802
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Bulge oligonucleotide as an inhibitory agent of bacterial topoisomerase I

, , &
Pages 319-323 | Received 06 Oct 2017, Accepted 12 Dec 2017, Published online: 28 Dec 2017

References

  • VosS M, Tretter EM, Schmidt BH, Berger JM. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 2011;12:827–41.
  • Sobek S, Boege F. DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 2014;56:135–41.
  • Leppard JB, Champoux JJ. Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 2005;114:75–85.
  • Li M, Liu Y. Topoisomerase I in human disease pathogenesis and treatments. Genomics Proteomics Bioinformatics 2016;14:166–71.
  • Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002;3:430–40.
  • Pommier Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 2009;109:2894–902.
  • Corbett KD, Berger JM. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct 2004;33:95–118.
  • Schoeffler AJ, Berger JM. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 2008;41:41–101.
  • Deweese JE, Osheroff MA, Osheroff N. DNA topology and topoisomerases: teaching a “Knotty” Subject. Biochem Mol Biol Educ 2008;37:2–10.
  • Sandhaus S, Annamalai T, Welmaker G, et al. Small-molecule inhibitors targeting topoisomerase I as novel antituberculosis agents. Antimicrob Agents Chemother 2016;60:4028–36.
  • Naeem A, Badshah SL, Muska M, et al. The current case of quinolones: synthetic approaches and antibacterial activity. Molecules 2016;21:268.
  • Lin H, Annamalai T, Bansod P, et al. Synthesis and antibacterial evaluation of anziaic acid and analogues as topoisomerase I inhibitors. Med Chem Comm 2013;4:1613–18.
  • Kathiravan MK, Khilare MM, Nikoomanesh K, et al. Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzyme Inhib Med Chem 2013;28:419–35.
  • Tse-Dinh YC. Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Res 2009;37:731–7.
  • Piddock LJ. Understanding the basis of antibiotic resistance: a platform for drug discovery. Microbiology 2014;160:2366–73.
  • Tse-Dinh YC. Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 2015;7:459–71.
  • Tse-Dinh YC. Targeting bacterial topoisomerases: how to counter mechanisms of resistance. Future Med Chem 2016;8:1085–100.
  • Kirkegaard K, Wang JC. Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J Mol Biol 1985;185:625–37.
  • Christiansen K, Svejstrup AB, Andersen AH, Westergaard O. Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. Cleavage of DNA substrates containing strand interruptions implicates a role for topoisomerase I in illegitimate recombination. J Biol Chem 1993;268:9690–701.
  • Christiansen K, Westergaard O. Characterization of intra- and intermolecular DNA ligation mediated by eukaryotic topoisomerase I. Role of bipartite DNA interaction in the ligation process. J Biol Chem 1994;269:721–9.
  • Sikder D, Nagaraja V. A novel bipartite mode of binding of M. smegmatis topoisomerase I to its recognition sequence. J Mol Biol 2001;312:347–57.
  • Bugreev DV, Buneva VN, Sinitsina OI, Nevinskiĭ GA. The mechanism of the supercoiled DNA recognition by eukaryotic type I topoisomerases. I. The enzyme interaction with nonspecific oligonucleotides. Bioorg Khim 2003;29:163–74.
  • Svejstrup JQ, Christiansen K, Andersen AH. Minimal DNA duplex requirements for topoisomerase I-mediated cleavage in vitro. J Biol Chem 1990;265:12529–35.
  • Wang Y, Ng MT, Zhou T, et al. C3-Spacer-containing circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2008;18:3597–602.
  • Chua ST, Quek NM, Li M, et al. Nick-containing oligonucleotides as human topoisomerase I inhibitors. Bioorg Med Chem Lett 2009;19:618–23.
  • Pourquier P, Pilon AA, Kohlhagen G, et al. Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J Biol Chem 1997;272:26441–7.
  • Antony S, Arimondo PB, Sun JS, Pommier Y. Position- and orientation-specific enhancement of topoisomerase I cleavage complexes by triplex DNA structures. Nucleic Acids Res 2004;32:5163–73.
  • Straub T, Knudsen BR, Boege F. PSF/p54(nrb) stimulates “jumping” of DNA topoisomerase I between separate DNA helices. Biochemistry 2000;39:7552–8.
  • Colley WC, van der Merwe M, Vance JR, et al. Substitution of conserved residues within the active site alters the cleavage religation equilibrium of DNA topoisomerase I. J Biol Chem 2004;279:54069–78.
  • Yang Z, Li D, Hiew S, Li T. Recognition of forcible curvature in circular DNA by human Topoisomerase I. Chem Commun (Camb) 2011;47:11309–11.
  • Li X, Ng MTT, Wang Y, et al. Dumbbell-shaped circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2007;17:4967–71.
  • Yang Z, Li D, Guo J, et al. Intrinsic curvature in duplex DNA inhibits Human Topoisomerase I. Bioorg Med Chem Lett 2012;22:1322–5.
  • Yang Z, Jiang T, Zhong H, Liu Y. Portion mismatch in duplex oligonucleotides as inhibitors of bacterial topoisomerase I. RSC Adv 2017;6:107572–6.
  • Laine JP, Opresko PL, Indig FE, et al. Werner protein stimulates topoisomerase I DNA relaxation activity. Cancer Res 2003;63:7136–46.