42,656
Views
500
CrossRef citations to date
0
Altmetric
Review Article

Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors

, &
Pages 403-425 | Received 25 Jul 2016, Accepted 11 Oct 2016, Published online: 18 Jan 2017

References

  • Available from: http://www.sironabiochem.com/products/skinlightening/
  • Available from: http://cosmetics.specialchem.com/news/industry-news/skin-lightening-products-market-to-reach-usd23-bn-by-2020-global-industry-analysts (Published on 2015-02-16)
  • Francisco S, Stefania B, Mauro P, et al. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 2006;19:550–7.
  • Tsatmali M, Ancans J, Thody AJ. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 2002;50:125–33.
  • Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 2007;21:976–94.
  • Ahn SJ, Koketsu M, Ishihara H, et al. Regulation of melanin synthesis by selenium-containing carbohydrates. Chem Pharm Bull 2006;54:281–6.
  • Iozumi K, Hoganson GE, Pennella R, et al. Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. J Invest Dermatol 1993;100:806–11.
  • Li G, Ju HK, Chang HW, et al. Melanin biosynthesis inhibitors from the bark of Machilus thunbergii. Biol Pharm Bull 2003;26:1039–41.
  • Unver N, Freyschmidt-Paul P, Horster S, et al. Alterations in the epidermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin. Br J Dermatol 2006;155:119–28.
  • Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol 2008;84:539–49.
  • Urabe K, Nakayama J, Hori Y. In Norlund JJ, Boissy RE, et al. eds. The pigmentary system: physiology and pathophysiology. New York, NY: Oxford University Press; 1998:909–913.
  • Yang JY, Koo JH, Song YG, et al. Stimulation of melanogenesis by scoparone in B16 melanoma cells. Acta Pharmacol Sin 2006;27:1467–73.
  • Pillaiyar T, Manickam M, Jung SH. Inhibitors of melanogenesis: a patent review (2009–2014). Expert Opin Ther Pat 2015;7:775–88.
  • Schiaffino MV. Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol 2010;42:1094–104.
  • Slominski A, Tobin DJ, Shibahara S, et al. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004;84:1155–228.
  • Hearing VJ. Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J Biochem 1987;19:1141–7.
  • Halaban R, Patton RS, Cheng E, et al. Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway. J Biol Chem 2002;277:14821–8.
  • Sánchez-Ferrer A, Rodríguez-López JN, García-Cánovas F, et al. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1995;1247:1–11.
  • (a) Matoba Y, Kumagai T, Yamamoto A, et al. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 2008;281:8981–90. (b) Bijelic A, Pretzler M, Molitor C, et al. The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of “Substrate-Guiding Residues” for Enzymatic Specificity. Angew Chem Int Ed Engl 2015;54:14677–80.
  • Decker H, Tuczek F. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 2000;25:392–7.
  • Jiménez-Atiénzar M, Escribano J, Cabanes J, et al. Oxidation of the flavonoid eriodictyol by tyrosinase. Plant Physiol Biochem 2005;43:866–73.
  • Cavalieri EL, Li KM, Balu N, et al. Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 2002;23:1071–7.
  • Vontzalidou A, Zoidis G, Chaita E, et al. Design, synthesis and molecular studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 2012;22:5523–6.
  • Hasegawa T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease. Int J Mol Sci 2010;11:1082–9.
  • Tessari I, Bisaglia M, Valle F, et al. The reaction of alpha-synuclein with tyrosinase: possible implications for Parkinson disease. J Biol Chem 2008;283:16808–17.
  • Greggio E, Bergantino E, Carter D. Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease. J Neurochem 2005;93:246–56.
  • Yi W, Cao R, Peng W, et al. Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. Eur J Med Chem 2010;45:639–46.
  • Friedman M. Food browning and its prevention: an overview. J Agric Food Chem 1996;44:631–53.
  • Mayer AM. Polyphenol oxidases in plants-recent progress. Phytochemistry 1987;26:11–20.
