3,131
Views
86
CrossRef citations to date
0
Altmetric
Research Paper

Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies

, , , , , , & show all
Pages 1095-1107 | Received 22 Mar 2018, Accepted 10 May 2018, Published online: 26 Jun 2018

References

  • Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin 2016;66:271–89.
  • Grover J, Jachak SM. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv 2015;5:38892–905.
  • Al-Majedy Y, Kadhum AA, Ibraheem H, et al. A systematic review on pharmacological activities of 4-methylumbelliferon. Sys Rev Pharm 2018;8:24–30.
  • Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 2016;123:236–55.
  • Pinto DC, Silva AM. Anticancer natural coumarins as lead compounds for the discovery of new drugs. Curr Top Med Chem 2017;17:3190–98.
  • Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2015;101:476–95.
  • Kaur M, Kohli S, Sandhu S, et al. Coumarin: a promising scaffold for anticancer agents. Anticancer Agents Med Chem 2015;15:1032–48.
  • Dandriyal J, Singla R, Kumar M, Jaitak V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur J Med Chem 2016;119:141–68.
  • Degorce SL, Bailey A, Callis R, et al. Investigation of (E)-3-[4-(2-Oxo-3-aryl-chromen-4-yl) oxyphenyl] acrylic acids as oral selective estrogen receptor down-regulators. J Med Chem. 2015:58:3522–33.
  • Civelli M, Preti AP, Cenacchi V, et al. Single and multiple ascending dose studies of a novel tissue‐selective oestrogen receptor modulator, CHF 4227, in healthy postmenopausal women. Br J Clin Pharmacol. 2007:64:304–16.
  • Suzuki N, Liu X, Laxmi YR, et al. Anti‐breast cancer potential of SS5020, a novel benzopyran antiestrogen. Int J Cancer. 2011:128:974–82.
  • Liu MM, Chen XY, Huang YQ, et al. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J Med Chem. 2014:57:9343–56.
  • Wang C, Xu F, Niu Y, et al. Synthesis and biological evaluations of 3-benzothiazol-2-yl coumarin derivatives as MEK1 inhibitors. Lett Drug Des Discov. 2013:10:727–32.
  • Han S, Zhou V, Pan S, et al. Identification of coumarin derivatives as a novel class of allosteric MEK1 inhibitors. Bioorg Med Chem Lett. 2005:15:5467–73.
  • Palmieri C, Januszewski A, Stanway S, Coombes RC. Irosustat: a first-generation steroid sulfatase inhibitor in breast cancer. Expert Rev. Anticancer Ther. 2011:11:179–83.
  • Daśko M, Przybyłowska M, Rachon J, et al. Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors. Eur J Med Chem. 2017:128:79–87.
  • Demkowicz S, Daśko M, Kozak W, et al. Synthesis and biological evaluation of fluorinated 3‐phenylcoumarin‐7‐O‐sulfamate derivatives as steroid sulfatase inhibitors. Chem Biol Drug Des. 2016:87:233–8.
  • Bana E, Sibille E, Valente S, et al. A novel coumarin‐quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog. 2015:54:229–41.
  • Zwergel C, Czepukojc B, Evain-Bana E, et al. Novel coumarin-and quinolinone-based polycycles as cell division cycle 25-A and-C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur J Med Chem. 2017:134:316–33.
  • Valente S, Bana E, Viry E, et al. Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases. Bioorg Med Chem Lett. 2010:20:5827–30.
  • Cao D, Liu Y, Yan W, et al. Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: a novel class of potent tubulin polymerization inhibitors. J Med Chem. 2016:59:5721–39.
  • Singh H, Kumar M, Nepali K, et al. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur J Med Chem. 2016:116:102–15.
  • Samundeeswari S, Kulkarni MV, Joshi SD, et al. Synthesis and human anticancer cell line studies on coumarin‐β‐carboline hybrids as possible antimitotic agents. ChemistrySelect. 2016:1:5019–24.
  • Ghorab MM, Alsaid MS, Al-Ansary GH, et al. Analogue based drug design, synthesis, molecular docking and anticancer evaluation of novel chromene sulfonamide hybrids as aromatase inhibitors and apoptosis enhancers. Eur J Med Chem. 2016:124:946–58.
  • Chen S, Cho M, Karlsberg K, et al. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative. J Biol Chem. 2004:279:48071–8.
