2,525
Views
30
CrossRef citations to date
0
Altmetric
Research Paper

Benzimidazole derivatives endowed with potent antileishmanial activity

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 210-226 | Received 27 Oct 2017, Accepted 22 Nov 2017, Published online: 13 Dec 2017

References

  • World Health Organization (WHO). Available from: http://www.who.int/neglected_diseases/diseases/en [last accessed 11 Jul 2017].
  • (a) Frézard F, Demicheli C, Ribeiro RR. Pentavalent antimonials: new perspectives for old drugs. Molecules 2009;1:2317–36. (b) Frézard F, Martins PS, Barbosa MC, et al. New insights into the chemical structure and composition of the pentavalent antimonial drugs, meglumine antimonate and sodium stibogluconate. J Inorg Biochem 2008;102:656–65.
  • (a) Murray HW, Berman JD, Davies CR, et al. Advances in leishmaniasis. Lancet 2005;3:1561–77. (b) Singh N, Kumar M, Singh RK, Leishmaniasis: current status of available drugs and new potential drug targets. J Trop Med 2012;5:485–97. (c) Ameen M. Cutaneous leishmaniasis: advances in disease pathogenesis, diagnostics and therapeutics. Clin Exp Dermatol 2010;35:699–705.
  • (a) Berman JD, Lee LS. Activity of 8-aminoquinolines against Leishmania tropica within human macrophages in vitro. Am J Trop Med Hyg 1983;32:753–9. (b) Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 2004;10:307–15. (c) Garnier T, Brown MB, Lawrence MJ, Croft SL. In-vitro and in-vivo studies on a topical formulation of sitamaquine dihydrochloride for cutaneous leishmaniasis. J Pharm Pharmacol 2006;58:1043–54. (d) Loiseau PM, Cojean S, Schrével J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite 2011;18:115–19. (e) Almeida OL, Santos JB. Advances in the treatment of cutaneous leishmaniasis in the new world in the last ten years: a systematic literature review. An Bras Dermatol 2011;86:497–506.
  • (a) Singh N, Mishra BB, Bajpai S. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2014;22:18–45. (b) Cheuka PM, Mayoka G, Mutai P, et al. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 2017;22:E58.
  • (a) do Socorro S, Rosa M, Mendonça-Filho RR, Bizzo HR, et al. Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother 2003;47:1895–901. (b) De Monte C, Bizzarri B, Gidaro MC, et al. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti-Helicobacter pylori, anti-malarial and anti-leishmanial agents. J Enzyme Inhib Med Chem 2015;30:1027–33. (c) Wulsten IF, Costa-Silva TA, Mesquita JT, et al. Investigation of the anti-Leishmania (Leishmania) infantum activity of some natural sesquiterpene lactones. Molecules 2017;22:e685. (d) Barrera PA, Jimenez-Ortiz V, Tonn C, et al. Natural sesquiterpene lactones are active against Leishmania mexicana. J Parasitol 2008;5:1143–9. (e) Sairafianpour M, Christensen J, Staerk D, et al. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod 2001;64:1398–403. (f) Kayser O, Kiderlen AF, Bertels S, et al. Antileishmanial activities of aphidicolin and its semisynthetic derivatives. Antimicrob Agents Chemother 2001;45:288–92. (g) Sousa MC, Varandas R, Santos RC, et al. Antileishmanial activity of semisynthetic lupane triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine. PLoS One 2014;9:e89939.
  • (a) Di Giorgio C, Delmas F, Ollivier E, et al. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp Parasitol 2004;1:67–74. (b) Turabekova MA, Vinogradova VI, Werbovetz KA, et al. Structure-activity relationship investigations of leishmanicidal N-benzylcytisine derivatives. Chem Biol Drug Des 2011;78:183–9.
  • Kirmizibekmez H, Calis I, Perozzo R, et al. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med 2004;70:711–17.
  • Hiam A, Sebastien D, George B, et al. Microtubule target for new antileishmanial drugs based on ethyl 3-haloacetamidobenzoates. J Enzyme Inhib Med Chem 2006;21:305–12.
