337
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The strand transfer oligonucleotide inhibitors of HIV-integrase

, , &
Pages 241-246 | Received 13 Feb 2008, Accepted 23 Feb 2008, Published online: 20 Oct 2008

References

  • PO Brown, B Bowerman, HE Varmus, and JM Bishop. (1989). Retroviral integration-structure of the initial covalent product and its precursor, and a role for the viral in protein. Proc Natl Acad Sci USA 86:2525–2529.
  • T Fujiwara, and K Mizuuchi. (1988). Retroviral DNA integration-structure of an integration intermediate. Cell 54:497–504.
  • M Katzman, RA Katz, AM Skalka, and J Leis. (1989). The avian retroviral integration protein cleaves the terminal sequences of linear viral-DNA at the in vivo sites of integration. J Virol 63:5319–5327.
  • FD Bushman, T Fujiwara, and R Craigie. (1990). Retroviral DNA integration directed by HIV integration protein in vitro. Science 249:1555–1558.
  • R Craigie, T Fujiwara, and F Bushman. (1990). The IN protein of Moloney murine leukemia-virus processes the viral-DNA ends and accomplishes their integration in vitro. Cell 62:829–837.
  • RA Katz, G Merkel, J Kulkosky, J Leis, and AM Skalka. (1990). The avian retroviral in protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95.
  • FD Bushman, and R Craigie. (1991). Activities of human-immunodeficiency-virus (HIV) integration protein in vitro-specific cleavage and integration of HIV DNA. Proc Natl Acad Sci USA 88:1339–1343.
  • B Van Maele, and Z Debyser. (2005). HIV-1 integrated: An interplay between HIV-1 integrase, cellular and viral proteins. AIDS Rev 7:26–43.
  • A Engelman, and R Craigie. (1992). Identification of conserved amino-acid-residues critical for human-immunodeficiency-virus type-1 integrase function-in vitro. J Virol 66:6361–6369.
  • FD Bushman, A Engelman, I Palmer, P Wingfield, and R Craigie. (1993). Domains of the integrase protein of human-immunodeficiency-virus type-1 responsible for polynucleotidyl transfer and zinc-binding. Proc Natl Acad Sci USA 90:3428–3432.
  • ML Cai, RL Zheng, M Caffrey, R Craigie, GM Clore, and AM Gronenborn. (1997). Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577.
  • AD Leavitt, L Shiue, and HE Varmus. (1993). Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J Biol Chem 268:2113–2119.
  • KA Vincent, V Ellison, SA Chow, and PO Brown. (1993). Characterization of human-immunodeficiency-virus type-1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. J Virol 67:425–437.
  • DC van Gent, C Vink, AAMO Groeneger, and RHA Plasterk. (1993). Complementation between HIV integrase proteins mutated in different domains. EMBO J 12:3261–3267.
  • C Vink, AAMO Groeneger, and RHA Plasterk. (1993). Identification of the catalytic and DNA-binding region of the human-immunodeficiency-virus type-I integrase protein. Nucleic Acids Res 21:1419–1425.
  • F Dyda, AB Hickman, TM Jenkins, A Engelman, R Craigie, and DR Davies. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases. Science 266:1981–1986.
  • Y Goldgur, F Dyda, AB Hickman, TM Jenkins, R Craigie, and DR Davies. (1998). Three new structures of the core domain of HIV-1 integrase: An active site that binds magnesium. Proc Natl Acad Sci USA 95:9150–9154.
  • APAM Eijkelenboom, RAP Lutzke, R Boelens, RHA Plasterk, R Kaptein, and K Hard. (1995). The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Biol 2:807–810.
  • PJ Lodi, JA Ernst, J Kuszewski, AB Hickman, A Engelman, R Craigie, GM Clore, and AM Gronenborn. (1995). Solution structure of the DNA-binding domain of HIV-1 integrase. Biochemistry 34:9826–9833.
  • JCH Chen, J Krucinski, LJW Miercke, JS Finer-Moore, AH Tang, AD Leavitt, and RM Stroud. (2000). Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding. Proc Natl Acad Sci USA 97:8233–8238.
