2,070
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Chinese herb medicine against Sortase A catalyzed transformations, a key role in gram-positive bacterial infection progress

, , &
Pages 184-196 | Received 04 Feb 2016, Accepted 16 Mar 2016, Published online: 10 May 2016

References

  • Pallen MJ, Lam AC, Antonio M, Dunbar K. An embarrassment of sortases – a richness of substrates? Trends Microbiol 2001;9:97–101
  • Diekema D, Pfaller M, Schmitz F, et al. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the Sentry Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 2001;32:114–32
  • Maresso AW, Wu R, Kern JW, et al. Activation of inhibitors by sortase triggers irreversible modification of the active site. J Biol Chem 2007;282:23129–39
  • Mazmanian SK, Ton-That H, Su K, Schneewind O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci USA 2002;99:2293–8
  • Osaki M, Takamatsu D, Shimoji Y, Sekizaki T. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of Gram-positive bacteria. J Bacteriol 2002;184:971–82
  • Kharat AS, Tomasz A. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect Immun 2003;71:2758–65
  • Mazmanian SK, Liu G, Jensen ER, et al. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci USA 2000;97:5510–15
  • Fitzgerald-Hughes D, Devocelle M, Humphreys H. Beyond conventional antibiotics for the future treatment of methicillin-resistant Staphylococcus aureus infections: two novel alternatives. FEMS Immunol Med Mic 2012;65:399–412
  • Marraffini LA, Schneewind O. Targeting proteins to the cell wall of sporulating Bacillus anthracis. Mol Microbiol 2006;62:1402–17
  • Spirig T, Weiner EM, Clubb RT. Sortase enzymes in Gram-positive bacteria. Mol Microbiol 2011;82:1044–59
  • Dramsi S, Trieu-Cuot P, Bierne H. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol 2005;156:289–97
  • Kim S-H, Shin D-S, Oh M-N, et al. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by isoquinoline alkaloids. Biosci Biotech Biochem 2004;68:421–4
  • Bradshaw WJ, Davies AH, Chambers CJ, et al. Molecular features of the sortase enzyme family. FEBS J 2015;282:2097–114
  • Mazmanian SK, Skaar EP, Gaspar AH, et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 2003;299:906–9
  • Zong Y, Mazmanian SK, Schneewind O, Narayana SV. The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. Structure 2004;12:105–12
  • Ton-That H, Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 2003;50:1429–38
  • Barnett TC, Scott JR. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 2002;184:2181–91
  • Hava DL, Camilli A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 2002;45:1389–406
  • Nallapareddy SR, Singh KV, Sillanpää J, et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest 2006;116:2799–807
  • Nobbs AH, Rosini R, Rinaudo CD, et al. Sortase A utilizes an ancillary protein anchor for efficient cell wall anchoring of pili in Streptococcus agalactiae. Infect Immun 2008;76:3550–60
  • Claessen D, Rink R, de Jong W, et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 2003;17:1714–26
  • Elliot MA, Karoonuthaisiri N, Huang J, et al. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 2003;17:1727–40
  • Jacobitz AW, Wereszczynski J, Yi SW, et al. Structural and computational studies of the Staphylococcus aureus sortase B-substrate complex reveal a substrate-stabilized oxyanion hole. J Biol Chem 2014;289:8891–902
  • Weiss WJ, Lenoy E, Murphy T, et al. Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. J Antimicrob Chemother 2004;53:480–6
  • Jonsson M, Mazmanian SK, Schneewind O, et al. On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. J Infect Dis 2002;185:1417–24