  • Liu SH, Pan IH, Chu IM. Inhibitory effect of p-hydroxybenzyl alcohol on tyrosinase activity and melanogenesis. Biol Pharm Bull 2007;30:1135–9.
  • Arndt KA, Fitzpatrick TB. Topical use of hydroquinine as a depigmenting agent. J Am Med Assoc 1965;194:117–19.
  • Fitzpatrick TB, Arndt KA, el-Mofty AM, et al. Hydroquinone and psoralens in the therapy of hypermelanosis and vitiligo. Arch Dermatol 1966;93:589–600.
  • Kligman AM, Willis I. A new formula for depigmenting human skin. Arch Dermatol 1975;111:40–8.
  • Heilgemeir GP, Balda BR. [Irreversible toxic depigmentation. Observations following use of hydroquinonemonobenzylether-containing skin bleaching preparations]. MMW Munch Med Wochenschr 1981;123:47–8.
  • Kumar K, Vani MG, Wang SY, et al. In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: A novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 2013;39:259–70.
  • Gonçalez M, Corrêa M, Chorilli M. Skin delivery of kojic acid-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. BioMed Res Int 2013;2013:271–6.
  • Ki DH, Jung HC, Noh YW, et al. Preformulation and formulation of newly synthesized QNT3-18 for development of a skin whitening agent. Drug Dev Ind Pharm 2013;39:526–33.
  • Breathnach AC, Nazzaro-Porro M, Passi S, et al. Azelaic acid therapy in disorders of pigmentation. Clin Dermatol 1989;7:106–19.
  • Verallo-Rowell VM, Verallo V, Graupe K, et al. Double-blind comparison of azelaic acid and hydroquinone in the treatment of melasma. Acta Derm Venereol Suppl (Stockh) 1989;143:58–61.
  • Shivhare S, Malviya K, Malviya K, et al. A review: natural skin lighting and nourishing agents. Res J Top Cosmet Sci 2013; 4:21–5.
  • Huang CH, Sung HC, Hsiao CY, et al. Transdermal delivery of three vitamin C derivatives by Er: YAG and carbon dioxide laser pretreatment. Lasers Med Sci 2013;28:807–14.
  • Yao CL, Lin YM, Mohamed MS, et al. Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines. Biochem Eng J 2013;78:163–9.
  • Won YK, Loy CJ, Randhawa M, et al. Clinical efficacy and safety of 4-hexyl-1,3-phenylenediol for improving skin hyperpigmentation. Arch Dermatol Res 2014;306:455–65.
  • Son K, Heo M. The evaluation of depigmenting efficacy in the skin for the development of new whitening agents in Korea. Int J Cosmet Sci 2013;35:9–18.
  • Chen YS, Lee SM, Lin CC, et al. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J Biosci Bioeng 2013;115:242–5.
  • Hsieh PW, Chen WY, Aljuffali A, et al. Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid. Curr Med Chem 2013;20:4080–92.
  • Tse TW, Hui E. Tranexamic acid: an important adjuvant in the treatment of melasma. J Cosmet Dermatol 2013;12:57–66.
  • Eimpunth S, Wanitphadeedecha R, Manuskiatti W. A focused review on acne-induced and aesthetic procedure-related postinflammatory hyperpigmentation in Asians. J Eur Acad Dermatol 2013;27:7–18.
  • Engasser PG. Ochronosis caused by bleaching creams. J Am Acad Dermatol 1984;10:1072–3.
  • Fisher AA. Current contact news. Hydroquinone uses and abnormal reactions. Cutis 1983;250:240–4.
  • Romaguera C, Grimalt F. Leukoderma from hydroquinone. Contact Dermatitis 1985;12:183.
  • Curto EV, Kwong C, Hermersdörfer H, et al. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 1999;57:663–72.
  • Zhou H, Kepa JK, Siegel D, et al. Benzene metabolite hydroquinone up-regulates chondromodulin-I and inhibits tube formation in human bone marrow endothelial cells. Mol Pharmacol 2009;76:579–87.
