2,129
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Iodine-mediated one-pot intramolecular decarboxylation domino reaction for accessing functionalised 2-(1,3,4-oxadiazol-2-yl)anilines with carbonic anhydrase inhibitory action

, , , , , , & show all
Pages 615-628 | Received 31 Jan 2018, Accepted 18 Feb 2018, Published online: 14 Mar 2018

References

  • (a) Palucki M, Wolfe JP, Buchwald SL. Synthesis of oxygen heterocycles via a palladium-catalyzed C–O bond-forming reaction. J Am Chem Soc 1996;118:10333–4. (b) Torraca KE, Kuwabe SI, Buchwald SLA. High-yield general method for the catalytic formation of oxygen heterocycles. J Am Chem Soc 2000;122:12907–8. (c) Kuwabe SI, Torraca KE, Buchwald SL. Palladium-catalyzed intramolecular C–O bond formation. J Am Chem Soc 2001;123:12202–6. (d) Ylijoki KEO, Kundig EP. The preparation of 2H-1,4-benzoxazin-3-(4H)-ones via palladium-catalyzed intramolecular C–O bond formation. Chem Commun 2011;47:10608–10.
  • (a) Evindar G, Batey RA. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides. J Org Chem 2006;71:1802–8. (b) Fang Y, Li C. O-Arylation versus C-Arylation: copper-catalyzed intramolecular coupling of Aryl bromides with 1,3-Dicarbonyls. J Org Chem 2006;71:6427–31. (c) Mestichelli P, Scott MJ, Galloway WRJD, et al. Concise copper-catalyzed synthesis of tricyclic biaryl ether-linked aza-heterocyclic ring systems. Org Lett 2013;15:5448–51. (d) Reddy MN, Swamy KCK. Dual catalysis by Cu(I): facile single step click and intramolecular C–O bond formation leading to triazole tethered dihydrobenzodioxines/benzoxazines/benzoxathiines/benzodioxepines. Org Biomol Chem 2013;11:7350–60. (e) Sudheendran K, Malakar CC, Conrad J, Beifuss U. Copper(I)-catalyzed intramolecular O-arylation for the synthesis of 2,3,4,9-tetrahydro-1H-xanthen-1-ones with low loads of CuCl. J Org Chem 2012;77:10194–210.
  • (a) Xiao B, Gong TJ, Liu ZJ, et al. Synthesis of dibenzofurans via Palladium-catalyzed phenol-directed C–H activation/C–O cyclization. J Am Chem Soc 2011;133:9250–3. (b) Wang X, Liu Y, Dai HX, Yu JQ. Pd (II)-catalyzed hydroxyl-directed C–H activation/C–O cyclization: expedient construction of dihydrobenzofurans. J Am Chem Soc 2010;132:12203–5. (c) Ueda S, Nagasawa H. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C–O coupling of benzanilides. Angew Chem Int Ed 2008;47:6411–3. (d) Modak A, Dutta U, Kancherla R, et al. Predictably selective (sp3)C–O bond formation through copper catalyzed dehydrogenative coupling: facile synthesis of dihydro-oxazinone derivatives. Org Lett 2014;16:2602–5. (e) Wei Y, Yoshikai N. Oxidative cyclization of 2-arylphenols to dibenzofurans under Pd (II)/peroxybenzoate catalysis. Org Lett 2011;13:5504–7. (f) Tang L, Pang Y, Yan Q, et al. Synthesis of coumestan derivatives via FeCl3-mediated oxidative ring closure of 4-hydroxy coumarins. J Org Chem 2011;76:2744–52. (g) Cheung CW, Buchwald SL. Room temperature copper(II)-catalyzed oxidative cyclization of enamides to 2,5-disubstituted oxazoles via vinylic C–H functionalization. J Org Chem 2012;77:7526–37.