  • (a) Sánchez-Delgado RA, Anzellotti A. Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis. Mini Rev Med Chem 2004;4:23–30. (b) Ilari A, Baiocco P, Messori L, et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 2012;42:803–11.
  • (a) Plano D, Baquedano Y, Moreno-Mateos D, et al. Selenocyanates and diselenides: a new class of potent antileishmanial agents. Eur J Med Chem 2011;4:3315–23. (b) Baquedano Y, Moreno E, Espuelas S, et al. Novel hybrid selenosulfonamides as potent antileishmanial agents. Eur J Med Chem 2014;74:116–23.
  • Papanastasiou I, Prousis KC, Georgikopoulou K, et al. Design and synthesis of new adamantyl-substituted antileishmanial ether phospholipids. Bioorg Med Chem Lett 2010;20:5484–7.
  • (a) Pathak D, Yadav M, Siddiqui N, et al. Antileishmanial agents: an updated review. Pharm Chem 2011;3:239–49. (b) Vale-Costa S, Costa-Gouveia J, Pérez B, et al. N-cinnamoylated aminoquinolines as promising antileishmanial agents. Antimicrob Agents Chemother 2013;5:5112–15. (c) Brindisi M, Brogi S, Relitti N, et al. Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci Rep 2015;5:9705. (d) Barteselli A, Casagrande M, Basilico N, et al. Clofazimine analogs with antileishmanial and antiplasmodial activity. Bioorg Med Chem 2015;23:55–65.
  • (a) Pagniez F, Abdala-Valencia H, Marchand P, et al. Antileishmanial activities and mechanisms of action of indole-based azoles. J Enzyme Inhib Med Chem 2006;21:277–83. (b) Gupta L, Talwar A, Nishi, et al. Synthesis of marine alkaloid: 8,9-dihydrocoscinamide B and its analogues as novel class of antileishmanial agents. Bioorg Med Chem Lett 2007;17:4075–9. (c) Bharate SB, Bharate JB, Khan SI, et al. Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents. Eur J Med Chem 2013;63:435–43. (d) Roy A, Chowdhury S, Sengupta S, et al. Development of derivatives of 3, 3'-diindolylmethane as potent Leishmania donovani bi-subunit topoisomerase IB poisons. PLoS One 2011;6:e28493.
  • Danan A, Charon D, Kirkiacharian S, et al. Synthesis and antiparasitic activities of amidinic azolated derivatives. Farmaco 1997;52:227–9.
  • Jagu E, Pomel S, Diez-Martinez A, et al. Synthesis and in vitro antikinetoplastid activity of polyamine-hydroxybenzotriazole conjugates. Bioorg Med Chem 2017;25:84–90.
  • Hernández-Luis F, Hernández-Campos A, Castillo R, et al. Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. Eur J Med Chem 2010;45:3135–41.
  • Shaukat A, Mirza HM, Ansari AH, et al. Benzimidazole derivatives: synthesis, leishmanicidal effectiveness, and molecular docking studies. Med Chem Res 2013;22:3606–20.
  • (a) Mayence A, Vanden Eynde JJ, LeCour L, Jr, et al. Piperazine-linked bisbenzamidines: a novel class of antileishmanial agents. Eur J Med Chem 2004;3:547–53. (b) Mayence A, Pietka A, Collins MS, et al. Novel bisbenzimidazoles with antileishmanial effectiveness. Bioorg Med Chem Lett 2008;18:2658–61.
  • (a) Torres-Gómez H, Hernández-Núñez E, León-Rivera I, et al. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg Med Chem Lett 2008;1:3147–51. (b) Mendez-Cuesta CA, Herrera-Rueda MA, Hidalgo-Figueroa S, et al. Synthesis, screening and in silico simulations of anti-parasitic propamidine/benzimidazole derivatives. Med Chem 2017;13:137–48.
