1,244
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of iodinin solubility by encapsulation into cyclodextrin nanoparticles

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 370-375 | Received 29 Oct 2017, Accepted 22 Dec 2017, Published online: 16 Jan 2018

References

  • Laursen JB, Nielsen J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 2004;104:1663–86.
  • Abdelfattah MS, Ishikawa N, Karmakar UK, et al. New phenazine analogues from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activities. J Antibiot (Tokyo) 2016;69:446–50.
  • Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 2017;25:6149–66.
  • Moorthy NS, Pratheepa V, Ramos MJ, et al. Fused aryl-phenazines: scaffold for the development of bioactive molecules. Curr Drug Targets 2014;15:681–8.
  • Kumar S, Mujahid M, Verma AK. Regioselective 6-endo-dig iodocyclization: an accessible approach for iodo-benzo[a]phenazines. Org Biomol Chem 2017;15:4686–96.
  • Kumar S, Saunthwal RK, Mujahid M, et al. Palladium-catalyzed intramolecular Fujiwara-hydroarylation: synthesis of benzo[a]phenazines derivatives. J Org Chem 2016;81:9912–23.
  • Garrison AT, Abouelhassan Y, Norwood VM, 4th, et al. Structure–activity relationships of a diverse class of halogenated phenazines that targets persistent, antibiotic-tolerant bacterial biofilms and Mycobacterium tuberculosis. J Med Chem 2016;59:3808–25.
  • Udumula V, Endres JL, Harper CN, et al. Simple synthesis of endophenazine G and other phenazines and their evaluation as anti-methicillin-resistant Staphylococcus aureus agents. Eur J Med Chem 2017;125:710–21.
  • Xiong Z, Niu J, Liu H, et al. Synthesis and bioactivities of phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group. Bioorg Med Chem Lett 2017;27:2010–13.
  • Cimmino A, Evidente A, Mathieu V, et al. Phenazines and cancer. Nat Prod Rep 2012;29:487–501.
  • Lu Y, Yan Y, Wang L, et al. Design, facile synthesis and biological evaluations of novel pyrano[3,2-a]phenazine hybrid molecules as antitumor agents. Eur J Med Chem 2017;127:928–43.
  • Davis JG. Chromobacterium iodinum (n. sp.). Zentralbl Bakteriol Parasitenkd Infektionskr Hyg, II Abt 1939;100:273–6.
  • McIlwain H. The anti-streptococcal action of iodinin. Naphthaquinones and anthraquinones as its main natural antagonists. Biochem J 1943;37:265–71.
  • Podojil M, Gerber NN. The biosynthesis of 1,6-phenazinediol 5,10-dioxide (iodinin) by Brevibacterium iodinum. Biochemistry 1967;6:2701–5.
  • Byng GS, Turner JM. Isolation of pigmentation mutants of Pseudomonas phenazinium. J Gen Microbiol 1976;97:57–62.
  • Hiroshi T, Takashi S, Masaru I, et al. Intracellular accumulation of phenazine antibiotics produced by an alkalophilic actinomycete. I. Taxonomy, isolation and identification of the phenazine antibiotics. Agric Biol Chem 1988;52:301–6.
  • Cesková P, Zák Z, Johnson DB, et al. Formation of iodinin by a strain of Acidithiobacillus ferrooxidans grown on elemental sulfur. Folia Microbiol (Praha) 2002;47:78–80.
  • Maskey PR, Li F, Qin S, et al. Chandrananimycins A approximately C: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth. J Antibiot 2003;56:622–9.
  • Myhren LE, Nygaard G, Gausdal G, et al. Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from Streptosporangium sp. induces apoptosis selectively in myeloid leukemia cell lines and patient cells. Mar Drugs 2013;11:332–49.
  • Bilal M, Guo S, Iqbal HMN, et al. Engineering pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol 2017;33:191.
  • Viktorsson EÖ, Melling Grøthe B, Aesoy R, et al. Total synthesis and antileukemic evaluations of the phenazine 5,10-dioxide natural products iodinin, myxin and their derivatives. Bioorg Med Chem 2017;25:2285–93.
  • Sletta H, Degnes KF, Herfindal L, et al. Anti-microbial and cytotoxic 1,6-dihydroxyphenazine-5,10-dioxide (iodinin) produced by Streptosporangium sp. DSM 45942 isolated from the fjord sediment. Appl Microbiol Biotechnol 2014;98:603–10.
  • Sallas F, Darcy R. Amphiphilic cyclodextrins – advances in synthesis and supramolecular chemistry. Eur J Org Chem 2008;2008:957–69.
  • Guo J, Russell EG, Darcy R, et al. Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol Pharmaceutics 2017;14:940–52.
  • Erdogar N, Varan G, Bilensoy E. Amphiphilic cyclodextrin derivatives for targeted drug delivery to tumors. Curr Top Med Chem 2017;17:1521–8.
  • Erdogar N, Iskit AB, Eroglu H, et al. Antitumor efficacy of bacillus calmette-guerin loaded cationic nanoparticles for intravesical immunotherapy of bladder tumor induced rat model. J Nanosci Nanotechnol 2015;15:10156–64.
  • Zuckerman JE, Gale A, Wu P, et al. siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Ther 2015;25:53–64.
  • Ghera BB, Perret F, Baudouin A, et al. Synthesis and characterization of O-6-alkylthio- and perfluoroalkylpropanethio-α-cyclodextrins and their O-2-, O-3-methylated analogues. New J Chem 2007;31:1899–906.
  • Bertino-Ghera B, Perret F, Fenet B, Parrot-Lopez H. Control of the regioselectivity for new fluorinated amphiphilic cyclodextrins: synthesis of di- and tetra(6-deoxy-6-alkylthio)- and 6-(perfluoroalkylpropanethio)-α-cyclodextrin derivatives. J Org Chem 2008;73:7317–26.
  • Ghera BB, Perret F, Chevalier Y, Parrot-Lopez H. Novel nanoparticles made from amphiphilic perfluoroalkyl alpha-cyclodextrin derivatives: preparation, characterization and application to the transport of acyclovir. Int J Pharm 2009;375:155–62.
  • Perret F, Duffour M, Chevalier Y, Parrot-Lopez H. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir. Eur J Pharm Biopharm 2013;83:25–32.
  • Perret F, Marminon C, Zeinyeh W, et al. Preparation and characterization of CK2 inhibitor-loaded cyclodextrin nanoparticles for drug delivery. Int J Pharm 2013;441:491–8.
  • Lacaze N, Gombaud-Saintonge G, Lanotte M. Conditions controlling long-term proliferation of Brown Norway rat promyelocytic leukemia in vitro: primary growth stimulation by microenvironment and establishment of an autonomous Brown Norway ‘leukemic stem cell line’. Leuk Res 1983;7:145–54.
  • Bøe R, Gjertsen BT, Vintermyr OK, et al. The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp Cell Res 1991;195:237–46.
  • Oftedal L, Selheim F, Wahlsten M, et al. Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs 2010;8:2659–72.
  • Róka E, Ujhelyi Z, Deli M, et al. Evaluation of the cytotoxicity of α-cyclodextrin derivatives on the caco-2 cell line and human erythrocytes. Molecules 2015;20:20269–85.
  • Gausdal G, Gjertsen BT, McCormack E. Abolition of stress-induced protein synthesis sensitizes leukemia cells to anthracycline-induced death. Blood 2008;111:2866–77.
  • Erdogar N, Esendagli G, Nielsen T, et al. From therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J Drug Target 2018;26:66–74.