  • (a) He C, Guo S, Ke J, et al. Silver-mediated oxidative C–H/C–H functionalization: a strategy to construct polysubstituted furans. J Am Chem Soc 2012;134:5766–9. (b) Daw P, Chakraborty S, Garg JA, et al. Direct synthesis of pyrroles by dehydrogenative coupling of diols and amines catalyzed by cobalt pincer complexes. Angew Chem Int Ed 2016;55:14373–7. (c) Srimani D, Ben-David Y, Milstein D. Direct synthesis of pyrroles by dehydrogenative coupling of β-Aminoalcohols with secondary alcohols catalyzed by ruthenium pincer complexes. Angew Chem Int Ed 2013;125:4104–7. (d) Li X, He L, Chen H, et al. Copper-catalyzed aerobic C(sp2)–H functionalization for C–N bond formation: synthesis of pyrazoles and indazoles. J Org Chem 2013;78:3636–46. (e) Guimond N, Fagnou K. Isoquinoline synthesis via rhodium-catalyzed oxidative cross-coupling/cyclization of aryl aldimines and alkynes. J Am Chem Soc 2009;131:12050–1. (f) Stuart DR, Bertrand-Laperle M, Burgess KMN, Fagnou K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. J Am Chem Soc 2008;130:16474–5. (g) Ueda S, Nagasawa H. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C–O coupling of benzanilides. Angew Chem Int Ed 2008;47:6411–3. (h) Tsang WCP, Zheng N, Buchwald SL. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C–O coupling of benzanilides. J Am Chem Soc 2005;127:14560–1.
  • Zhdankin VV, Hypervalent iodine chemistry: preparation, structure, and synthetic applications of polyvalent iodine compounds. Chichester, UK: Wiley; 2013.
  • (a) Nageswar Rao D, Rasheed SK, Vishwakarma RA, Das P. Hypervalent iodine (III) catalyzed oxidative C–N bond formation in water: synthesis of benzimidazole-fused heterocycles. RSC Adv 2014;4:25600–4. (b) Bagdi AK, Mitra S, Ghosh M, Hajra A. Iodine-catalyzed regioselective thiolation of imidazo[1,2-a]pyridines using sulfonyl hydrazides as a thiol surrogate. Org Biomol Chem 2015;13:3314–20. (c) Chu J, Hsu WT, Wu YH, et al. Substituent electronic effects govern direct intramolecular C–N cyclization of N-(Biphenyl)pyridin-2-amines induced by hypervalent iodine(III) reagents. J Org Chem 2014;79:11395–408. (d) Ma L, Wang X, Yu W, Han B. TBAI-catalyzed oxidative coupling of aminopyridines with β-ketoesters and 1,3-diones—synthesis of imidazo[1,2-a]pyridines. Chem Commun 2011;47:11333–5. (e) Li E, Hu Z, Song L, et al. Synthesis of 1,2,4-triazolo[4,3-a]pyridines and related heterocycles by sequential condensation and iodine-mediated oxidative cyclization. Chem Eur J 2016;22:11022–7. (f) Wu X, Gao Q, Geng X, et al. Iodine-promoted oxidative cross-coupling of unprotected anilines with methyl ketones: a site-selective direct C–H bond functionalization to C4-dicarbonylation of anilines. Org Lett 2016;18:2507–10. (g) Rajeshkumar V, Chandrasekar S, Sekar G. An efficient route to synthesize isatins by metal-free, iodine-catalyzed sequential C(sp3)–H oxidation and intramolecular C–N bond formation of 2′-aminoacetophenones. Org Biomol Chem 2014;12:8512–8. (h) Xu H, Wang F-J, Xin M, Zhang Z. I2-promoted condensation/cyclization of aryl methyl ketones with anilines for facile synthesis of 1,2,4-triarylpyrroles. Eur J Org Chem 2016;2016:925–9. (i) Lamani M, Prabhu KR. Iodine-catalyzed amination of benzoxazoles: a metal-free route to 2-aminobenzoxazoles under mild conditions. J Org Chem 2011;76:7938–44.
