2,155
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation

, &
Pages 1309-1322 | Received 01 Jun 2018, Accepted 06 Jul 2018, Published online: 24 Sep 2018

References

  • Sahoo AK, Dandapat J, Dash UC, et al. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol 2018;215:42–73.
  • Amatsubo T, Yanagisawa D, Morikawa S, et al. Amyloid imaging using high-field magnetic resonance. Magn Reson Med Sci 2010;9:95–9.
  • Hersi M, Irvine B, Gupta P, et al. Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology 2017;61:143–87.
  • Zhang Y, Huang NQ, Yan F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018;339:57–65.
  • Kumar D, Ganeshpurkar A, Kumar D, et al. Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur J Med Chem 2018;148:436–52.
  • Kuca K, Soukup O, Maresova P, et al. Current approaches against Alzheimer’s disease in clinical trials. J Braz Chem Soc 2016;27:641–9.
  • Kumar K, Kumar A, Keegan RM, et al. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 2018;98:297–307.
  • Tonelli DM, Catto DM, Tasso DB, et al. Multitarget therapeutic leads for Alzheimer’s disease. Quinolizidinyl derivatives of bi- and tri-cyclic systems as dual inhibitors of cholinesterases and Aβ aggregation. ChemMedChem 2015;10:1040–53.
  • Folch J, Ettcheto M, Petrov D, et al. Review of the advances in treatment for Alzheimer disease: strategies for combating β-amyloid protein. Neurol 2017;33:47–58.
  • Korábečný J, Nepovimová E, Cikánková T, et al. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience 2018;370:191–206.
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 2018;14:450–64.
  • Villa V, Thellung S, Bajetto A, et al. Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol Res 2016;113:500–14.
  • Villa V, Thellung S, Corsaro A, et al. Celecoxib inhibits prion protein 90-231-mediated Pro-inflammatory responses in microglial cells. Mol Neurobiol 2016;53:57–72.
  • Markowicz-Piasecka M, Huttunen KM, Mateusiak Ł, et al. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des 2017;23:2532–50.
  • Kalyanaraman B, Cheng G, Hardy M, et al. Modified metformin as a more potent anticancer drug: mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochem Biophys 2017;75:311–17.
  • Markowicz-Piasecka M, Sikora J, Szydłowska A, et al. Metformin – a future therapy for neurodegenerative diseases: theme: drug discovery, development and delivery in Alzheimer’s disease Guest Editor: Davide Brambilla. Pharm Res 2017;34:2614.
  • Guo M, Mi J, Jiang QM, et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol 2014;41:650–6.
  • Herath PM, Cherbuin N, Eramudugolla R, et al. The effect of diabetes medication on cognitive function: evidence from the PATH through life study. Biomed Res Int 2016;2016:1.
  • Scarpello JH, Howlett HC. Metformin therapy and clinical uses. Diabetes Vasc Dis Res. 2008;5:157–67.
  • Azadeh E-H, Asadbegi M, Salehi I, et al. Neuroprotective role of antidiabetic drug metformin against amyloid beta peptide-induced neuronal loss in hippocampal CA1 pyramidal neurons in rats fed high fat diet. J Chem Pharm Sci 2016;9:3460–5.
  • Patrone C, Eriksson O, Lindholm D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol 2014;2:256–62.
  • Wang J, Gallagher D, Devito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012;11:23–35.
  • Bhutada P, Mundhada Y, Bansod K, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res 2011;220:30–41.
  • Saliu JA, Oboh G, Omojokun OS, et al. Effect of dietary supplementation of Padauk (Pterocarpus soyauxii) leaf on high fat diet/streptozotocin induced diabetes in rats’ brain and platelets. Biomed. Pharmacother 2016;84:1194–201.
  • Markowicz-Piasecka M, Sikora J, Mateusiak A, et al. Metformin and its sulfenamide prodrugs inhibit human cholinesterase activity. Oxid Med Cell Longev 2017;2017:1.
  • Huttunen KM, Leppänen J, Laine K, et al. Convenient microwave-assisted synthesis of lipophilic sulfenamide prodrugs of metformin. Eur J Pharm Sci 2013;49:624–8.
  • Rautio J, Vernerová M, Aufderhaar I, et al. Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug. Bioorganic Med Chem Lett 2014;24:5034–6.
  • Kajbaf F, De Broe ME, Lalau J-D. Therapeutic concentrations of metformin: a systematic review. Clin Pharmacokinet 2016;55:439–59.