  • Mazmanian SK, Ton-That H, Schneewind O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 2001;40:1049–57
  • Cascioferro S, Totsika M, Schillaci D. Sortase A: an ideal target for anti-virulence drug development. Microb Pathogenesis 2014;77:105–12
  • Li M-Y, Huang R-J, Zhou X-D, Gregory RL. Role of sortase in Streptococcus mutans under the effect of nicotine. Int J Oral Sci 2013;5:206–11
  • Chambers H. Ceftobiprole: in-vivo profile of a bactericidal cephalosporin. Clin Microbiol Infec 2006;12:17–22
  • Christ-Crain M, Jaccard-Stolz D, Bingisser R, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 2004;363:600–7
  • Nandakumar R, Nandakumar M, Marten MR, Ross JM. Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J Proteome Res 2005;4:250–7
  • Oh K-B, Mar W, Kim S, et al. Bis(indole) alkaloids as sortase A inhibitors from the sponge Spongosorites sp. Bioorg. Med. Chem. Lett 2005;15:4927–31
  • Digrak M, Alma MH, İlçim A, Sen S. Antibacterial and antifungal effects of various commercial plant extracts. Pharm Biol 1999;37:216–20
  • Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 1999;285:760–3
  • Clark AM. Natural products as a resource for new drugs. J Pharm Res 1996;13:1133–41
  • Lao Y-M, Jiang J-G, Yan L. Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine. Br J Pharmacol 2009;157:1128–41
  • Harvey AL. Natural products in drug discovery. Drug Discov Today 2008;13:894–901
  • Quave CL, Plano LR, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 2008;118:418–28
  • Pesewu GA, Cutler RR, Humber DP. Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. J Ethnopharmacol 2008;116:102–11
  • De Lima MRF, de Souza Luna J, Dos Santos AF, et al. Anti-bacterial activity of some Brazilian medicinal plants. J Ethnopharmacol 2006;105:137–47
  • Kim S-W, Chang I-M, Oh K-B. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants. Biosci Biotechnol Biochem 2002;66:2751–4
  • Talpir R, Rudi A, Ilan M, Kashman Y. Niphatoxin A and B; two new ichthyo and cytotoxic tripyridine alkaloids from a marine sponge. Tetrahedron Lett 1992;33:3033–4
  • Gazaliev A, Zhurinov MZ, Tuleuov B. Isolation, analysis, biosynthesis, and modification of the alkaloid cytisine. Chem Nat Compd 1991;27:259–69
  • Bierne H, Mazmanian SK, Trost M, et al. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol 2002;43:869–81
  • Garandeau C, Réglier-Poupet H, Dubail I, et al. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect Immun 2002;70:1382–90
  • Kiefer F, Arnold K, Künzli M, et al. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 2009;37:387–92
  • Ton-That H, Marraffini LA, Schneewind O. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 2004;1694:269–78
  • Suree N, Yi SW, Thieu W, et al. Discovery and structure-activity relationship analysis of Staphylococcus aureus sortase A inhibitors. Bioorg Med Chem 2009;17:7174–85
  • Kahlon AK, Negi AS, Kumari R, et al. Identification of 1-chloro-2-formyl indenes and tetralenes as novel antistaphylococcal agents exhibiting sortase A inhibition. Appl Microbiol Biotechnol 2014;98:2041–51
  • Ton-That H, Mazmanian SK, Alksne L, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis. J Biol Chem 2002;277:7447–52
  • Connolly KM, Smith BT, Pilpa R, et al. Sortase from Staphylococcus aureus does not contain a thiolate-imidazolium ion pair in its active site. J Biol Chem 2003;278:34061–5
  • Ton-That H, Mazmanian SK, Faull KF, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J Biol Chem 2000;275:9876–81
  • Ton-That H, Liu G, Mazmanian SK, et al. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci USA 1999;96:12424–9
  • Marraffini LA, Ton-That H, Zong Y, et al. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A. J Biol Chem 2004;279:37763–70