  • a) Fabry DC, Stodulski M, Hoerner S, Gulder T. Metal-free synthesis of 3,3-disubstituted oxoindoles by iodine(III)-catalyzed bromocarbocyclizations. Chem Eur J 2012;18:10834–8. b) Ji KG, Zhu HT, Yang F, et al. A novel iodine-promoted tandem cyclization: an efficient synthesis of substituted 3,4-diiodoheterocyclic compounds. Chem Eur J 2010;16:6151–4. c) Kim I, Won HK, Choi J, Lee GH. A novel and efficient approach to highly substituted indolizines via 5-endo-trig iodocyclization. Tetrahedron 2007;63:12954–60. d) Yu QF, Zhang YH, Yin Q, et al. Electrophilic ipso-iodocyclization of N-(4-methylphenyl)propiolamides: selective synthesis of 8-methyleneazaspiro[4,5]trienes. J Org Chem 2008;73:3658–61. e) Masdeu C, Gómez E, Williams NAO, Lavilla R. Double insertion of isocyanides into dihydropyridines: direct access to substituted benzimidazolium salts. Angew Chem 2007;119:3103–6.
  • a) Zhang J, Zhu D, Yu C, et al. A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp3C–H functionalization. Org Lett 2010;12:2841–3. b) Yan Y, Wang Z. Chem Commun 2011;47:9513–5. c) Yan Y, Zhang Y, Feng C, et al. Selective iodine-catalyzed intermolecular oxidative amination of C(sp3)—H bonds with ortho-carbonyl-substituted anilines to give quinazolines. Angew Chem Int Ed 2012;51:8077–81. d) Wan C, Gao L, Wang Q, et al. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization. Org Lett 2010;12:3902–5.
  • Ma L, Wang X, Yu W, Han B. TBAI-catalyzed oxidative coupling of aminopyridines with β-keto esters and 1, 3-diones—synthesis of imidazo [1,2-a] pyridines. Chem Commun 2011;47:11333–5.
  • Tang S, Liu K, Long Y, et al. Iodine-catalyzed radical oxidative annulation for the construction of dihydrofurans and indolizines. Org Lett 2015;17:2404–7.
  • a) Boto A, Hernández R, Suárez E. Tandem radical decarboxylation − oxidation of amino acids: a mild and efficient method for the generation of N-acyliminium ions and their nucleophilic trapping. J Org Chem 2000;64:4930–7. b) Boto A, Hernández R, Suárez E. Tandem oxidative radical decarboxylation-β-iodination of amino acids. Application to the synthesis of chiral 2,3-disubstituted pyrrolidines. Tetrahedron Lett 2000;41:2495–8. c) Boto A, Hernández R, Suárez E. Oxidative decarboxylation of α-amino acids: a mild and efficient method for the generation of N-acyliminium ions. Tetrahedron Lett 1999;40:5945–8. d) Kiyokawa K, Yahata S, Kojima T, Minakata S. Hypervalent iodine (III)-mediated oxidative decarboxylation of β, γ-unsaturated carboxylic acids. Org Lett 2014;16:4646–9.
  • a) Aurelio L, Scullino CV, Pitman MR, et al. Development of 3,5-dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating mycobacterium tuberculosis. J Med Chem 2016;59:2362–80. b) Johansson A, Lofberg C, Antonsson M, et al. Discovery of (3-(4-(2-Oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone (AZD1979), a melanin concentrating hormone receptor 1 (MCHr1) antagonist with favorable physicochemical properties. J Med Chem 2016;59:2497–511. c) Nieddu V, Pinna G, Marchesi I, et al. Synthesis and antineoplastic evaluation of novel unsymmetrical 1, 3, 4-oxadiazoles. J Med Chem 2016;59:10451–69.
  • a) El-Emam AA, Al-Deeb OA, Al-Omar M, Lehmann J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorg Med Chem 2004;12:5107–13. b) Mullican MD, Wilson MW, Conner DT, et al. Design of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as orally active, nonulcerogenic antiinflammatory agents. J Med Chem 1993;36:1090–9. c) Mastrolorenzo A, Rusconi S, Scozzafava A, et al. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 2007;14:2734–48. d) Chohan ZH, Supuran CT, Scozzafava A. Metal binding and antibacterial activity of ciprofloxacin complexes. J Enzyme Inhib Med Chem 2005;20:303–7. e) Supuran CT, Scozzafava A, Mastrolorenzo A. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 2001;11:221–59.