  • Markowicz-Piasecka M, Huttunen KM, Mikiciuk-Olasik E, Sikora J. Biocompatible sulfenamide and sulfonamide derivatives of metformin can exert beneficial effects on plasma haemostasis. Chem Biol Interact 2018;280:15.
  • Kuźma Ł, Wysokińska H, Sikora J, et al. Taxodione and extracts from Salvia austriaca roots as human cholinesterase inhibitors. Phyther Res 2016;30:234–42.
  • Chou T-C, Motzer RJ, Tong Y, Bosl GJ. Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 1994;86:1517–24.
  • Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006;58:621–81.
  • Walsh R, Rockwood K, Martin E, Darvesh S. Synergistic inhibition of butyrylcholinesterase by galantamine and citalopram. Biochin Biophys Acta 2011;1810:1230–5.
  • Imramovsky A, Stepankova S, Vanco J, et al. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules 2012;17:10142–58.
  • Mezeiova E, Spilovska K, Nepovimova E, et al. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem 2018;33:583–606.
  • García-Ayllón M-S. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 2011;4:1–9.
  • Arendt T, Brückner MK. Perisomatic sprouts immunoreactive for nerve growth factor receptor and neurofibrillary degeneration affect different neuronal populations in the basal nucleus in patients with Alzheimer’s disease. Neurosci Lett 1992;148:63–6.
  • Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer's disease: getting on and staying on. Curr Ther Res Clin Exp 2003;64:216–35.
  • Giacobini E, Spiegel R, Enz A, et al. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm (Vienna) 2002;109:1053–65.
  • Greig NH, Utsuki T, Ingram DK, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer-amyloid peptide in rodent. Proc Natl Acad Sci 2005;102:17213–8.
  • Nordberg A, Ballard C, Bullock R, et al. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 2013;15:12r01412.
  • Sridhar GR, Rao AA, Srinivas K, et al. Butyrylcholinesterase in metabolic syndrome. Med Hypotheses 2010;75:648–51.
  • Abbott CA, MacKness MI, Kumar S, et al. Relationship between serum butyrylcholinesterase activity, hypertriglyceridemia and insulin sensitivity in diabetes mellitus. Clin Sci 1993;85:77–81.
  • Iwasaki T, Yoneda M, Nakajima A, et al. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med 2007;46:1633–9.
  • Shahmohamadnejad S, Vaisi-Raygani A, Shakiba Y, et al. Association between butyrylcholinesterase activity and phenotypes, paraoxonase192 rs662 gene polymorphism and their enzymatic activity with severity of rheumatoid arthritis: correlation with systemic inflammatory markers and oxidative stress, preliminary. Clin Biochem 2015;48:63–9.
  • Khan H, Marya, Amin S, et al. Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects. Biomed Pharmacother 2018;101:860–70.
  • Wang J, Wang ZM, Li XM, et al. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorganic Med Chem 2016;24:4324–38.
  • Bajda M, Więckowska A, Hebda M, et al. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013;14:5608–32.
  • Mak S, Luk WWK, Cui W, et al. Synergistic inhibition on acetylcholinesterase by the combination of berberine and palmatine originally isolated from Chinese medicinal herbs. J Mol Neurosci 2014;53:511–16.
  • Johnson GVW. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2004;117:5721–9.
  • Sun X, Bromley‐Brits K, Song W. Regulation of beta-site APP cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 2012;120:62–70.
  • Agis-Torres A, Sollhuber M, Fernandez M, et al. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol 2014;12:2–36.
  • Akrami H, Mirjalili BF, Khoobi M, et al. Indolinone-based acetylcholinesterase inhibitors: synthesis, biological activity and molecular modeling. Eur J Med Chem 2014;84:375–81.
  • Hettich MM, Matthes F, Ryan DP, et al. The anti-diabetic drug metformin reduces BACE1 protein level by interfering with the MID1 complex. PLoS One 2014;9:e102420.
  • Li J, Deng J, Sheng W, et al. Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice . Pharmacol Biochem Behav 2012;101:564–74.
  • Chen Y, Zhou K, Wang R, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci 2009;106:3907–12.
  • Imfeld P, Bodmer M, Jick SS, et al. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc 2012;60:916–21.