1,663
Views
32
CrossRef citations to date
0
Altmetric
Research Paper

Introducing novel potent anticancer agents of 1H-benzo[f]chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect

, , , , , , , & show all
Pages 1074-1088 | Received 15 Feb 2018, Accepted 09 May 2018, Published online: 20 Jun 2018

References

  • Bingi C, Emmadi NR, Chennapuram M, et al. One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorg Med Chem Lett 2015;25:1915–9.
  • Vala ND, Jardosh HH, Patel MP. PS-TBD triggered general protocol for the synthesis of 4H-chromene, pyrano[4,3-b]pyran and pyrano[3,2-c]chromene derivatives of 1H-pyrazole and their biological activities. Chin Chem Lett 2016;27:168–72.
  • Singh G, Sharma A, Kaur H, Ishar MP. Chromanyl-isoxazolidines as antibacterial agents: synthesis, biological evaluation, quantitative structure activity relationship, and molecular docking studies. Chem Biol Drug Des 2016;87:213–23.
  • Killander D, Sterner O. Synthesis of the bioactive benzochromenes pulchrol and pulchral, metabolites of Bourreria pulchra. Eur J Org Chem 2014;2014:1594–6.
  • Afifi TH, Okasha RM, Ahmed HEA, et al. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: a novel series of potent antimicrobial and anticancer agents. EXCLI J 2017;16:868–902.
  • Foroumadi A, Emami S, Sorkhi M, et al. Chromene-based synthetic chalcones as potent antileishmanial agents: synthesis and biological activity. Chem Biol Drug Des 2010;75:590–6.
  • Tanaka JC, da Silva CC, Ferreira IC, et al. Antileishmanial activity of indole alkaloids from Aspidosperma ramiflorum. Phytomedicine 2007;14:377–80.
  • Fadda AA, Berghot MA, Amer FA, et al. Synthesis and antioxidant and antitumor activity of novel pyridine, chromene, thiophene and thiazole derivatives. Arch Pharm (Weinheim) 2012;345:378–85.
  • Jain N, Xu J, Kanojia RM, et al. Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J Med Chem 2009;52:7544–69.
  • Kasibhatla S, Gourdeau H, Meerovitch K, et al. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol Cancer Ther 2004;3:1365–74.
  • Jain N, Kanojia RM, Xu J, et al. Novel chromene-derived selective estrogen receptor modulators useful for alleviating hot flushes and vaginal dryness. J Med Chem 2006;49:3056–9.
  • Lee KS, Khil LY, Chae SH, et al. Effects of DK-002, a synthesized (6aS,cis)-9,10-Dimethoxy-7,11b-dihydro-indeno[2,1-c]chromene-3,6a-diol, on platelet activity. Life Sci 2006;78:1091–7.
  • Ali TE-S, Ibrahim MA. Synthesis and antimicrobial activity of chromone-linked 2-pyridone fused with 1,2,4-triazoles, 1,2,4-triazines and 1,2,4-triazepines ring systems. J Braz Chem Soc 2010;21:1007–16.
  • Sashidhara KV, Kumar M, Modukuri RK, et al. Discovery and synthesis of novel substituted benzocoumarins as orally active lipid modulating agents. Bioorg Med Chem Lett 2011;21:6709–13.
  • Patil SA, Patil R, Pfeffer LM, Miller DD. Chromenes: potential new chemotherapeutic agents for cancer. Future Med Chem 2013;5:1647–60.
  • Wang JL, Liu D, Zhang ZJ, et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000;97:7124–9.
  • Doshi JM, Tian D, Xing C. Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. J Med Chem 2006;49:7731–9.
  • Birch KA, Heath WF, Hermeling RN, et al. LY290181, an inhibitor of diabetes-induced vascular dysfunction, blocks protein kinase C-stimulated transcriptional activation through inhibition of transcription factor binding to a phorbol response element. Diabetes 1996;45:642–50.
  • Wiener C, Schroeder CH, West BD, Link KP. Studies on the 4-Hydroxycoumarins. XVIII.1a 3-[α-(acetamidomethyl)benzyl]-4-hydroxycoumarin and related products1b. J Org Chem 1962;27:3086–8.
  • Smith CW, Bailey JM, Billingham MEJ, et al. The anti-rheumatic potential of a series of 2,4-di-substituted-4H-naphtho[1,2-b]pyran-3-carbonitriles. Bioorg Med Chem Lett 1995;5:2783–8.
  • Kemnitzer W, Kasibhatla S, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg Med Chem Lett 2005;15:4745–51.
  • Afifi TH, Okasha RM, Alsherif H, et al. Design, synthesis, and docking studies of 4H-chromene and chromene based azo chromophores: a novel series of potent antimicrobial and anticancer agents. Curr Org Synth 2017;14:1–16.