  • a) He GS, Tan LS, Zheng Q, Prasad PN. Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 2008; 108:1245–330. b) Rehmann N, Ulbricht C, Köhnen A, et al. Advanced device architecture for highly efficient organic light‐emitting diodes with an orange‐emitting cross linkable Iridium (III) complex. Adv Mater 2008;20:129–33. c) Paraschivescu CC, Matache M, Dobrotă C, et al. Unexpected formation of N-(1-(2-Aryl-hydrazono) isoindolin-2-yl) benzamides and their conversion into 1, 2-(Bis-1, 3, 4-oxadiazol-2-yl) benzenes. J Org Chem 2013;78:2670–9.
  • a) Jedlovska E, Lesko J. A simple one-pot procedure for the synthesis of 1, 3, 4-oxadiazoles. Synth Commun 1994;24:1879–85. b) Rostamizadeh S, Housaini SAG. Microwave assisted syntheses of 2,5-disubstituted 1,3,4-oxadiazoles. Tetrahedron Lett 2004;34:8753–6. c) Flidallah HM, Sharshira EM, Basaif SA, A-Ba-Oum AEK. Synthesis and spectral characterization of novel 1, 3, 4-oxadiazole and 1, 2, 4-triazole derivatives: synthesis for potential pharmacological activities. Phosphorus Sulfur Silicon Relat Elem 2002;177:67–79.
  • a) Al-Talib M, Tashtoush H, Odeh N. A convenient synthesis of alkyl and aryl substituted bis-1, 3, 4-oxadiazoles. Synth Commun 1990;20:1811–7. b) Kerr VN, Ott DG, Hayes FN. Quaternary salt formation of substituted oxazoles and thiazoles. J Am Chem Soc 1960;82:186–9. c) Short FW, Long LM. Synthesis of 5‐aryl‐2‐oxazolepropionic acids and analogs. Antiinflammatory agents. J Heterocycl Chem 1969;6:707–12. d) Klingsberg E. Synthesis of carboxylic acid hydrazides and s-triazoles of the anthraquinone series. J Am Chem Soc 1958;80:5786–9. e) Reddy CK, Reddy PSN, Ratnam CV. A facile synthesis of 2-Aryl-3,4-dihydro-5H-1,3,4-benzotriazepin-5-ones. Synthesis 1983;842–4.
  • a) Guin S, Rout SK, Ghosh T, et al. A one pot synthesis of [1,3,4]-oxadiazoles mediated by molecular iodine. RSC Adv 2012;2:3180–3. b) Fan Y, He Y, Liu X, et al. Iodine-mediated domino oxidative cyclization: one-pot synthesis of 1,3,4-oxadiazoles via oxidative cleavage of C(sp2)–H or C(sp)–H bond. J Org Chem 2016;81:6820–5. c) Gao Q, Liu S, Wu X, et al. Direct annulation of hydrazides to 1,3,4-oxadiazoles via oxidative C (CO)–C (methyl) bond cleavage of methyl ketones. Org Lett 2015;17:2960–3. d) Majji G, Rout SK, Guin S, et al. Iodine-catalysed oxidative cyclisation of acylhydrazones to 2, 5-substituted 1, 3, 4-oxadiazoles. RSC Adv 2014;4:5357–62.
  • Kawano T, Yoshizumi T, Hirano K, et al. Copper-mediated direct arylation of 1,3,4-oxadiazoles and 1,2,4-triazoles with aryl iodides. Org Lett 2009;11:3072–5.
  • Guin S, Ghosh T, Rout SK, et al. Cu(II) catalyzed imine C-H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org Lett 2011;13:5976–9.
  • Xu C, Jia F, Cai Q, et al. Intramolecular decarboxylative coupling as the key step in copper-catalyzed domino reaction: facile access to 2-(1,3,4-oxadiazol-2-yl)aniline derivatives. Chem Comm 2015;51:6629–32.
  • Yan Y, Pan W, Song H. The synthesis and optical properties of novel 1, 3, 4-oxadiazole derivatives containing an imidazole unit. Dyes Pigments 2010;86:249–58.
  • a) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Rev Drug Discov 2008;7:168–81. b) Capasso C, Supuran CT. An overview of the α-, β-and γ-carbonic anhydrases from bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32. c) Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nature Rev Drug Discov 2011;10:767–77.