  • (a) Sparatore F, Boido V, Fanelli F. Dialkylaminoalkylbenzimi-dazoles of pharmacological interest. Farmaco Sci 1968;23:344–59. (b) Paglietti G, Sparatore F. Dialkylaminoalkyl-benzimidazoles of pharmacological interest. 3. Farmaco Sci 1972;27:333–42. (c) Boido A, Vazzana I, Sparatore F, et al. Preparation and pharmacological activity of some 1-lupinylbenzimidazoles and 1-lupinylbenzotriazoles. Farmaco 1991;46:775–88.
  • (a) Paglietti G, Pirisi MA, Loriga M, et al. Preparation and pharmacologic activity of 2-(4'R')benzyl-5R-benzimidazole. Analgesic activity and effect on conditioned avoidance response. Farmaco Sci 1988;43:203–14. (b) Paglietti G, Pirisi MA, Loriga M, et al. Preparation and pharmacologic activity of 2-(4'R')benzyl-5R-benzimidazole and 2-(4'-pyridinyl)-5R-benzimidazoles. Analgesic activity and effect on conditioned avoidance response. Farmaco Sci 1988;43:215–26.
  • (a) Paglietti G, Sparatore F. Preparation of beta-benzimidazolyl- and indazolylbutyric acids as potential choleretic agents. Farmaco Sci 1972;27:471–9. (b) Grella G, Paglietti G, Sparatore F, et al. Synthesis and choleretic activity of 3-(2-aryl-5R-benzimidazol-1-yl)butanoic acids. Farmaco Sci 1987;42:475–90. (c) Grella G, Paglietti G, Sparatore F, et al. Synthesis and choleretic activity of 3-[2-(3-R', 4-R'', 5-R'''-benzyl)-5-R-benzimidazol-1-yl]-butanoic acids. Farmaco Sci 1992;47:21–35. (d) Loriga M, Paglietti G, Piras S, et al. Synthesis and evaluation of gastroprotective and antiulcer activity of some 2-substituted-1H-imidazo[4,5-b] pyridines and -1H-benzimidazoles. Farmaco 1992;47:287–303.
  • (a) Tonelli M, Paglietti G, Boido V, et al. Antiviral activity of benzimidazole derivatives. I. Antiviral activity of 1-substituted-2-[(benzotriazol-1/2-yl)methyl]benzimidazoles. Chem Biodivers 2008;5:2386–401. (b) Tonelli M, Simone M, Tasso B, et al. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg Med Chem 2010;1;2937–53. (c) Tonelli M, Novelli F, Tasso B, et al. Antiviral activity of benzimidazole derivatives. III. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents. Bioorg Med Chem 2014;22:4893–909.
  • (a) Novelli F, Tasso B, Sparatore F. Synthesis and biological investigations of 2-(tetrahydropyran-2'-yl) and 2-(tetrahydrofuran-2'-yl)benzimidazoles. Farmaco 1997;52:499–507. (b) Tonelli M, Tasso B, Mina L, et al. Primary anti-proliferative activity evaluation of 1-(quinolizidin-1'-yl)methyl- and 1-(ω-tert-amino)alkyl-substituted 2-phenyl-, 2-benzyl- and 2-[(benzotriazol-1/2-yl)methyl]benzimidazoles on human cancer cell lines. Mol. Divers 2013;17:409–19.
  • Pool WO, Harwood HJ, Ralston AW. 2-Alkylbenzimidazoles as derivatives for the identification of aliphatic acids. J Am Chem Soc 1937;59:178–9.
  • Shi Z, Ta J-T. Synthesis of the β‐keto acids from benzimidazolium iodides and ethyl malonate. Chin J Chem 2000;18:940–1.
  • Babu KR, Zhu N, Bao H. Iron-catalyzed C-H alkylation of heterocyclic C-H bonds. Org Lett 2017;19:46–9.
  • Guo Y, Lu Z, Yao L, et al. A novel synthetic method for the preparation of aliphatic aldehydes from the corresponding carboxylic acids. Chin J Chem 2011;29:489–92.