  • ZG Chen, YW Yan, S Munshi, Y Li, J Zugay-Murphy, B Xu, M Witmer, P Felock, A Wolfe, V Sardana, EA Emini, D Hazuda, and LC Kuo. (2000). X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50–293)-An initial glance of the viral DNA binding platform. J Mol Biol 296:521–533.
  • JY Wang, H Ling, W Yang, and R Craigie. (2001). Structure of a two-domain fragment of HIV-1 integrase: Implications for domain organization in the intact protein. EMBO J. 20:7333–7343.
  • G Ren, K Gao, FD Bushman, and M Yeager. (2007). Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA 3. J Mol Biol 366:286–294.
  • R Dayam, J Deng, and N Neamati. (2006). HIV-1 integrase inhibitors: 2003-2004 update. Med Res Rev 26:271–309.
  • Y Pommier, AA Johnson, and C Marchand. (2005). Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236–248.
  • M Witvrouw, B Van Maele, J Vercammen, A Hantson, Y Engelborghs, E De Clercq, C Pannecouque, and Z Debyser. (2004). Novel inhibitors of HIV-1 integration. Curr Drug Metab 5:291–304.
  • DJ Hazuda, P Felock, M Witmer, A Wolfe, K Stillmock, JA Grobler, A Espeseth, L Gabryelski, W Schleif, C Blau, and MD Miller. (2000). Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650.
  • KL Williams, YJ Zhang, N Shkriabai, RG Karki, MC Nicklaus, N Kotrikadze, S Hess, SFJ Le Grice, R Craigie, VK Pathak, and M Kvaratskhelia. (2005). Mass spectrometric analysis of the HIV-1 integrase-pyridoxal 5′-phosphate complex reveals a new binding site for a nucleotide inhibitor. J Biol Chem 280:7949–7955.
  • N Jing, and ME Hogan. (1998). Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem 273:34992–34999.
  • N Jing, E De Clercq, RF Rando, L Pallansch, C Lackman-Smith, S Lee, and ME Hogan. (2000). Stability-activity relationships of a family of G-tetrad forming oligonucleotides as potent HIV inhibitors-A basis for anti-HIV drug design. J Biol Chem 275:3421–3430.
  • VR de Soultrait, PY Lozach, R Altmeyer, L Tarrago-Litvak, S Litvak, and ML Andreola. (2002). DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J Mol Biol 324:195–203.
  • N Jing, W Xiong, Y Guan, L Pallansch, and S Wang. (2002). Potassium-dependent folding: A key to intracellular delivery of G-quartet oligonucleotides as HIV inhibitors. Biochemistry 41:5397–5403.
  • N Jing, C Marchand, J Liu, R Mitra, ME Hogan, and Y Pommier. (2000). Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in vitro. J Mol Biol 275:21460–21467.
  • AT Phan, V Kuryavyi, JB Ma, A Faure, ML Andreola, and DJ Patel. (2005). An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci USA 102:634–639.
  • Y Tamura, M Yoshida, J Suzuki, T Hiratou, N Miyano-Kurosaki, K Takai, and H Takaku. (2000). Properties of quadruplex oligonucleotides with anti-HIV-1 activity. Nucleic Acids Symp Ser 44:181–182.
  • E Tramontano, P La Colla, and YC Cheng. (1998). Biochemical characterization of the HIV-1 integrase 3′-processing activity and its inhibition by phosphorothioate oligonucleotides. Biochemistry 37:7237–7243.
  • D Rejman, J Snášel, R Liboska, Z Točík, O Pačes, S Kraliková, M Rinnová, P Kois, and I Rosenberg. (2001). Oligonucleotides with isopolar phosphonate internucleotide linkage: A new perspective for antisense compounds?. Nucleosides Nucleotides Nucleic Acids 20:819–823.
  • T Szabo, A Kers, and J Stawinski. (1995). A new approach to the synthesis of the 5′-deoxy-5′-methylphosphonate linked thymidine oligonucleotide analogs. Nucleic Acids Res 23:893–900.
  • D Rejman, M Masojídková, and I Rosenberg. (2004). Nucleosidyl-O-methylphosphonates: A pool of monomers for modified oligonucleotides. Nucleosides Nucleotides Nucleic Acids 23:1683–1705.
  • J Snášel, D Rejman, R Liboska, Z Točík, T Ruml, I Rosenberg, and I Pichová. (2001). Inhibition of HIV-1 integrase by modified oligonucleotides derived from U5′ LTR. Eur J Biochem 268:980–986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.