  • Fujimoto N, Onodera H, Mitsumori K, et al. Changes in thyroid function during development of thyroid hyperplasia induced by kojic acid in F344 rats. Carcinogenesis 1999;20:1567–71.
  • Spínola V, Mendes B, Câmara JS, et al. Effect of time and temperature on vitamin C stability in horticultural extracts. UHPLC-PDA vs. iodometric titration as analytical methods. LWT-Food Sci Technol 2013;50:489–95.
  • Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 2013;110:313–20.
  • Sonmez F, Sevmezler S, Atahan A, et al. Evaluation of new chalcone derivatives as polyphenol oxidase inhibitors. Bioorg Med Chem Lett 2011;21:7479–82.
  • Takahashi M, Takara K, Toyozato T, et al. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J Oleo Sci 2012;61:585–92.
  • Radhakrishnan SK, Shimmon RG, Conn C, et al. Azachalcones: a new class of potent polyphenol oxidase inhibitors. Bioorg Med Chem Lett 2015;25:1753–6.
  • Radhakrishnan SK, Shimmon RG, Conn C, et al. Evaluation of novel chalcone oximes as inhibitors of tyrosinase and melanin formation in B16 cells. Arch Pharm (Weinheim) 2016;349:20–9.
  • Radhakrishnan SK, Shimmon RG, Conn C, et al. Inhibitory kinetics of novel 2,3-dihydro-1H-inden-1-one chalcone-like derivatives on mushroom tyrosinase. Bioorg Med Chem Lett 2015;25:5495–9.
  • Wang Y, Curtis-Long MJ, Lee BW, et al. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg Med Chem 2014;22:1115–20.
  • Tan X, Song YH, Park C, et al. Highly potent tyrosinase inhibitor, neorauflavane from Campylotropis hirtella and inhibitory mechanism with molecular docking. Bioorg Med Chem 2016;24:153–9.
  • Satooka H, Kubo I. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg Med Chem 2012;20:1090–9.
  • Lee TH, Seo JO, Baek SH, et al. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol Ther (Seoul) 2014;22:35–40.
  • Franco DC, de Carvalho GS, Rocha PR, et al. Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules 2012;17:11816–25.
  • Song YM, Ha YM, Kim JA, et al. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 2012;22:7451–5.
  • Bae SJ, Ha YM, Kim JA, et al. A novel synthesized tyrosinase inhibitor: (E)-2-((2,4-dihydroxyphenyl)diazenyl)phenyl 4-methylbenzenesulfonate as an azo-resveratrol analog. Biosci Biotechnol Biochem 2013;77:65–72.
  • Bae SJ, Ha YM, Park YJ, et al. Design, synthesis, and evaluation of (E)-N-substituted benzylidene-aniline derivatives as tyrosinase inhibitors. Eur J Med Chem 2012;57:383–90.
  • Borges F, Roleira F, Milhazes N, et al. Simple coumarins: privileged scaffolds in medicinal chemistry. Front Med Chem 2009;4:23–85.
  • Masamoto Y, Murata Y, Baba K, et al. Inhibitory effects of esculetin on melanin biosynthesis. Biol Pharm Bull 2004;27:422–5.
  • Fais A, Corda M, Era B, et al. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules 2009;14:2514–20.
  • Matos MJ, Santana L, Uriarte E, et al. New halogenated phenylcoumarins as tyrosinase inhibitors. Bioorg Med Chem Lett 2011;21:3342–45.
  • Ashraf Z, Rafiq M, Seo SY, et al. Design, synthesis and bioevaluation of novel umbelliferone analogues as potential mushroom tyrosinase inhibitors. J Enzyme Inhib Med Chem 2015;30:874–83.
  • Asthana S, Zucca P, Vargiu AV, et al. Structure-activity relationship study of hydroxycoumarins and mushroom tyrosinase. J Agric Food Chem 2015;63:7236–24.
  • Gardelly M, Trimech B, Belkacem MA, et al. Synthesis of novel diazaphosphinanes coumarin derivatives with promoted cytotoxic and anti-tyrosinase activities. Bioorg Med Chem Lett 2016;26:2450–4.
