1,553
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis and structure–activity relationships of 2- and/or 4-halogenated 13β- and 13α-estrone derivatives as enzyme inhibitors of estrogen biosynthesis

, , , , , , , , , & show all
Pages 1271-1282 | Received 22 Mar 2018, Accepted 15 Jun 2018, Published online: 19 Sep 2018

References

  • Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32:81–151.
  • Izumi S, Nozaki Y, Komori T, et al. Substrate-dependent inhibition of organic anion transporting polypeptide 1B1: comparative analysis with prototypical probe substrates estradiol-17β-glucuronide, estrone-3-sulfate, and sulfobromophthalein. Drug Metab Dispos 2013;41:1859–66.
  • Thomas MP, Potter BVL. Estrogen O-sulfamates and their analogues: clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015;153:160–9.
  • Hong Y, Chen S. Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: structure-function studies and inhibitor development. Mol Cell Endocrinol 2011;340:120–6.
  • Numazawa M, Ando M, Watari Y, et al. Structure-activity relationships of 2-, 4-, or 6-substituted estrogens as aromatase inhibitors. J Steroid Biochem Mol Biol 2005;96:51–8.
  • Möller G, Deluca D, Gege C, et al. Structure-based design, synthesis and in vitro characterization of potent 17β-hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-homo-estrone. Bioorg Med Chem Lett 2009;19:6740–4.
  • Phan CM, Liu Y, Kim BM, et al. Inhibition of steroid sulfatase with 4-substituted estrone and estradiol derivatives. Bioorg Med Chem 2011;19:5999–6005.
  • Kuruto-Niwa R, Ito T, Goto H, et al. Estrogenic activity of the chlorinated derivatives of estrogens and flavonoids using a GFP expression system. Environ Toxicol Pharmacol 2007;23:121–8.
  • Zhu BT, Han GZ, Shim JY, et al. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology 2006;147:4132–50.
  • Nakamura H, Shiozawa T, Terao Y, et al. By-products produced by the reaction of estrogens with hypochlorous acid and their estrogen activities. J Health Sci 2006;52:124–31.
  • Anstead GM, Carlson KE, Katzenellenbogen JA. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 1997;62:268–303.
  • Schönecker B, Lange C, Kötteritzsch M, et al. Conformational design for 13α-steroids. J Org Chem 2000;65:5487–97.
  • Ayan D, Roy J, Maltais R, Poirier D. Impact of estradiol structural modifications (18-methyl and/or 17-hydroxy inversion of configuration) on the in vitro and in vivo estrogenic activity. J. Steroid Biochem Mol Biol 2011;127:324–30.
  • Penov Gasi KM, Miljkovic DA, Medic Mijacevic LD, et al. Synthesis, X-ray crystal structure and biological activity of 16-amino-17-substituted-D-homo steroid derivatives. Steroids 2003;68:667–76.
  • Jovanovic-Santa S, Petrovic J, Andric S, et al. Synthesis, structure, and screening of estrogenic and antiestrogenic activity of new 3,17-substituted- 16,17-seco-estratriene derivatives. Bioorg Chem 2003;31:475–84.
  • Herman BE, Szabó J, Bacsa I, et al. Comparative investigation of the in vitro inhibitory potencies of 13-epimeric estrones and D-secoestrones towards 17β-hydroxysteroid dehydrogenase type 1. J. Enzyme Inhib Med Chem 2016;31:61–9.
  • Bacsa I, Jójárt R, Schneider G, et al. Synthesis of A-ring halogenated 13α-estrone derivatives as potential 17β-HSD1 inhibitors. Steroids 2015;104:230–6.
  • Ghosh D, Griswold J, Erman M, Pangborn W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature 2009;457:219–23.
  • Ghosh D. Human sulfatases: a structural perspective to catalysis. Cell Mol. Life Sci 2007;64:2013–22.
