1,395
Views
7
CrossRef citations to date
0
Altmetric
Short Communication

Oregonin from Alnus incana bark affects DNA methyltransferases expression and mitochondrial DNA copies in mouse embryonic fibroblasts

, , , , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1055-1063 | Received 19 Mar 2018, Accepted 09 May 2018, Published online: 07 Jun 2018

References

  • Telysheva G, Dizhbite T, Bikovens O, et al. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 2011;65:623–9.
  • Vidaković V, Novaković M, Popović Z, et al. Significance of diarylheptanoids for chemotaxonomical distinguishing between Alnus glutinosa and Alnus incana. Holzforschung 2017;72:9–16.
  • Lee CJ, Lee SS, Chen SC, et al. Oregonin inhibits lipopolysaccharide-induced iNOS gene transcription and upregulates HO-1 expression in macrophages and microglia. Br J Pharmacol 2005;146:378–88.
  • Martineau L, Hervé J, Muhamad A, et al. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: sites and mechanisms of action. Planta Medica 2010;76:1439–46.
  • Martineau L, Hervé J, Muhamad A, et al. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part II: bioassay-guided identification of actives salicortin and oregonin. Planta Medica 2010;76:1519–24.
  • Choi SE, Kim KH, Kwon JH, et al. Cytotoxic activities of diarylheptanoids from Alnus japonica. Arch Pharm Res 2008;31:1287–9.
  • Ra JC, Kim YH, Sohn DH, Antioxidative and hepatoprotective compositions containing diarylheptanoids from Alnus japonica, U.S. Patent no: 2011/0144039 A1; 2011.
  • Dinić J, Ranelović T, Stanković T, et al. Chemo-protective and regenerative effects of diarylheptanoids from the bark of black alder (Alnus glutinosa) in human normal keratinocytes. Fitoterapia 2015;105:169–76.
  • Ponomarenko J, Trouillas P, Martin N, et al. Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: a comprehensive (DFT-supported) understanding. Phytochemistry 2014;103:178–87.
  • Lundquist A, Magnusson LU, Ullstrom C, et al. Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages. Biochem Biophys Res Commun 2015;458:693–9.
  • Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 2008;76:1590–611.
  • Liu Z, Xie Z, Jones W, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 2009;19:706–9.
  • Boyanapalli SSS, Tony Kong AN. “Curcumin, the King of Spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep 2015;1:129–39.
  • Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015;11:604–17.
  • Tajbakhsh J. DNA methylation topology: potential of a chromatin landmark for epigenetic drug toxicology. Epigenomics 2011;3:761–70.
  • Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural compounds: role in reversal of epigenetic changes. Biochemistry (Mosc) 2015;80:972–89.
  • Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review. Mutat Res Rev Mutat Res 2016;768:27–45.
  • Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 2012;7:326–34.
  • Smiraglia DJ, Kulawiec M, Bistulfi GL, et al. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 2008;7:1182–90.
  • Chen T, Hevi S, Gay F, et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 2007;39:391–6.
  • Ferreira A, Serafim TL, Sardao VA, Cunha Oliveira T. Role of mtDNA-related mitoepigenetic phenomena in cancer. Eur J Clin Invest 2015;45:44–9.
  • Choi KC, Jung MG, Lee YH, et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 2009;69:583–92.
  • Stefanska B, Salame P, Bednarek A, Fabianowska-Majewska K. Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumor suppressor gene in breast cancer cells. Br J Nutr 2012;107:781–90.
  • Day JK, Bauer AM, DesBordes C, et al. Genistein alters methylation patterns in mice. J Nutr 2002;132:2419S–23S.
  • Fang MZ, Chen D, Sun Y, et al. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 2005;11:7033–41.
  • Fernández-Bedmar Z, Anter J, Alonso-Moraga A, et al. Hepatocarcinogenic potential of hesperidin, a natural polyphenol of Citrus juices. Mol Carcinog 2017;56:1653–62.
  • Szyf M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc) 2005;70:533–49.
  • Gupta SC, Kannappan R, Reuter S, et al. Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 2011;1215:150–60.
  • Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 2010;80:1771–92.
  • Nicklas JA, Brooks EM, Hunter TC, et al. Development of a quantitative PCR (TaqMan) assay for relative mitochondrial DNA copy number and the common mitochondrial DNA deletion in the rat. Environ Mol Mutagen 2004;44:313–20.
  • Aiken CE, Cindrova-Davies T, Johnson MH. Variations in mouse mitochondrial DNA copy number from fertilization to birth are associated with oxidative stress. Reprod Biomed Online 2008;17:806–13.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
  • Zhang ZM, Liu S, Lin K, et al. Crystal structure of human DNA methyltransferase 1. J Mol Biol 2015;427:2520–31.
  • Navakauskienė R, Mori M, Christodoulou MS, et al. Histone demethylating agents as potential S-adenosyl-L-methionine-competitors. Med Chem Commun 2016;7:1245–55.
  • FRED 3.0.1: OpenEye scientific software, Santa Fe, NM. Available from: http://www.eyesopen.com (accessed in February 2018.)
  • McGann M. FRED pose prediction and virtual screening accuracy. J Chem Inf Model 2011;51:578–96.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2015;44:D1202–13.
  • OMEGA 2.5.1.4: OpenEye scientific software, Santa Fe, NM. Available from: http://www.eyesopen.com (accessed in February 2018.)
  • Hawkins PC, Skillman AG, Warren GL, et al. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 2010;50:572–84.
  • Han J, Lee WS, Kim J-R, et al. Effects of diarylheptanoids on the tumor necrosis factor-r-induced expression of adhesion molecules in human umbilical vein endothelial cells. J Agric Food Chem 2007;55:9457–64.
  • Kumarasamy Y, Cox PJ, Jaspars M, et al. Bioactivity of hirsutanol, oregonin and genkwanin, isolated from the seeds of Alnus glutinosa (Betulaceae). Nat Prod Commun 2006;1:641. https://abdn.pure.elsevier.com
  • Saxena A, Yadav D, Mohanty S, et al. Diarylheptanoids rich fraction of Alnus nepalensis attenuates malaria pathogenesis: in-vitro and in-vivo study. Phytother Res 2016;30:940–8.
  • Oelkrug C, Lange C, Wenzel E, et al. Analysis of the tumoricidal and anti-cachectic potential of curcumin. Anticancer Res 2014;34:4781–8.
  • Malik A, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013;13:481–92.
  • Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 2012;1819:921–9.
  • Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007;76:679–99.
  • Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009;71:177–203.
  • Leigh-Brown S, Enriquez JA, Odom DT. Nuclear transcription factors in mammalian mitochondria. Genome Biol 2010;11:215.
  • Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011;108:3630–5.
  • Chestnut BA, Chang Q, Lesuisse C, et al. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 2011;31:16619–36.
  • Wong M, Gertz B, Chestnut B, Martin L. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 2013; 7:279.
  • Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next generation biomarker and diagnostic tool. Mol Genet Metab 2013;110:25–34.
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349:2042–54.
  • Fang MZ, Jin Z, Wang Y, et al. Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol 2005; 26:615–22.
  • Zheng J, Wu C, Lin Z, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation – a novel mechanism suppressing liver fibrosis. FEBS J 2014; 281:88–103.
  • Mirza S, Sharma G, Parshad R, et al. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 2013;16:23–31. Mar.
  • Sharma V, Jha AK, Kumar A, et al. Curcumin-mediated reversal of p15 gene promoter methylation: implication in anti-neoplastic action against acute lymphoid leukaemia cell line. Folia Biologica (Praha) 2015;61:81–9.