  • Ha YM, Kim JA, Park YJ, et al. Analogs of 5-(substituted benzylidene)hydantoin as inhibitors of tyrosinase and melanin formation. Biochim Biophys Acta Gen Subj 2011;1810:612–19.
  • Ha YM, Kim JA, Park YJ, et al. Synthesis and biological activity of hydroxybenzylidenyl pyrrolidine-2,5-dione derivatives as new potent inhibitors of tyrosinase. Med Chem Comm 2011;2:542–9.
  • Kim SH, Ha YM, Moon KMC, et al. Anti-melanogenic effect of (Z)-5-(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione, a novel tyrosinase inhibitor. Arch Pharm Res 2013;36:1189–97.
  • Chung KW, Park YJ, Choi YJ, et al. Evaluation of in vitro and in vivo anti-melanogenic activity of a newly synthesized strong tyrosinase inhibitor (E)-3-(2,4 dihydroxybenzylidene)pyrrolidine-2,5-dione (3-DBP). Biochim Biophys Acta (Gen Subj) 2012;1820:962–9.
  • Kim HR, Lee HJ, Choi YJ, et al. Benzylidene-linked thiohydantoin derivatives as inhibitors of tyrosinase and melanogenesis: importance of the β-phenyl-α,β-unsaturated carbonyl functionality. Med Chem Comm 2014;5:1410–17.
  • Yun HY, Kim do H, Son S, et al. Design, synthesis, and anti-melanogenic effects of (E)-2-benzoyl-3-(substituted phenyl)acrylonitriles. Drug Des Devel Ther 2015;9:4259–68.
  • Son S, Kim H, Yun HY, et al. (E)-2-Cyano-3-(substituted phenyl)acrylamide analogs as potent inhibitors of tyrosinase: a linear β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg Med Chem 2015;23:7728–34.
  • Isao K, Ikuyo KH. Tyrosinase inhibitory activity of the olive oil flavor compounds. J Agric Food Chem 1999;47:4574–8.
  • Cui Y, Liang G, Hu YH, et al. Alpha-substituted derivatives of cinnamaldehyde as tyrosinase inhibitors: inhibitory mechanism and molecular analysis. J Agric Food Chem 2015;63:716–22.
  • Yan Q, Cao R, Yi W, et al. Synthesis and evaluation of 5-benzylidene(thio)barbiturate-beta-D-glycosides as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:4055–8.
  • Yan Q, Cao R, Yi W, et al. Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities. Eur J Med Chem 2009;44:4235–43.
  • Chen Z, Cai D, Mou D, et al. Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted 5-benzylidene(thio) barbiturates as novel tyrosinase inhibitors. Bioorg Med Chem 2014;22:3279–84.
  • Ambati NB, Anand V, Hanumanthu P. A facile synthesis of 2-n(methyl amino) benzothiazoles. Synth. Commun 1997;27:1487–93.
  • Pan B, Huang RZ, Han SQ, et al. Design, synthesis, and antibiofilm activity of 2-arylimino-3-aryl-thiazolidine-4-ones. Bioorg Med Chem Lett 2010;20:2461–4.
  • Criton M, Le Mellay-Hamon V. Analogues of N-hydroxy-N'-phenylthiourea and N-hydroxy-N'-phenylurea as inhibitors of tyrosinase and melanin formation. Biorg Med Chem Lett 2008;18:3607–10.
  • Thanigaimalai P, Hoang TA, Lee KC, et al. Structural requirement(s) of N-phenylthioureas and benzaldehyde thiosemicarbazones as inhibitors of melanogenesis in melanoma B 16 cells. Bioorg Med Chem Lett 2010;20:2991–3.
  • Thanigaimalai P, Lee KC, Sharma VK, et al. Structural requirement of phenylthiourea analogs for their inhibitory activity of melanogenesis and tyrosinase. Bioorg Med Chem Lett 2011;21:6824–8.
