1,262
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

In vitro and in vivo antitumour effects of phenylboronic acid against mouse mammary adenocarcinoma 4T1 and squamous carcinoma SCCVII cells

, , , , &
Pages 1299-1304 | Received 05 Jun 2017, Accepted 21 Sep 2017, Published online: 26 Oct 2017

References

  • Fallowfield LJ. Evolution of breast cancer treatments: current options and quality-of-life considerations. Eur J Oncol Nurs 2004;8:75–82.
  • Baker SJ, Ding CZ, Akama T, et al. Therapeutic potential of boron-containing compounds. Future Med Chem 2009;1:1275–88.
  • Adams J, Kauffman M. Development of the proteasome inhibitor velcade (bortezomib). Cancer Invest 2004;22:304–11.
  • Paramore A, Frantz S. Bortezomib. Nat Rev Drug Discov 2003;2:611–2.
  • Hall DG. Boronic acids. New York (NY): John Wiley and Sons; 2005.
  • Barranco WT, Eckhert CD. Boric acid inhibits human prostate cancer cell proliferation. Cancer Lett 2004;216:21–9.
  • Barranco WT, Hudak PF, Eckhert CD. Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States). Cancer Causes Control 2007;18:71–7.
  • Gallardo-Williams MT, Chapin RE, King PE, et al. Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice. Toxicol Pathol 2004;32:73–8.
  • Bradke TM, Hall C, Carper SW, Plopper GE. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adh Migr 2008;2:153–60.
  • McAuley EM, Bradke TA, Plopper GE. Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration. Cell Adh Migr 2011;5:382–6.
  • Wang X, Tang H, Wang C, et al. Phenylboronic acid-mediated tumor targeting of chitosan nanoparticles. Theranostics 2016;6:1378–92.
  • Wang J, Wu W, Jiang X. Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine 2015;10:1149–63.
  • Dasgupta S, Bhattacharya-Chatterjee M, O’Malley BW. Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 2005;175:5541–50.
  • Pulaski BA, Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. Curr Protoc Immunol 2001;20.2:1–15.
  • Workman P, Aboagye EO, Balkwill F, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010;102:1555–77.
  • Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by Neutral red, MTT and Crystal violet staining assays of the same cells. Toxicol In Vitro 1998;12:251–8.
  • Finney DJ. Probit analysis. England: Cambridge University Press; 1952.
  • Kim V. Probit analysis. Available from: http://userwww.sfsu.edu/efc/classes/biol710/probit/ProbitAnalysis.pdf [last accessed 6 Apr 2017].
  • Soriano-Ursúa MA, Farfán-García ED, López-Cabrera Y, et al. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neurotoxicology 2014;40:8–15.
  • Reed J. Dysregulation of apoptosis in cancer. J Clin Oncol 1999;17:2941–53.
  • Wang X, Li X, Zeng YN, et al. Enhanced expression of polysialic acid correlates with malignant phenotype in breast cancer cell lines and clinical tissue samples. Int J Mol Med 2016;37:197–206.
  • Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 2002;53:57–63.
  • Djanashvili K, Frullano L, Peters JA. Molecular recognition of sialic acid end groups by phenylboronates. Chemistry 2005;11:4010–8.
  • Paul C, Trippier PC, McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. Med Chem Commun 2010;1:183–98.
  • Kuivila HG, Armour AG. Electrophilic displacement reactions. IX Effects of substituents on rates of reactions between hydrogen peroxide and benzeneboronic acid. J Am Chem Soc 1957;79:5659–62.
  • Yang WQ, Gao X, Wang BH. Boronic acids. In: Hall DG, ed. Weinheim, Germany: Wiley-VCH; 2005:481–512.
  • Kuang Y, Balakrishnan K, Gandhi V, Peng X. Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J Am Chem Soc 2011;133:19278–31.
  • Hagen H, Marzenell P, Jentzsch E, et al. Aminoferrocene-based prodrugs activated by reactive oxygen species. J Med Chem 2012;55:924–34.
  • Peng X, Gandhi V. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage. Ther Deliv 2012;3:823–33.
  • Galic B. Boroxine composition for removal of skin changes. Patent US 8 278 289, USA; 2012.
  • Ivankovic S, Stojkovic R, Galic Z, et al. In vitro and in vivo antitumor activity of the halogenated boroxine dipotassium-trioxohydroxytetrafluorotriborate K2[B3O3F4OH]. J Enzyme Inhib Med Chem 2015;30:354–9.
  • Islamovic S, Galic B, Milos M. A study of the inhibition of catalase by dipotassium-trioxohydroxytetrafluorotriborate K2[B3O3F4OH]. J Enzyme Inhib Med Chem 2014;29:744–8.
  • Vullo D, Milos M, Galic B, et al. Dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], is a potent inhibitor of human carbonic anhydrases. J Enzyme Inhib Med Chem 2015;30:341–4.
  • Ostojic J, Herenda S, Galijasevic S, et al. Inhibition of horseradish peroxidase activity by boroxine derivative, dipotassium-trioxohydroxytetrafluorotriborate K2[B3O3F4OH]. J Chem 2017;2017:8134350.