  • Marchais-Oberwinkler S, Henn C, Möller G, et al. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011;125:66–82.
  • Kellis JT, Jr, Vickery LE. Purification and characterization of human placental aromatase cytochrome P-450. J Biol Chem 1987;262:4413–20.
  • Yoshida N, Osawa Y. Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization. Biochemistry 1991;30:3003–10.
  • Sherwin PF, McMullan PC, Covey DF. Effects of steroid D-ring modification on suicide inactivation and competitive inhibition of aromatase by analogues of androsta-1,4-diene-3,17-dione. J Med Chem 1989;32:651–8.
  • Numazawa M, Kamiyama T, Tachibana M, Oshibe M. Synthesis and structure−activity relationships of 6-substituted androst-4-ene analogs as aromatase inhibitors. J Med Chem 1996;39:2245–52.
  • Osawa Y, Higashiyama T, Toma Y, Yarborough C. Diverse function of aromatase and the N-terminal sequence deleted form. J Steroid Biochem Mol Biol 1997;61:117–26.
  • Nussbaumer P, Billich A. Steroid sulfatase inhibitors. Med Res Rev 2004;24:529–76.
  • Ahmed V, Liu Y, Taylor SD. Multiple pathways for the irreversible inhibition of steroid sulfatase with quinone methide-generating suicide inhibitors. ChemBioChem 2009;10:1457–61.
  • (a) SciFinder (Advanced Chemistry Development (ACD/Labs) Software V11.02), https://scifinder.cas.org, (accessed September 2017); (b) ACE and JChem pKa calculator, https://ace.chem.illinois.edu/ace/public/pKa.jsp, (accessed September 2017).
  • Segel IH. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, New edn., New York: Wiley-Interscience, 1993.
  • Cortés A, Cascante M, Cárdenas ML, Cornish-Bowden A. Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochem J 2001;357:263–8.
  • Breton R, Housset D, Mazza C, Fontecilla-Camps JC. The structure of a complex of human 17beta-hydroxysteroid dehydrogenase with estradiol and NADP + identifies two principal targets for the design of inhibitors. Structure 1996;4:905–15.
  • Penning TM. Human hydroxysteroid dehydrogenases and pre-receptor regulation: insights into inhibitor design and evaluation. J Steroid Biochem Mol Biol 2011;125:46–56.
  • Huang YW, Pineau I, Chang HJ, et al. Critical residues for the specificity of cofactors and substrates in human estrogenic 17beta-hydroxysteroid dehydrogenase 1: variants designed from the three-dimensional structure of the enzyme. Mol. Endocrinol 2001;15:2010–20.
  • Mazumdar M, Fournier D, Zhu DW, et al. Binary and ternary crystal structure analyses of a novel inhibitor with 17beta-HSD type 1: a lead compound for breast cancer therapy. Biochem J 2009;424:357–66. doi: 10.1042/BJ20091020.
  • Langer L, Alexander JA, Engels LL. Human placental estradiol-17beta dehydrogenase. II. Kinetics and substrate specificities. J Biol Chem 1959;234:2609–14.
  • Blomquist CH, Kotts CE, Hakanson EY. Inhibiton of human placental 17beta-hydroxysteroid dehydrogenase by steroids and nonsteroidal alcohols: aspects of inhibitor structure and binding specificity. Arch Biochem Biophys 1978;186:35–41.
  • Szabó J, Bacsa I, Wölfling J, et al. Mernyák, Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4-yl)methyl]-carboxamides on d-secoestrone scaffolds. J Enzyme Inhib Med Chem 2016;31:574–9.
  • Yadav MR, Barmade MA, Tamboli RS, Murumkar PR. Developing steroidal aromatase inhibitors-an effective armament to win the battle against breast cancer. Eur J Med Chem 2015;105:1–38.
  • Rizner TL. The important roles of steroid sulfatase and sulfotransferases in gynecological diseases. Front Pharmacol 2016;7:30.