589
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Topological descriptors in modelling antimalarial activity: N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine as prototype

, , &
Pages 94-104 | Received 16 Aug 2007, Accepted 23 Nov 2007, Published online: 20 Oct 2008

References

  • http://www.globalhealthfacts.org.
  • RG Ridley. (2002). Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:686–693. (b) PM O'Neill. PG Bray, SR Hawley, SA Ward, BK Park. 4-Aminoquinolines–past, present, and future: A chemical perspective. Pharmacol Ther1998; 7:29–58.
  • AV Pandey, H Bisht, VK Babbarwal, J Srivastava, KC Pandey, and VS Chauhan. (2001). Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem J 355:333–338. (b) AC Chou, R Chevli, CD Fitch. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry1980;19:1543–1549. (c) TJ Egan, HM Marques. The role of haem in the activity of chloroquine and related antimalarial drugs. Coord Chem Rev 1999;190–192:493–517. (d) A Dorn, R Stoffel, H Matile, A Bubendorf, RG Ridley Malarial hemozoin/β-hematin supports haem polymerization in the absence of protein. Nature 1995;374:269–271. (e) DJ Sullivan, IY Gluzman, DG Russell, DE Goldberg. On the molecular mechanism of chloroquine's antimalarial action. Proc Natl Acad Sci USA 1996;93:11865–11870.
  • J Wiesner, R Ortmann, H Jomaa, and M Schlitzer. (2003). New antimalarial drugs. Angew Chem Int Ed 42:5274–5293.
  • PG Bray, RE Howells, and SA Ward. (1992). Vacuolar acidification and chloroquine sensitivity in Plasmodium falciparum. Biochem Pharmacol 43:1219–1227. (b) PG Bray, RE Howells, GY Ritchie, SA Ward. Rapid chloroquine efflux phenotype in both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. A correlation of chloroquine sensitivity with energy-dependent drug accumulation. Biochem Pharmacol 1992;44:1317–1324.
  • RG Ridley, H Hofheinz, H Matile, C Jaquet, A Dorn, R Masciadri, S Jolidon, WF Richter, A Guenzi, MA Girometta, H Urwyler, W Huber, S Thiathong, and W Peters. (1996). 4-aminoquinoline analogues of CQ with shortened side chains retain activity against CQ resistant Plasmodium falciparum. Antimicrobial Chemother 40:1846–1854. (b) D De, FM Krogstad, LD Byers, C Jaquet, DJ Krogstad. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J Med Chem1998;41:4918–4926.
  • TJ Egan, R Hunter, CH Kaschula, HM Marques, A Misplon, and JC Walden. (2000). Structure-function relationships in aminoquinolines: Effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. J Med Chem 43:283–291. (b) CH Kaschula, TJ Egan, R Hunter, N Basilico, S Parapani, D Tarameli, E Pasini, D Monti. Structure activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J Med Chem2002;45:3531–3539.
  • JL Vennerstrom, WY Ellis, AL Ager, SL Andersen, L Gerena, WK Milhous, and 1 Bisquinolines. (1992). N,N-Bis(7-chloroquinolin-4-yl)alkanediamines with Potential against chloroquine-resistant malaria. J Med Chem 35:2129–2134. (b) JL Vennerstrom, AL Ager, A Dorn, SL Andersen, L Gerena, RG Ridley, and WK Milhous. 2 Bisquinolines. N,N-Bis(7-chloroquinolin-4-yl)alkanediamines. J Med Chem 1998;4:4360–4364.
  • A Ryckebusch, R Deprez-Poulain, L Maes, MA Debreu-Fontaine, E Mouray, P Grellier, and C Sergheraert. (2003). Synthesis and in Vitro and in Vivo antimalarial activity of N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives. J Med Chem 46:542–557. (b) A Ryckebusch, MA Debreu-Fontaine, E Mouray, P Grellier, C Sergheraert, P Melnyk.Bioorg Med Chem Lett 2005;15:297–302.
  • VR Solomon, W Haq, K Srivastava, K Puri, and SB Katti. (2007). Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J Med Chem 50:394–398. (b)VR Solomon, SK Puri, K Srivastava, SB Katti, Design and synthesis of new antimalarial agents from 4-aminoquinoline. Bioorg Med Chem2005;13: 2157–2165.
  • LM Werbel, PD Cook, EF Elslager, JH Hung, JL Johnson, SJ Kesten, DJ McNamara, DF Ortwine, and DF Worth. (1986). Antimalarial activity, and quantitative structure-activity relationships of tebuquine and a series of related 5-[(7-chloro-4-quinolinyl)amino]-3-[(alky1amino)methyl][1, l'-biphenyl]-2-ols and Nω-Oxides. J Med Chem 29:924–939.
  • MK Gupta, and YS Prabhakar. (2006). Topological descriptors in modeling the antimalarial activity of 4-(3′,5′-disubstituted anilino)quinolines. J Chem Inf Model 46:93–102.
  • E Estrada, and E Uriarte. (2001). Recent advances on the role of topological indices in drug discovery research. Curr Med Chem 8 (13):1573–1588. (b) JR Votano. Recent uses of topological indices in the development of in silico ADMET models. Curr Opin Drug Discov Devel2005;8(1):32–37. (c) R Gozalbes. JP Doucet, F Derouin. Application of topological descriptors in QSAR and drug design: History and new trends. Curr Drug Targets Infect Disord2002;2(1):93–102. (d) MC Bagchi. D Mills, SC Basak. Quantitative structure-activity relationship (QSAR) studies of quinolone antibacterials against M. fortuitum and M. smegmatis using theoretical molecular descriptors. J Mol Model2007;13:111–120. (e) MP González, C Terán. M. A Teijeira. topological function based on spectral moments for predicting affinity toward A3 adenosine receptors. Bioorg Med Chem Lett 2006;16(5):1291–1296. (f) MK Gupta, R Sagar, AK Shaw, YS Prabhakar. CP-MLR directed QSAR studies on the antimycobacterial activity of functionalized alkenols–topological descriptors in modeling the activity. Bioorg Med Chem 2005;13:343–351.
  • DRAGON software version 5.0-2005. By R Todeschini, V Consonni, A Mauri, M Pavan. Milano, Italy. http://disat.unimib.it/chm/Dragon.htm.
  • YS Prabhakar. (2003). A combinatorial approach to the variable selection in multiple linear regression analysis of Selwood et al. data set- a case study. QSAR Comb Sci 22:583–595.
  • ChemDraw Ultra 6.0 and Chem 3D Ultra, Cambridge Soft Corporation, Cambridge, USA.
  • YS Prabhakar. (2004). A combinatorial protocol in multiple linear regression to model gas chromatographic response factor of organophosphonate esters. Internet Electron J Mol Des 3:150–162. http://www.biochempress.com
  • YS Prabhakar, VR Solomon, RK Rawal, MK Gupta, SB Katti, and /PLS CP-MLR. (2004). Directed structure-activity modeling of the HIV-1 RT inhibitory activity of 2,3-diaryl-1,3-thiazolidin-4-ones. QSAR Comb Sc 23:234–244.
  • SS So, and M Karplus. (1997). Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks 2. Applications. J Med Chem 40:4347–4359.
  • MOE: The Molecular Operating Environment from Chemical Computing Group Inc., 1255 University Street, Suite 1600, Montreal, Quebec, Canada H3B 3X3. (b) RD Brown, YC Martin. Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 1996; 36:572–584.
  • D Bonchev. (2005). My life–long journey in mathematical chemistry. Internet Electron J Mol Des 4:434–490. http://www.biochempress.com
  • S Wold. (1978). Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.