  • (a) Hall AM, Orlow SJ. Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Pigment Cell Res 2005;18:122–9. (b) Poma A, Bianchini S, Miranda M. Inhibition of L-tyrosine-induced micronuclei production by phenylthiourea in human melanoma cells. Mutat Res 1999;446:143–8. (c) Du BK, Erway WF. Studies on the mechanism of action of thiourea and related compounds; inhibition of oxidative enzymes and oxidations catalyzed by copper. J Biol Chem 1946;165:711–21.
  • (a) Choi J, Park SJ, Jee JG. Analogues of ethionamide, a drug used for multidrug-resistant tuberculosis, exhibit potent inhibition of tyrosinase. Eur J Med Chem 2015;106:157–66. (b) Choi J, Jee JG. Repositioning of thiourea-containing drugs as tyrosinase inhibitors. Int J Mol Sci 2015;16:28534–48.
  • Cooper DS. Antithyroid drugs. N Engl J Med 1984;311:1353–62.
  • Liu P, Shu C, Liu L, et al. Design and synthesis of thiourea derivatives with sulfur-containing heterocyclic scaffolds as potential tyrosinase inhibitors. Bioorg Med Chem 2016;24:1866–71.
  • Gençer N, Demir D, Sonmez F, et al. New saccharin derivatives as tyrosinase inhibitors. Bioorg Med Chem 2012;20:2811–21.
  • (a) Zhu YJ, Song KK, Li ZC, et al. Antityrosinase and antimicrobial activities of transcinnamaldehyde thiosemicarbazone. J Agric Food Chem 2009;57:5518–23. (b) Li ZC, Chen LH, Yu XJ, et al. Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase. J Agric Food Chem 2010;58:12537–40. (c) Chen LH, Hu YH, Song W, et al. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: novel tyrosinase inhibitors. J Agric Food Chem 2012;60:1542–7. (d) Pan ZZ, Zhu YJ, Yu XJ, et al. Synthesis of 40-thiosemicarbazonegriseofulvin and its effects on the control of enzymatic browning and postharvest disease of fruits. J Agric Food Chem 2012;60:10784–8. (e) Yang MH, Chen CM, Hu YH, et al. Inhibitory kinetics of DABT and DABPT as novel tyrosinase inhibitors. J Biosci Bioeng 2013;115:514–27.
  • *(a) Liu JB, Yi W, Wan YQ, et al. 1-(1-Arylethylidene)thiosemicarbazide derivatives: a new class of tyrosinase inhibitors. Bioorg Med Chem 2008;16:1096–102. (b) Liu JB, Cao RH, Yi W, et al. A class of potent tyrosinase inhibitors: alkylidenethiosemicarbazide compounds. Eur J Med Chem 2009;44:1773–8. (c) Yi W, Cao RH, Wen H, et al. Discovery of 4- functionalized phenyl-O-beta-D-glycosides as a new class of mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:6157–60. (d) Yi W, Cao RH, Chen ZY, et al. Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted phenylmethylenethiosemicarbazones as tyrosinase inhibitors. Chem Pharm Bull 2009;57:1273–7. (e) Yi W, Cao RH, Chen ZY, et al. Rational design and synthesis of 4-o-substituted phenylmethylenethiosemicarbazones as novel tyrosinase inhibitors. Chem Pharm Bull 2010;58:752–4. (f) Yi W, Dubois C, Yahiaoui S, et al. Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur J Med Chem 2011;46:4330–5. (g) Buitrago E, Vuillamy A, Boumendjel A, et al. Exploring the interaction of N/S compounds with a dicopper center: tyrosinase inhibition and model studies. Inorg Chem 2014;53:12848–58.
  • (a) Thanigaimalai P, Lee KC, Sharma VK, et al. Ketonethiosemicarbazones: structure-activity relationships for their melanogenesis inhibition. Bioorg Med Chem Lett 2011;21:3527–30. (b) Lee KC, Thanigaimalai P, Sharma VK, et al. Structural characteristics of thiosemicarbazones as inhibitors of melanogenesis. Bioorg Med Chem Lett 2010;20:6794–6.