  • Lu XY, Wang ZC, Ren SZ, et al. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorg Med Chem Lett. 2016:26:3491–8.
  • (a) Avin BV, Thirusangu P, Ranganatha VL, et al. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur J Med Chem. 2014:75:211–21. (b) Lin MH, Cheng CH, Chen KC, et al. Induction of ROS-independent JNK-activation-mediated apoptosis by a novel coumarin-derivative, DMAC, in human colon cancer cells. Chem-Biol Interact. 2014:218:42–9.
  • (a) Han HW, Zheng CS, Chu SJ, et al. The evaluation of potent antitumor activities of shikonin coumarin-carboxylic acid, PMMB232 through HIF–1α–mediated apoptosis. Biomed Pharmacother. 2018:97:656–66. (b) Lopez-Gonzalez JS, Prado-Garcia H, Aguilar-Cazares D, et al. Apoptosis and cell cycle disturbances induced by coumarin and 7-hydroxycoumarin on human lung carcinoma cell lines. Lung cancer. 2004:43:275–83.
  • (a) Wang Q, Guo Y, Jiang S, et al. A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells. Phytomedicine. 2017:160–67. (b) Perumalsamy H, Sankarapandian K, Veerapan K, et al. In silico and In vitro analysis of coumarin derivative induced anticancer effects by undergoing intrinsic pathway mediated apoptosis in human stomach cancer. Phytomedicine. 2018.
  • (a) Mirunalini S, Deepalakshmi K, Manimozhi J. Antiproliferative effect of coumarin by modulating oxidant/antioxidant status and inducing apoptosis in Hep2 cells. Biomed Aging Path. 2014:4:131–5. (b) Domracheva I, Kanepe-Lapsa I, Jackevica L, et al. Selenopheno quinolinones and coumarins promote cancer cell apoptosis by ROS depletion and caspase-7 activation. Life Sci. 2017:186:92–101.
  • (a) Ma YM, Zhou YB, Xie CM, et al. Novel microtubule-targeted agent 6-chloro-4-(methoxyphenyl) coumarin induces G 2-M arrest and apoptosis in HeLa cells. Acta Pharmacol Sin. 2012:33:407–17. (b) Álvarez‐Delgado C, Reyes‐Chilpa R, Estrada‐Muñiz E, et al. Coumarin A/AA induces apoptosis‐like cell death in HeLa cells mediated by the release of apoptosis‐inducing factor. J Biochem Mol Toxicol. 2009:23:263–72.
  • (a) Scozzafava A, Mastrolorenzo A, Supuran CT. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets 2002;2:55–75. (b) Uehara T, Minoshima Y, Sagane K, et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat Chem Biol 2017; 13:675.
  • (a) Eldehna WM, Abo-Ashour MF, Nocentini A, et al. Novel 4/3-((4-oxo-5-(2-oxoindolin-3-ylidene) thiazolidin-2-ylidene) amino) benzenesulfonamides: Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular modelling studies. Eur J Med Chem 2017;139:250–62. (b) Fares M, Eladwy RA, Nocentini A, et al. Synthesis of bulky-tailed sulfonamides incorporating pyrido [2, 3-d][1, 2, 4] triazolo [4, 3-a] pyrimidin-1 (5H)-yl) moieties and evaluation of their carbonic anhydrases I, II, IV and IX inhibitory effects. Bioorg Med Chem. 2017;25:2210–7. (c) Alafeefy AM, Ahmad R, Abdulla M, et al. Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesulfonamide as potential antitumor agents. Eur J Med Chem 2016;109:247–53. (d) Eldehna WM, Fares M, Ceruso M, et al. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII. Eur J Med Chem 2016;110:259–66. (e) Eldehna WM, Al-Ansary GH, Bua S, et al. Novel indolin-2-one-based sulfonamides as carbonic anhydrase inhibitors: Synthesis, in vitro biological evaluation against carbonic anhydrases isoforms I, II, IV and VII and molecular docking studies. Eur J Med Chem 2017;127:521–30.
  • Reddy NS, Mallireddigari MR, Cosenza S, et al. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg Med Chem Lett 2004;14:4093–7.
  • Musa MA, Cooperwood JS, Khan MO. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 2008;15:2664–79.
  • Bonardi A, Falsini M, Catarzi D, et al. Structural investigations on coumarins leading to chromeno [4, 3-c] pyrazol-4-ones and pyrano [4, 3-c] pyrazol-4-ones: New scaffolds for the design of the tumor-associated carbonic anhydrase isoforms IX and XII. Eur J Med Chem 2018.
