2,046
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease

, , , , , , , , & show all
Pages 158-170 | Received 27 Jul 2017, Accepted 13 Nov 2017, Published online: 06 Dec 2017

References

  • Chioua M, Pérez-Peña J, García-Font N, et al. Pyranopyra-zolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer’s disease. Future Med Chem 2015;7:845–55.
  • Lemes LFN, de Andrade Ramos G, de Oliveira AS, et al. Cardanol-derived AChE inhibitors: towards the development of dual binding derivatives for Alzheimer’s disease. Eur J Med Chem 2016;108:687–700.
  • Obulesu M, Jhansilakshmi M. Neuroinflammation in Alzheimer’s disease: an understanding of physiology and pathology. Int J Neurosci 2014;124:227–35.
  • Bajda M, Jończyk J, Malawska B, et al. Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorganic Med Chem 2015;23:5610–8.
  • Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 2017;68:413–30.
  • Hu S-Q, Wang R, Cui W, et al. Dimeric bis (heptyl)-cognitin blocks Alzheimer’s β-amyloid neurotoxicity via the inhibition of Aβ fibrils formation and disaggregation of preformed fibrils. CNS Neurosci Ther 2015;21:953–61.
  • Demirci S, Aynalı A, Demirci K, et al. The serum levels of resistin and its relationship with other proinflammatory cytokines in patients with Alzheimer’s disease. Clin Psychopharmacol Neurosci 2017;15:59–63.
  • Xie S-S, Wang X, Jiang N, et al. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur J Med Chem 2015;95:153–65.
  • Mayo CD, Mazerolle EL, Ritchie L, et al. Longitudinal changes in microstructural white matter metrics in Alzheimer’s disease. NeuroImage Clin 2017;13:330–8.
  • Li X, Wang H, Tian Y, et al. Impaired white matter connections of the limbic system networks associated with impaired emotional memory in Alzheimer’s disease. Front Aging Neurosci 2016;8:250.
  • Venigalla M, Sonego S, Gyengesi E, et al. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem Int 2016;95:63–74.
  • Lin S-H, Hsu W-C, Ng S-H, et al. Increased water diffusion in the parcellated cortical regions from the patients with amnestic mild cognitive impairment and Alzheimer’s disease. Front Aging Neurosci 2016;8:325.
  • Shea YF, Ha J, Lee SC, et al. Impact of 18FDG PET and 11C-PIB PET brain imaging on the diagnosis of Alzheimer’s disease and other dementias in a regional memory clinic in Hong Kong. Hong Kong Med J 2016;22:327–33.
  • Mach RH. New targets for the development of PET tracers for imaging neurodegeneration in Alzheimer disease. J Nucl Med 2014;55:1221–4.
  • Szymanski P, Karpiński A, Mikiciuk-Olasik E. Synthesis, biological activity and HPLC validation of 1,2,3,4-tetrahydroacridine derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 2011;46:3250–7.
  • Szymański P, Markowicz M, Mikiciuk-Olasik E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg Chem 2011;39:138–42.
  • Horak M, Holubova K, Nepovimova E, et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017;75:54–62.
  • Qian S, He L, Mak M, et al. Synthesis, biological activity, and biopharmaceutical characterization of tacrine dimers as acetylcholinesterase inhibitors. Int J Pharm 2014;477:442–53.
  • Hamulakova S, Janovec L, Hrabinova M, et al. Synthesis, design and biological evaluation of novel highly potent tacrine congeners for the treatment of Alzheimer’s disease. Eur J Med Chem 2012;55:23–31.
  • Mao F, Li J, Wei H. Tacrine–propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 2015;30:995–1001.
  • Wang X-L, Xiong Y, Yang Y, et al. A novel tacrine-dihydropyridine hybrid (-)SCR1693 induces tau dephosphorylation and inhibits Aβ generation in cells. Eur J Pharmacol 2015;754:134–9.
  • Keri RS, Quintanova C, Chaves S, et al. New tacrine hybrids with natural-based cysteine derivatives as multitargeted drugs for potential treatment of Alzheimer’s disease. Chem Biol Drug Des 2016;87:101–11.
  • Nepovimova E, Korabecny J, Dolezal R, et al. Tacrine–Trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 2015;58:8985–9003.
  • Szymański P, Lázničková A, Lázniček M, et al. 2,3-Dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors—synthesis, radiolabeling and biodistribution. Int J Mol Sci 2012;13:10067–90.
  • Ellman GL, Courtney KD, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Bartolini M, Bertucci C, Bolognesi ML, et al. Insight into the kinetic of amyloid β (1–42) peptide self-aggregation: elucidation of inhibitors’ mechanism of action. Chembiochem 2007;8:2152–61.
  • Camps P, Formosa X, Galdeano C, et al. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds . J Med Chem 2009;52:5365–79.
  • Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2007;15:504–14.
  • Majsterek I, Blasiak J, Mlynarski W, et al. Does the BCR/ABL-mediated increase in the efficacy of DNA repair play a role in the drug resistance of cancer cells? Cell Biol Int 2002;26:363–70.
  • Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993;303:474–82.
  • Carmichael J, DeGraff WG, Gazdar AF, et al. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987;47:936.
  • US Pharmacoperial Convention. USP XXII-NF XVII. Rockville, MD: United States Pharmacopeia Convention, Inc.; 1990:644–5.
  • Michel P, Dobrowolska A, Kicel A, et al. Polyphenolic profile, antioxidant and anti-inflammatory activity of eastern teaberry (Gaultheria procumbens L.) leaf extracts. Molecules 2014;19:20498–520.
  • Michel P, Owczarek A, Matczak M, et al. Metabolite profiling of eastern teaberry (Gaultheria procumbens L.) lipophilic leaf extracts with hyaluronidase and lipoxygenase inhibitory activity. Molecules 2017;22:412.
  • The Cambridge Crystallographic Data Centre. Gold 5.1. Cambridge, UK: The Cambridge Crystallographic Data Centre; 2011.
  • Bajda M, Więckowska A, Hebda M, et al. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013;14:5608–32.
  • Corina on-line. 2017. http://www.molecular-networks.com/online_demos/corina_demo
  • Tripos. Sybyl-X 1.1. St. Louis, MO: Tripos; 2010.
  • DeLano Scientific LLC. PyMOL 0.99rc6. Palo Alto, CA: DeLano Scientific LLC; 2006.
  • Advanced Chemistry Development. ACD/Percepta 14.0.0, Toronto, Canada: Advanced Chemistry Development; 2013.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26.
  • Zhou W, Wang Y, Lu A, et al. Systems pharmacology in small molecular drug discovery. Int J Mol Sci 2016;17:246.
  • de Santana Souza MT, Almeida JRGdS, de Souza Araujo AA, et al. Structure–activity relationship of terpenes with anti-inflammatory profile – a systematic review. Basic Clin Pharmacol Toxicol 2014;115:244–56.
  • Ma X-l, Chen C, Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin 2005;26:500–12.
  • Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 2011;24:1420–56.
  • Dgachi Y, Sokolov O, Luzet V, et al. Tetrahydropyranodiqui-nolin-8-amines as new, non hepatotoxic, antioxidant, and acetylcholinesterase inhibitors for Alzheimer’s disease therapy. Eur J Med Chem 2017;126:576–89.