  • Abd-El-Aziz AS, Alsaggaf AT, Okasha RM, et al. Antimicrobial and antitumor screening of fluorescent 5,7-dihydroxy-4-propyl-2H-chromen-2-one derivatives with docking studies. ChemistrySelect 2016;1:5025–33.
  • Fallah-Tafti A, Tiwari R, Shirazi AN, et al. 4-Aryl-4H-chromene-3-carbonitrile derivatives: evaluation of Src kinase inhibitory and anticancer activities. Med Chem 2011;7:466–72.
  • Panda D, Singh JP, Wilson L. Suppression of microtubule dynamics by LY290181. A potential mechanism for its antiproliferative action. J Biol Chem 1997;272:7681–7.
  • Wood DL, Panda D, Wiernicki TR, et al. Inhibition of mitosis and microtubule function through direct tubulin binding by a novel antiproliferative naphthopyran LY290181. Mol Pharmacol 1997;52:437–44.
  • Mohamed HM, Fouda AM, Khattab E, et al. Synthesis, in-vitro cytotoxicity of 1H-benzo[f]chromene derivatives and structure-activity relationships of the 1-aryl group and 9-position. Z Naturforsch C 2017;72:161–71.
  • Bedair AH, Emam HA, El-Hady NA, et al. Synthesis and antimicrobial activities of novel naphtho[2,1-b]pyran, pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]-pyrimidine derivatives. Farmaco 2001;56:965–73.
  • Sayed AZ, El-Hady NA, El-Agrody AM. Condensation of α-cyanocinnamonitriles with 6-bromo-2-naphthol: synthesis of pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]pyrimidine derivatives. J Chem Res (S) 2000;164–6.
  • Eid FA, Abd El-Wahab AH, Ali GA, Khafagy MM. Synthesis and antimicrobial evaluation of naphtho[2,1-b]pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives. Acta Pharm 2004;54:13–26.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
  • Atta-ur-Rahman MIC, William JT. Bioassay technique for drug development. Harwood Academic Publishers; 2001.
  • Demirci F, Başer KHC. Bioassay Techniques for Drug Development By Atta-ur-Rahman, M. Iqbal Choudhary (HEJRIC, University of Karachi, Pakistan), William J. Thomsen (Areana Pharmaceuticals, San Diego, CA). Harwood Academic Publishers, Amsterdam, The Netherlands. 2001. xii + 223 pp. 15.5 × 23.5 cm. $79.00. ISBN 90-5823-051-1. J Nat Prod 2002;65:1086–7.
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639–62.
  • Molecular Operating Environment (MOE) Chemical Computing Group. Quebec, Canada. 2012. Available from: http://www.chemcomp.com [last accessed 30 Feb 2013].
  • Snedecor GW, Cochran WG. Statistical methods. Ames, IA: Iowa State University Press; 1967.
  • Lee WJ, Chen WK, Wang CJ, et al. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 2008;226:178–91.
  • Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triple-negative breast cancer. Cancer Res 2013;73:2025–30.
  • Yeatman TJ. A renaissance for SRC. Nat Rev Cancer 2004;4:470–80.
  • Guarino M. Src signaling in cancer invasion. J Cell Physiol 2010;223:14–26.
  • Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 2003;22:337–58.
  • Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 2002;1602:114–30.
  • Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, et al. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res 1992;52:4773–8.
  • Verbeek BS, Vroom TM, Adriaansen-Slot SS, et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J Pathol 1996;180:383–8.
  • Manetti F, Locatelli GA, Maga G, et al. A combination of docking/dynamics simulations and pharmacophoric modeling to discover new dual c-Src/Abl kinase inhibitors. J Med Chem 2006;49:3278–86.
  • Hou T, Xu X. Recent development and application of virtual screening in drug discovery: an overview. Curr Pharm Des 2004;10:1011–33.
  • Rateb HS, Ahmed HE, Ahmed S, et al. Discovery of novel phthalimide analogs: synthesis, antimicrobial and antitubercular screening with molecular docking studies. EXCLI J 2016;15:781–96.
  • van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003;2:192–204.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1. Adv Drug Del Rev 2001;46:3–26.
  • Peduto A, More V, de Caprariis P, et al. Synthesis and cytotoxic activity of new beta-carboline derivatives. Mini Rev Med Chem 2011;11:486–91.
  • Zhao YH, Abraham MH, Le J, et al. Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 2002;19:1446–57.