  • Huang X, Aulabaugh A, Ding W, et al. Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemistry 2003;42:11307–15
  • Frankel BA, Bentley M, Kruger RG, McCafferty DG. Vinyl sulfones: inhibitors of SrtA, a transpeptidase required for cell wall protein anchoring and virulence in Staphylococcus aureus. J Am Chem Soc 2004;126:3404–5
  • Donahue EH, Dawson LF, Valiente E, et al. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors. BMC Microbiol 2014;14:219–32
  • Quesne MG, Ward RA, de Visser SP. Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem 2013;1:1–10
  • Jung ME, Clemens JJ, Suree N, et al. Synthesis of (2R,3S) 3-amino-4-mercapto-2-butanol, a threonine analogue for covalent inhibition of sortases. Bioorg Med Chem Lett 2005;15:5076–9
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–9
  • Navarre WW, Schneewind O. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 1994;14:115–21
  • Schneewind O, Mihaylova-Petkov D, Model P. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J 1993;12:4803–11
  • Schneewind O, Model P, Fischetti VA. Sorting of protein A to the Staphylococcal cell wall. Cell 1992;70:267–81
  • Ton-That H, Schneewind O. Anchor structure of staphylococcal surface proteins IV. Inhibitors of the cell wall sorting reaction. J Biol Chem 1999;274:24316–20
  • Zong Y, Bice TW, Ton-That H, et al. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem 2004;279:31383–9
  • Bentley ML, Lamb EC, McCafferty DG. Mutagenesis studies of substrate recognition and catalysis in the sortase A transpeptidase from Staphylococcus aureus. J Biol Chem 2008;283:14762–71
  • Foster TJ, Höök M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 1998;6:484–8
  • Pribyl T, Moche M, Dreisbach A, et al. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae. J Proteome Res 2014;13:650–67
  • Beulin D, Yamaguchi M, Kawabata S, Ponnuraj K. Crystal structure of PfbA, a surface adhesin of Streptococcus pneumoniae, provides hints into its interaction with fibronectin. Int J Biol Macromol 2014;64:168–73
  • Chen F, Liu B, Wang D, et al. Role of sortase A in the pathogenesis of Staphylococcus aureus-induced mastitis in mice. FEMS Microbiol Lett 2014;351:95–103
  • Flock J, Fröman G, Jönsson K, et al. Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J 1987;6:2351–7
  • Jönsson K, Signäs C, Müller H-P, Lindberg M. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene Eur J Biochem 1991;202:1041–8
  • Roche FM, Massey R, Peacock SJ, et al. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology (Reading, Engl.) 2003;149:643–54
  • Wann ER, Gurusiddappa S, Höök M. The fibronectin-binding Mscramm FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 2000;275:13863–71
  • Grundmeier M, Hussain M, Becker P, et al. Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect Immun 2004;72:7155–63
  • Bingham RJ, Rudiño-Piñera E, Meenan NA, et al. Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci USA 2008;105:12254–8
  • Maňásková SH, Nazmi K, van Belkum A, et al. Synthetic LPETG-containing peptide incorporation in the Staphylococcus aureus cell-wall in a sortase a-and growth phase-dependent manner. PLoS One 2014;9:e89260. doi: http://dx.doi.org/10.1371/journal.pone.0089260
  • Matsumoto T, Takase R, Tanaka T, et al. Site-specific protein labeling with amine-containing molecules using Lactobacillus plantarum sortase. Biotechnol J 2012;7:642–8
  • Hartford O, Francois P, Vaudaux P, Foster T. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol 1997;25:1065–76
  • McDevitt D, Francois P, Vaudaux P, Foster T. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol Microbiol 1995;16:895–907