  • a) Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:759–72. b) Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32. c) Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. J Enzyme Inhib Med Chem 2013;28:229–30. d) Ward C, Langdon SP, Mullen P, et al. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 2013;39:171–9.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
  • a) Göçer H, Akincioğlu A, Göksu S, et al. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem 2015;30:316–20. b) Ceruso M, Bragagni M, AlOthman Z, et al. New series of sulfonamides containing amino acid moiety act as effective and selective inhibitors of tumor-associated carbonic anhydrase XII. J Enzyme Inhib Med Chem 2015;30:430–4. c) Zolfaghari Emameh R, Syrjänen L, Barker H, et al. Drosophila melanogaster: a model organism for controlling dipteran vectors and pests. J Enzyme Inhib Med Chem 2015;30:505–13. d) Le Darz A, Mingot A, Bouazza F, et al. Fluorinated pyrrolidines and piperidines incorporating tertiary benzenesulfonamide moieties are selective carbonic anhydrase II inhibitors. J Enzyme Inhib Med Chem 2015;30:737–45. e) Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013). Expert Opin Ther Pat 2013;23:681–91.
  • a) Supuran CT, Barboiu M, Luca C, et al. Carbonic anhydrase activators. Part 14. Syntheses of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)-and 2-amino-5-(3-aminopropyl)-1, 3, 4-thiadiazole and their interaction with isozyme II. Eur J Med Chem 1996;31:597–606. b) Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 2012;55:1721–30. c) Supuran CT, Nicolae A, Popescu A. Carbonic anhydrase inhibitors. Part 35. Synthesis of Schiff bases derived from sulfanilamide and aromatic aldehydes: the first inhibitors with equally high affinity towards cytosolic and membrane-bound isozymes. Eur J Med Chem 1996;31:431–8. d) Pacchiano F, Aggarwal M, Avvaru BS, et al. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun (Camb) 2010;46:8371–3.
  • Menchise V, De Simone G, Alterio V, et al. Carbonic anhydrase inhibitors: stacking with Phe131 determines active site binding region of inhibitors as exemplified by the X-ray crystal structure of a membrane-impermeant antitumor sulfonamide complexed with isozyme II. J Med Chem 2005;48:5721–7. b) Supuran CT, Mincione F, Scozzafava A, et al. Carbonic anhydrase inhibitors—part 52. Metal complexes of heterocyclic sulfonamides: a new class of strong topical intraocular pressure-lowering agents in rabbits. Eur J Med Chem 1998;33:247–54. c) Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat 2013;23:725–35. d) Garaj V, Puccetti L, Fasolis G, et al. Carbonic anhydrase inhibitors: novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorg Med Chem Lett 2005;15:3102–8. e) Şentürk M, Gülçin İ, Beydemir Ş, et al. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 2011;77:494–9. f) Fabrizi F, Mincione F, Somma T, et al. A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J Enzyme Inhib Med Chem 2012;27:138–47. g) Dogne JM, Hanson J, Supuran C, Pratico D. Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 2006;12:971–5.
  • a) Krall N, Pretto F, Decurtins W, et al. A small‐molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew Chem Int Ed Engl 2014;53:4231–5. b) Rehman SU, Chohan ZH, Gulnaz F, Supuran CT. In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J Enzyme Inhib Med Chem 2005;20:333–40. c) Clare BW, Supuran CT. Carbonic anhydrase activators. 3: structure‐activity correlations for a series of isozyme II activators. J Pharm Sci 1994;83:768–73. d) Dubois L, Peeters S, Lieuwes NG, et al. Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol 2011;99:424–31. e) Carta F, Scozzafava A, Supuran CT. Sulfonamides: a patent review (2008–2012). Expert Opin Ther Pat 2012;22:747–58. f) Chohan ZH, Munawar A, Supuran CT. Transition metal ion complexes of Schiff-bases. Synthesis, characterization and antibacterial properties. Met Based Drugs 2001;8:137–43. g) Zimmerman SA, Ferry JG, Supuran CT. Inhibition of the archaeal β-class (Cab) and γ-class (Cam) carbonic anhydrases. Curr Top Med Chem 2007;7:901–8. h) Maresca A, Carta F, Vullo D, Supuran CT. Dithiocarbamates strongly inhibit the β-class carbonic anhydrases from Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2013;28:407–11. i) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.