  • Chandak N, Ceruso M, Supuran CT, Sharma PK. Novel sulfonamide bearing coumarin scaffolds as selective inhibitors of tumor associated carbonic anhydrase isoforms IX and XII. Bioorg Med Chem 2016;24:2882–6.
  • Pacchiano F, Carta F, McDonald PC, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 2011:54:1896–902.
  • Safety Study of SLC-0111 in Subjects with Advanced Solid Tumours. See at: https://clinicaltrials.gov/ct2/show/NCT02215850.
  • Lou Y, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 2011:71:3364–76.
  • Wang W, Ao L, Rayburn ER, et al. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology. PloS One 2012:7:e44883.
  • Yin S, Kaluz S, Devi NS, et al. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with cofactors p300/CBP. Clin Cancer Res 2012.
  • Fukuoka K, Usuda J, Iwamoto Y, et al. Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Invest New Drugs 2001:19:219–27.
  • Ozawa Y, Sugi NH, Nagasu T, et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur J Cancer 2001:37:2275–82.
  • Ozawa Y, Kusano K, Owa T, et al. Therapeutic potential and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in combination with CPT-11 for cancer treatment. Cancer Chemother Pharmacol. 2012:69:1353–62.
  • Manasa KL. E7010: investigational anticancer agents targeting the microtubules. Int J Pharm Sci Res. 2015:6:3713.
  • Assi R, Kantarjian HM, Kadia TM, et al. Final results of a phase 2, open‐label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high‐risk myelodysplastic syndrome. Cancer. 2018. (Accepted manuscript, DOI: 10.1002/cncr.31398)
  • Miller JN. Coumarin-6-sulphonyl chloride: a novel label in fluorimetry and phosphorimetry Part 1. Synthesis and Luminescence Properties. Anal Chim Acta 1989;227:145–53.
  • Bary HM, Aleem AH, Ismail II. Reactions with coumarin IV. Afinidad 1995;52:344–6.
  • (a) Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI: J Natl Cancer Inst 1990;82:1107–12. (b) Eldehna WM, Fares M, Ibrahim HS, et al. Synthesis and cytotoxic activity of biphenylurea derivatives containing indolin-2-one moieties. Molecules. 2016;21(6):762.
  • Eldehna WM, Almahli H, Al-Ansary GH, et al. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents. J Enz Inhib Med Chem 2017;32:600–13.
  • Almahli H, Hadchity E, Jaballah MY, et al. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg Chem 2018;77:443–56.
  • (a) Eldehna WM, EL-Naggar DH, Hamed AR, et al. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J Enz Inhib Med Chem 2018;33:309–18. (b) Abdel-Aziz HA, Ghabbour HA, Eldehna WM, et al. 2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential. Eur J Med Chem 2015;104:1–10.
  • Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 2003;4:721–9.
  • Attia MI, Eldehna WM, Afifi SA, et al. New hydrazonoindolin- 2-ones: synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS One 2017;12:e0181241.
  • (a) Eldehna WM, Ibrahim HS, Abdel-Aziz HA, et al. Design, synthesis and in vitro antitumor activity of novel N-substituted- 4-phenyl/benzylphthalazin-1-ones. Eur J Med Chem 2015;89:549–60. (b) Abdel-Aziz HA, Eldehna WM, Ghabbour H, et al. Synthesis, crystal study, and anti-proliferative activity of some 2-benzimidazolylthioacetophenones towards triple-negative breast cancer MDA-MB-468 cells as apoptosis-inducing agents. Int J Mol Sci. 2016;17:1221.
  • Discovery Studio 4.0 (Accelrys, Co. Ltd). 2017. http://www.accelrys.com/ [last accessed 24 July 2017].
  • Mitra I, Saha A, Roy K. Chemometric QSAR modeling and in silico design of antioxidant NO donor phenols. Sci Pharma 2010;79:31–58.
  • Behmaram B, Foroughifar N, Foroughifar N, Hallajian S. Synthesis of some derivatives of 4-phenyl-1, 3-dihydro-2H-imidazole-2-thion using ionic liquid as catalyst and evaluation of their antimicrobial activity. Int J Chem 2017;9:45.
  • Ghose AK, Crippen GM. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships I. Partition coefficients as a measure of hydrophobicity. J Comput Chem 1986;7:565–77.