  • Yamaguchi M, Terao Y, Mori Y, et al. PfbA, a novel plasmin and fibronectin-binding protein of Streptococcus pneumoniae, contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol Chem 2008;283:36272–9
  • Mandlik A, Swierczynski A, Das A, Ton-That H. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 2007;64:111–24
  • Chang C, Mandlik A, Das A, Ton-That H. Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in Corynebacterium diphtheriae. Mol Microbiol 2011;79:1236–47
  • Patti JM, Jonsson H, Guss B, et al. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem 1992;267:4766–72
  • Switalski LM, Patti JM, Butcher W, et al. A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol Microbiol 1993;7:99–107
  • Rich RL, Deivanayagam CC, Owens RT, et al. Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, α1β1 integrin and Staphylococcus aureus Cna MSCRAMM. J Biol Chem 1999;274:24906–13
  • Jensen K. A normally occurring Staphylococcus antibody in human serum. Acta Pathologica Microbiologica Scandinavica 1958;44:421–8
  • Soriani M, Telford JL. Relevance of pili in pathogenic Streptococci pathogenesis and vaccine development. Future Microbiol 2010;5:735–47
  • Ton-That H, Schneewind O. Assembly of pili in Gram-positive bacteria. Trends Microbiol 2004;12:228–34
  • Budzik JM, Oh S-Y, Schneewind O. Cell wall anchor structure of BcpA pili in Bacillus anthracis. J Biol Chem 2008;283:36676–86
  • Danne C, Dubrac S, Trieu-Cuot P, Dramsi S. Single cell stochastic regulation of pilus phase variation by an attenuation-like mechanism. PLoS Pathog 2014;10:e1003860. doi: http://dx.doi.org/10.1371/journal.ppat.1003860
  • Swaminathan A, Mandlik A, Swierczynski A, et al. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae. Mol Microbiol 2007;66:961–74
  • Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 2010;94:385–96
  • Mandlik A, Swierczynski A, Das A, Ton-That H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 2008;16:33–40
  • Oh S-Y, Budzik JM, Schneewind O. Sortases make pili from three ingredients. Proc Natl Acad Sci USA 2008;105:13703–4
  • Ton-That H, Marraffini LA, Schneewind O. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 2004;53:251–61
  • Tsuda Y, Sener B, Khalid A, Parvez M. New steroidal alkaloids from Fritillaria imperialis and their cholinesterase inhibiting activities. Chem Pharm Bull 2002;50:1013–16
  • Kang D-G, Oh H, Cho D-K, et al. Effects of bulb of Fritillaria ussuriensis maxim on angiotensin converting enzyme and vascular release of NO/cGMP in rats. J Ethnopharmacol 2002;81:49–55
  • Yang L, Xueru L, Ya Z, Ningping W. Study on antibacterial activity of total alkaloia from F. taitaiensis L. and shedan chuanbeiye in vitro. Ning Xia Med J 1996;3:147–8
  • Kim S-H, Shin D-S, Oh M-N, et al. Microbiology & fermentation technology-inhibition of sortase, a bacterial surface protein anchoring transpeptidase, by b-Sitosterol-3-O-glucopyranoside from Fritillaria verticillata. Biosci Biotech Biochem 2003;67:2477–9
  • Oh K-B, Oh M-N, Kim J-G, et al. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl Microbiol Biotechnol 2006;70:102–6
  • Oh K-B, Kim S-H, Lee J, et al. Discovery of diarylacrylonitriles as a novel series of small molecule sortase A inhibitors. J Med Chem 2004;47:2418–21
  • Suree N, Jung M, Clubb R. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other Gram-positive pathogens. Mini Rev Med Chem 2007;7:991–1000
  • Wang L, Bi C, Cai H, et al. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front Microbiol 2015;6:1–12
  • Liu X, Xia Y, Fang Y, et al. Interaction between bovine serum albumin and berberine chloride extracted from Chinese herbs of coptis chinensis franch. Chem J Chinese U 2003;25:2099–103