  • You A, Zhou J, Song S, et al. Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: from potent activators to highly efficient inhibitors. Eur J Med Chem 2015;93:255–62.
  • You A, Zhou J, Song S, et al. Rational design, synthesis and structure–activity relationships of 4-alkoxy- and 4-acyloxy-phenylethylenethiosemicarbazone analogues as novel tyrosinase inhibitors. Bioorg Med Chem 2015;23:924–31.
  • Girelli AM, Mattei E, Messina A, et al. Inhibition of polyphenol oxidases activity by various dipeptides. J Agric Food Chem 2004; 52:2741–5.
  • Morita H, Kayashita T, Kobata H, et al. Pseudostellarins D-F, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron 1994;50:9975–82.
  • Ubeid AA, Zhao L, Wang Y, et al. Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase. J Invest Dermatol 2009;129:2242–9.
  • Kim H, Choi J, Cho JK, et al. Solid-phase synthesis of kojic acid − tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorg Med Chem Lett 2004;14:2843–6.
  • Reddy B, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: part I. Exp Dermatol 2012;21:563–8.
  • Hsiao NW, Tseng TS, Lee YC, et al. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors. J Chem Inf Model 2014;54:3099–111.
  • Tseng TS, Tsai KC, Chen WC, et al. Discovery of potent cysteine-containing dipeptide inhibitors against tyrosinase: a comprehensive investigation of 20 × 20 dipeptides in inhibiting dopachrome formation. J Agric Food Chem 2015;63:6181–8.
  • Li DF, Hu PP, Liu MS, et al. Design and synthesis of hydroxypyridinone-L-phenylalanine conjugates as potential tyrosinase inhibitors. J Agric Food Chem 2013;61:6597–603.
  • Zhao DY, Zhang MX, Dong XW, et al. Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorg Med Chem Lett 2016;16:30486–93.
  • Baek S, Kim J, Kim D, et al. Inhibitory effect of dalbergioidin isolated from the trunk of Lespedeza cyrtobotrya on melanin biosynthesis. J Microbiol Biotechnol 2008;18:874–9.
  • Yanagihara M, Yoshimatsu M, Inoue A, et al. Inhibitory effect of gnetin C, a resveratrol dimer from melinjo (Gnetum gnemon), on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull 2012;35:993–6.
  • Roh JS, Han JY, Kim JH, et al. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull 2004;27:1976–8.
  • Kim JH, Kim MR, Lee ES, et al. Inhibitory effects of calycosin isolated from the root of Astragalus membranaceus on melanin biosynthesis. Biol Pharm Bull 2009;32:264–8.
  • Kong YH, Jo YO, Cho CW, et al. Inhibitory effects of cinnamic acid on melanin biosynthesis in skin. Biol Pharm Bull 2008;31:946–8.
  • Cho Y, Kim KH, Shim JS, et al. Inhibitory effects of macelignan isolated from Myristica fragrans HOUTT. on melanin biosynthesis. Biol Pharm Bull 2008;31:986–9.
  • Lee MY, Kim JH, Choi JN, et al. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial part of Lespedeza cyrtobotrya. J Microbiol Biotechnol 2010;20:988–94.
  • Kim JP, Kim BK, Yun BS, et al. Melanocins A, B and C, new melanin synthesis inhibitors produced by Eupenicillium shearii. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 2003;56:993–9.
  • Chen LG, Chang WL, Lee CJ, et al. Melanogenesis inhibition by gallotannins from Chinese galls in B16 mouse melanoma cells. Biol Pharm Bull 2009;32:1447–52.
  • Kim SJ, Son KH, Chang HW, et al. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol Pharm Bull 2003;26:1348–50.
  • Khan SB, Azhar-Ul-Haq, Afza N, et al. Tyrosinase-inhibitory long-chain esters from Amberboa ramosa. Chem Pharm Bull (Tokyo) 2005;53:86–9.
  • Chen WC, Tseng TS, Hsiao NW, et al. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep 2015;5:7995.
  • Ai N, Welsh WJ, Santhanam U, et al. Novel virtual screening approach for the discovery of human tyrosinase inhibitors. PLoS One 2014;9:e112788.
