ranter, K Gebruers, A Rabijns, J Robben, S Campenhout, G Volckaert, and JA Delcour. (2005). His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases. FEBS J 272:5872–5882.
  • F Payan, P Leone, S Porciero, C Furniss, T Tahir, G Williamson, A Durand, P Manzanares, HJ Gilbert, N Juge, and A Roussel. (2004). The dual nature of the wheat xylanase protein inhibitor XIP-I: Structural basis for the inhibition of family 10 and family 11 xylanases. J Biol Chem 279:36029–36037.
  • R Schimoler-O'Rourke, M Richardson, and CP Selitrennikoff. (2001). Zeamatin inhibits trypsin and α-amylase activities. Appl Environ Microbiol 67:2365–2366.
  • AM Smith, and KP Klugman. (1997). “Megaprimer” method of PCR-based mutagenesis: The concentration of megaprimer is a critical factor. Biotechniques 22:438–442.
  • X Shi, T Karkut, M Chamankhah, M Alting-Mees, SM Hemmingsen, and D Hegedus. (2003). Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 28:321–330.
  • J Beaugrand, K Gebruers, C Ververken, E Fierens, E Croes, B Goddeeris, CM Courtin, and JA Delcour. (2006). Antibodies against wheat xylanase inhibitors as tools for the selective identification of their homologues in other cereals. J Cereal Sci 44:59–67.
  • K Fierens, N Geudens, K Brijs, CM Courtin, K Gebruers, J Robben, S Van Campenhout, G Volckaert, and JA Delcour. (2004). High-level expression, purification and characterization of recombinant wheat xylanase inhibitor TAXI-I secreted by the yeast Pichia pastoris. Protein Expr Purif 37:39–46.
  • TP Ko, J Day, A Greenwood, and A Mcpherson. (1994). Structures of three crystal forms of the sweet protein thaumatin. Acta Crystallog D 50:813–825.
  • LJ McGuffin, and DT Jones. (2003). Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19:874–881.
  • RA Laskowski, MW McArthur, DS Moss, and JM Thornton. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291.
  • CS Bond. (2003). TopDraw: A sketchpad for protein structure topology cartoons. Bioinformatics 19:311–312.
  • K Gebruers. Endoxylanase inhibitors in wheat (Triticum aestivum L.): Isolation, characterisation and use for endoxylanase purification [dissertation]. Leuven: Katholieke Universiteit Leuven; (2002). p 178.
  • I Pallarès, R Bonet, R Garcia-Castellanos, S Ventura, FX Avilés, J Vendrell, and FX Gomis-Rüth. (2005). Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proc Natl Acad Sci USA 102:3978–3983.
  • RA Love, HE Parge, X Yu, MJ Hickey, W Diehl, J Gao, H Wriggers, A Ekker, L Wang, JA Thomson, PS Dragovich, and SA Fuhrman. (2003). Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. J Virol 77:7575–7581.
  • J Muilu, A Törrönen, M Perakyla, and J Rouvinen. (1998). Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: A molecular dynamics study. Proteins 31:434–444.
  • R Havukainen, A Törrönen, T Laitinen, and J Rouvinen. (1996). Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei. Biochemistry 35:9617–9624.
  • EF Pettersen, TD Goddard, CC Huang, GS Couch, DM Greenblatt, EC Meng, and TE Ferrin. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.