  • Iwasa K, Lee D-U, Kang S-I, Wiegrebe W. Antimicrobial activity of 8-alkyl and 8-phenyl-substituted berberines and their 12-bromo derivatives. J Nat Prod 1998;61:1150–3
  • Yu H-H, Kim K-J, Cha J-D, et al. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 2005;8:454–61
  • Freile M, Giannini F, Sortino M, et al. Antifungal activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Acta Farmaceutica Bonaerense 2006;25:83–8
  • Wei C-Z, Tian S-Q. In vitro antibacterial investigation of Zhili tablet. Chinese J Hosp Pharm 2002;22:167–72
  • Kong W-J, Zhao Y-L, Shan L-M, et al. Investigation on the spectrum-effect relationships of EtOAc extract from Radix Isatidis based on HPLC fingerprints and microcalorimetry. J Chromatogr B Analyt Technol Biomed Life Sci 2008;871:109–14
  • Xiao S-s, Jin Y, Sun Y-q. Recent progress in the studies of chemical constituents, pharmacological effects and quality control methods on the roots of Isatis indigotica. J Shenyang Pharm Univ 2003;6:455–9
  • Xu L, Huang F, Cheng T, Wu J. Antivirus constituents of radix of Isatis indigotica. Chin J Nat Med 2005;3:359–60
  • Peng J, Fan G, Wu Y. Isolation and purification of clemastanin B and indigoticoside A from radix isatidis by high-speed counter-current chromatography. J Chromatogr A 2005;1091:89–93
  • Liu Y-h, Wu X-y, Fang J-g, Tang J. Studies on chemical constituents from radix isatidis. Herald Med 2003;9:591–4
  • Han G, Chen B-q, Xu Q-t. Studies on the antibiotic effects of banlangen buccal tablets. J Henan Univ (Med Sci) 2004;1:36–7
  • Dobelis IN. Magic and medicine of plants. Pleasantville, NewYork: Ethnobotanical Leaflets; 1986. Vol. 5
  • Lee Y-J, Han Y-R, Park W, et al. Synthetic analogs of indole-containing natural products as inhibitors of sortase A and isocitrate lyase. Bioorg Med Chem Lett 2010;20:6882–5
  • Jang KH, Chung S-C, Shin J, et al. Aaptamines as sortase A inhibitors from the tropical sponge Aaptos aaptos. Bioorg Med Chem Lett 2007;17:5366–9
  • Kang SS, Kim J-G, Lee T-H, Oh K-B. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol Pharm Bull 2006;29:1751–5
  • Liu J, Zhu M, Shi R, Yang M. Radix Sophorae flavescentis for chronic hepatitis B: a systematic review of randomized trials. Am J Chinese Med 2003;31:337–54
  • Oh I, Yang W-Y, Chung S-C, et al. In vitro sortase A inhibitory and antimicrobial activity of flavonoids isolated from the roots of Sophora flavescens. Arch Pharm Res 2011;34:217–22
  • Escaich S. Antivirulence as a new antibacterial approach for chemotherapy. Curr Opin Chem Biol 2008;12:400–8
  • Huang P, Hu P, Zhou SY, et al. Morin inhibits Sortase A and subsequent biofilm formation in Streptococcus mutans. Curr Microbiol 2014;68:47–52
  • Ma R, Pang G-c. Role of rutin in modern civilization diseases. Food Sci 2013;7:307–11
  • SUN D-m, KUANG Z-y, LI Y. Experiment on bacteriostasis function of baicalin against methicilin-resistant Staphlococcus aureus. Jilin Med J 2011;13:2587–8
  • Meizhen Y, Xiaoshan G, Linxiang L, et al. Observation on inhibitory effect of coptis alone and its combination with scutellaria and liquorice on the growth of Staphylococcus aureus. China J Chinese Materia Medica 1998;6:1–4
  • Chan BC-L, Bik-San Lau C, Jolivalt C, et al. Chinese medicinal herbs against antibiotic-resistant bacterial pathogens. Sci Against Microbial Pathogens 2011;1:773–81
  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharmaceut 2007;4:807–18
  • Long Y, Zhang W, Wang F, Chen Z. Simultaneous determination of three curcuminoids in Curcuma longa L. by high performance liquid chromatography coupled with electrochemical detection. J Pharm Anal 2013;4:3368–672