  • Chou TH, Ding HY, Hung WJ, et al. Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol 2010;19:742–50.
  • Ashraf Z, Rafiq M, Seo SY, et al. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg Med Chem 2015;23:5870–80.
  • Uchida R, Ishikawa S, Tomoda H. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol. Acta Pharm Sin B 2014;4:141–5.
  • Chan CF, Lai ST, Guo YC, et al. Inhibitory effects of novel synthetic methimazole derivatives on mushroom tyrosinase and melanogenesis. Bioorg Med Chem 2014;22:2809–15.
  • Yu F, Jia YL, Wang HF, et al. Synthesis of triazole schiff's base derivatives and their inhibitory kinetics on tyrosinase activity. PLoS One 2015;10:e0138578.
  • Ashraf Z, Rafiq M, Seo SY, et al. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur J Med Chem 2015;98:203–11.
  • Lee DY, Jeong SC, Jeong YT, et al. Antimelanogenic effects of picrionoside A Isolated from the leaves of Korean Ginseng. Biol Pharm Bull 2015;38:1663–7.
  • Millott N, Lynn WG. Ubiquity of melanin and the effect of phenylthiourea. Nature 1966;209:99–101.
  • Baek SH, Ahn JW, Nam SH, et al. S-(-)-10,11-dihydroxyfarnesoic acid methyl ester inhibits melanin synthesis in murine melanocyte cells. Int J Mol Sci 2014;15:12750–63.
  • Choi J, Choi KE, Park SJ, et al. Ensemble-based virtual screening led to the discovery of new classes of potent tyrosinase inhibitors. J Chem Inf Model 2016;56:354–67.
  • Cleland JG, Dargie HJ, Hodsman GP, et al. Captopril in heart failure. A double blind controlled trial. Br Heart J 1984;52:530–5.
  • Cleland JG. The clinical course of heart failure and its modification by ACE inhibitors: insights from recent clinical trials. Eur Heart J 1994;15:125–30.
  • Kuo TC, Ho FM. Competitive inhibition of mushroom tyrosinase by captopril. Res J Biotechnol 2013;8:26–9.
  • Espín JC, Wichers HJ. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim Biophys Acta 2001;1544:289–300.
  • Chu HL, Wang BS, Chang LC, et al. Effects of captopril on melanin formation in B16 cells. J Food Drug Anal 2012;20:668–73.
  • Yoshimori A, Oyama T, Takahashi S, et al. Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase. Bioorg Med Chem 2014;22:6193–200.
  • Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp Dermatol 2011;20:242–8.
  • Kolbe L, Mann T, Gerwat W, et al. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J Eur Acad Dermatol Venereol 2013;27:19–23.
  • Kim DS, Kim SY, Park SH, et al. Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol Pharm Bull 2005;28:2216–19.
  • Katagiri T, Okubo T, Oyobikawa M, et al. Inhibitory action of 4-nbutylresorcinol on melanogenesis and its skin whitening effect. J Soc Cosmet Chem Jpn 2001;35:42–9.
  • Okubo T, Oyohikawa M, Futaki K, et al. The inhibitory effects of 4-N-butyl-resorcinol on melanogenesis [abstract]. J Dermatol Sci 1995;10:88.
  • Huh SY, Shin JW, Na JI, et al. The efficacy and safety of 4-n-butylresorcinol 0.1% cream for the treatment of melasma: a randomized controlled split-face trial. Ann Dermatol 2010;22:21–5.
  • Huh SY, Shin JW, Na JI, et al. Efficacy and safety of liposome-encapsulated 4-n-butylresorcinol 0.1%cream for the treatment of melasma: a randomized controlled split-face trial. J Dermatol 2010;37:311–15.
  • Mohan NTM, Gowda A, Jaiswal AK, et al. Assessment of efficacy, safety, and tolerability of 4-n-butylresorcinol 0.3% cream: an Indian multicentric study on melasma. Clin Cosmet Investig Dermatol 2016;9:21–7.