  • She J, Jiang Z, Wang Y. One-pot synthesis of functionalized benzimidazoles and 1H-pyrimidines via cascade reactions of o-aminoanilines or naphthalene-1,8-diamine with alkynes and p-tolylsulfonyl azide. Synlett 2009;12:2023–7.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
  • Baiocco P, Ilari A, Ceci P, et al. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and leishmania infantum proliferation. ACS Med Chem Lett 2010;2:203–33.
  • D'Alessandro S, Gelati M, Basilico N, et al. Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: implications for embryotoxicity. Toxicology 2007;241:66–74.
  • Tandon VK, Kumar M. BF3·Et2O promoted one-pot expeditious and convenient synthesis of 2-substituted benzimidazoles and 3,1,5-benzoxadiazepines. Tetrahedr Lett 2004;45:4185–7.
  • Howarth J, Hanlon K. N-ferrocenylmethyl, N'-methyl-2-substituted benzimidazolium iodide salts with in vitro activity against the Leishmania infantum parasite strain L1. Bioorg Med Chem Lett 2003;13:2017–20.
  • Hunger A, Kebrle J, Rossi A, et al. Benzimidazol‐derivate und verwandte Heterocyclen. II. Synthese von 1‐aminoalkyl‐2‐benzyl‐benzimidazolen. Helv Chim Acta 1960;43:800–9.
  • Boido V, Sparatore F. Simple molecular analogs of anti-inflammatory 1-lupinyl-2-(p-methoxy)benzyl-5-trifluoromethylbenzimidazole. Farmaco Sci 1974;29:517–25.
  • Dorlo TP, Balasegaram M, Beijnen JH, et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 2012;67:2576–97.
  • Ancelin ML, Vial HJ. Quaternary ammonium compounds efficiently inhibit Plasmodium falciparum growth in vitro by impairment of choline transport. Antimicrob Agents Chemother 1986;29:814–20.
  • Bibis SS, Dahlstrom K, Zhu T, et al. Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs. Mol Biochem Parassitol 2014;196:90–9.
  • Whittington FM, Enser M, Pratt J, et al. Effect of sodium 2-n-pentadecyl-benzimidazole-5-carboxylate (M & B 35347B), an inhibitor of acetyl-CoA carboxylase, on lipogenesis and fat deposition in obese hyperglycaemic (ob/ob) and lean mice. Int J Obes 1987;11:619–29.
  • Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis 2010;34:1–13.
  • (a) Fernandes Rodrigues JC, Concepcion JL, Rodrigues C, et al. In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 2008;5:4098–114. (b) de Macedo-Silva ST, Visbal G, Urbina JA, et al. Potent in vitro antiproliferative synergism of combinations of ergosterol biosynthesis inhibitors against Leishmania amazonensis. Antimicrob Agents Chemother 2015;59:6402–18.
  • Das P, Alam MN, Paik D, et al. Protease inhibitors in potential drug development for Leishmaniasis. Indian J Biochem Biophys 2013;50:363–76.
  • (a) Rodney G, Black ML, Bird OD, The common mode of action of three new classes of inhibitors of cholesterol biosynthesis. Biochem Pharmacol 1965;1:445–56. (b) Black ML, Rodney G, Capps DB. Simultaneous inhibition of alternative pathways of cholesterol biosynthesis by two related hypocholesteremic agents. Biochem Pharmacol 1968;17:1803–14.
  • Powell DA, Ramtohul Y, Lebrun ME, et al. 2-Aryl benzimidazoles: human SCD1-specific stearoyl coenzyme-A desaturase inhibitors. Bioorg Med Chem Lett 2010;20:6366–9.
  • (a) Maldonado RA, Kuniyoshi RK, Linss JG, et al. Trypanosoma cruzi oleate desaturase: molecular characterization and comparative analysis in other trypanosomatids. J Parassitol 2006;92:1064–74. (b) Ramakrishnan S, Serricchio M, Striepen B, et al. Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013;52:488–512.