1,268
Views
8
CrossRef citations to date
0
Altmetric
Short Communication

Screening assay for inhibitors of a recombinant Streptococcus pneumoniae UDP-glucose pyrophosphorylase

, , , , , , & show all
Pages 203-207 | Received 13 Jun 2016, Accepted 22 Sep 2016, Published online: 23 Jan 2017

References

  • Donkor ES. Understanding the pneumococcus: transmission and evolution. Front Cell Infect Microbiol 2013;3:7.
  • Perez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol 2012;27:221–45.
  • Griffith F. The significance of pneumococcal types. J Hyg (Lond) 1928;27:113–59.
  • Yother J. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol 2011;65:563–81.
  • Bratcher PE, Kim KH, Kang JH, et al. Identification of natural pneumococcal isolates expressing serotype 6D by genetic, biochemical and serological characterization. Microbiology 2010;156:555–60.
  • Calix JJ, Nahm MH. A new pneumococcal serotype, 11E, has a variably inactivated wcjE gene. J Infect Dis 2010;202:29–38.
  • Calix JJ, Porambo RJ, Brady AM, et al. Biochemical, genetic and serological characterization of two capsule subtypes among Streptococcus pneumoniae serotype 20 strains: discovery of a new pneumococcal serotype. J Biol Chem 2012;287:27885–94.
  • Henrichsen J. Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 1995;33:2759–62.
  • Park IH, Pritchard DG, Cartee R, et al. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol 2007;45:1225–33.
  • Bentley SD, Aanensen D, Mavroidi A, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2006;2:e31.
  • Mills GT, Smith EE. Biosynthesis of capsular polysaccharides in the Pneumococcus. Bull Soc Chim Biol 1965;47:1751–65.
  • Kamerling JP, Pneumococcal polysaccharides: a chemical view. In: Tomasz A, ed. Streptococcus pneumoniae: molecular biology and mechanisms of disease. New York: Mary Ann Liebert, Larchmont; 2000:81–114.
  • Mollerach M, García E. The galU gene of Streptococcus pneumoniae that codes for a UDP-glucose pyrophosphorylase is highly polymorphic and suitable for molecular typing and phylogenetic studies. Gene 2000;260:77–86.
  • Marra A, Brigham D. Streptococcus pneumoniae causes experimental meningitis following intranasal and otitis media infections via a nonhematogenous route. Infect Immun 2001;69:7318–25.
  • Meng JP, Yin YB, Zhang XM, et al. Identification of Streptococcus pneumoniae genes specifically induced in mouse lung tissues. Can J Microbiol 2008;54:58–65.
  • Mollerach M, López R, García E. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J Exp Med 1998;188:2047–56.
  • Chang H, Lee J, Leng W, et al. Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microb Pathog 1996;20:255–61.
  • Lai Y-C, Peng H-L, Chang H-Y. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun 2001;69:7140–5.
  • Wandersman C, Létoffé S. Involvement of lipopolysaccharide in the secretion of alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol 1993;7:141–50.
  • Priebe GP, Dean CR, Zaidi T, et al. The galU Gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect Immun 2004;72:4224–32.
  • Deng W-L, Lin Y-C, Lin R-H, et al. Effects of galU mutation on Pseudomonas syringae-plant interactions. Mol Plant Microbe Interact 2010;23:1184–96.
  • Guo Y, Sagaram US, Kim J-s, Wang N. Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. Appl Environ Microbiol 2010;76:2234–42.
  • Ho TD, Waldor MK. Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infect Immun 2007;75:1661–6.
  • Jayakar HR, Parvathareddy J, Fitzpatrick EA, et al. A galU mutant of Francisella tularensis is attenuated for virulence in a murine pulmonary model of tularemia. BMC Microbiol 2011;11:179.
  • Jiang SS, Lin TY, Wang WB, et al. Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother 2010;54:2000–9.
  • Sandlin RC, Lampel KA, Keasler SP, et al. Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 1995;63:229–37.
  • Köhler H, Rodrigues SP, McCormick BA. Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 2002;70:1150–8.
  • Nesper J, Lauriano CM, Klose KE, et al. Characterization of Vibrio cholerae O1 El Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 2001;69:435–45.
  • Rioux S, Galarneau C, Harel J, et al. Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1. Can J Microbiol 1999;45:1017–26.
  • Ramjeet M, Cox AD, Hancock MA, et al. Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1. Mol Microbiol 2008;70:221–35.
  • Vilches S, Canals R, Wilhelms M, et al. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide structures and reduced virulence. Microbiology (Reading, Engl.) 2007;153:2393–404.
  • Wong M, Medrano J. Real-time PCR for mRNA quantitation. BioTechniques 2005;39:75–85.
  • Berbís MÁ, Sánchez-Puelles JM, Cañada FJ, Jímenez-Barbero J. Structure and function of prokaryotic UDP-glucose pyrophosphorylase, a drug target candidate. Curr Med Chem 2015;22:1687–97.
  • Bonofiglio L, García E, Mollerach M. Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis. Curr Microbiol 2005;51:217–21.
  • Bonofiglio L, García E, Mollerach M. The galU gene expression in Streptococcus pneumoniae. FEMS Microbiol Lett 2012;332:47–53.
  • Franke J, Sussman M. Synthesis of uridine diphosphate glucose pyrophorylase during the development of Dictyostelium discoideum. J Biol Chem 1971;246:6388.
  • Fusari C, Demonte AM, Figueroa CM, et al. A colorimetric method for the assay of ADP-glucose pyrophosphorylase. Anal Biochem 2006;1:145–7.