  • Song J, Choi B, Jin E-J, et al. Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur J Clin Microbiol Infect Dis 2012;31:1347–52
  • Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 1996;52:519–25
  • Huang M-T, Lou Y-R, Ma W, et al. Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res 1994;54:5841–7
  • Hong J, Bose M, Ju J, et al. Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 2004;25:1671–9
  • Nishiyama T, Mae T, Kishida H, et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 2005;53:959–63
  • Park B-S, Kim J-G, Kim M-R, et al. Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J Agric Food Chem 2005;53:9005–9
  • Ilangovan U, Ton-That H, Iwahara J, et al. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc Natl Acad Sci USA 2001;98:6056–61
  • Oh K-B, Nam K-W, Ahn H, et al. Therapeutic effect of (Z)-3-(2, 5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) against Staphylococcus aureus infection in a murine model. Biochem Biophys Res Commun 2010;396:440–4
  • Ye W-C, Ji N-N, Zhao S-X, et al. Triterpenoids from Pulsatilla chinensis. Phytochemistry 1996;42:799–802
  • Mimaki Y, Kuroda M, Asano T, Sashida Y. Triterpene saponins and lignans from the roots of Pulsatilla chinensis and their cytotoxic activity against HL-60 cells. J Nat Prod 1999;62:1279–83
  • Ye W, He A, Zhao S, Che C-T. Pulsatilloside C from the roots of Pulsatilla chinensis. J Nat Prod 1998;61:658–9
  • Sun Y, Liu J, Yu H, Gong C. Isolation and evaluation of immunological adjuvant activities of saponins from the roots of Pulsatilla chinensis with less adverse reactions. Int Immunopharmacol 2010;10:584–90
  • Lee S, Song I-H, Lee J-H, et al. Sortase A inhibitory metabolites from the roots of Pulsatilla koreana. Bioorg Med Chem Lett 2014;24:44–8
  • Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. The Plant Cell 1995;7:1085–97
  • Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003;62:121–5
  • Deng F. Studies of Sortase A by total chemical synthesis. Chicago, Illinois: The University of Chicago; 2013
  • Won TH, Jeon J-e, Lee S-H, et al. Beta-carboline alkaloids derived from the ascidian Synoicum sp. Bioorg Med Chem 2012;20:4082–7
  • Seidler J, McGovern SL, Doman TN, Shoichet BK. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 2003;46:4477–86
  • Kruger RG, Dostal P, McCafferty DG. Development of a high-performance liquid chromatography assay and revision of kinetic parameters for the Staphylococcus aureus sortase transpeptidase SrtA. Anal Biochem 2004;326:42–8
  • Vogel H. Similarities between various systems of traditional medicine. Considerations for the future of ethnopharmacology. J Ethnopharmacol 1991;35:179–90
  • van Vught R, Pieters R, Breukink E. Site-specific functionalization of proteins and their applications to therapeutic antibodies. Comput Struct Biotechnol J 2014;9:e201402001. doi: 10.5936/csbj.201402001
  • Kajikawa A, Nordone SK, Zhang L, et al. Dissimilar properties of two recombinant Lactobacillus acidophilus strains displaying Salmonella FliC with different anchoring motifs. Appl Environ Microb 2011;77:6587–96
  • Jia X, Kwon S, Wang C-IA, et al. Semienzymatic cyclization of disulfide-rich peptides using sortase A. J Biol Chem 2014;289:6627–38
  • Swee LK, Guimaraes CP, Sehrawat S, et al. Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci USA 2013;110:1428–33
  • Popp MW, Dougan SK, Chuang T-Y, et al. Sortase-catalyzed transformations that improve the properties of cytokines. Proc Natl Acad Sci USA 2011;108:3169–74
  • Hagemeyer CE, Alt K, Johnston AP, et al. Particle generation, functionalization and sortase A-mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat Protoc 2015;10:90–105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.